
Geospatail Data Organization Methods with Emphasis on

Aperture 3 Hexagonal Discrete Global Grid Systems

April 30, 2018

Abstract

Digital Earth frameworks deal with data sets of different types collected from vari-
ous sources. In order to effectively store, retrieve, and transmit these data sets, efficient
multiscale data representations that are compatible with the underlying structure of
the Digital Earth framework are required. In this paper, we describe several such
techniques and their properties; namely, how to represent data in the multiscale cell
hierarchy of a DGGS or in the multiscale hierarchy of a customized wavelet transform.
We also discuss how these techniques can be tuned to be applicable to the A3H DGGS.

1 Introduction

The Digital Earth provides a representation of the Earth on which data sets of different
types and from different sources can be integrated, analyzed and visualized [21]; and is
commonly implemented using a Discrete Global Grid System (DGGS) [41]. In a DGGS,
the Earth is typically approximated using a spherical polyhedron that is iteratively refined
in order to generate a multiresolution hierarchy [21]. Through this process, the surface of
the Earth is discretized into a hierarchical set of cells, where the area of a refined/child
cell as compared to a parent cell is described by the factor (or aperture) of the refinement.
These cells are then projected to the sphere using one of a variety of spherical projection
methods, although equal area projections are usually more desirable when data analysis is
emphasized [59, 22].

DGGSs consisting primarily of hexagonal cells are particularly popular [40, 53, 52], due
to the superior sampling behavior of hexagonal tilings. Especially common are those DG-
GSs, collectively known as Aperture 3 Hexagonal (A3H) DGGSs, that consist of hexagonal
cells refined by factor of three (aperture 3), which provides a smooth transition between
resolutions [36, 54, 24]. See Figure 1 for an illustration.

As the core functionality of any Digital Earth lies in the efficient management of geospa-
tial data (primarily imagery and elevation data, vector data, and quantitative data), tech-
niques for the representation of geospatial data merit discussion. One of the core obstacles

1

(a) (b) (c)

Figure 1: (a), (b) The PYXIS Digital Earth, which is an A3H DGGS, and its cell structure.
(c) The 1-to-3 hexagonal refinement (aperture 3).

inherent to this topic lies in the immense scale of and storage requirements for many geospa-
tial data sets, which continues to grow with improvements to data capturing technologies.
As a result, geospatial data often cannot be stored locally on a single machine, and must
be distributed across a set of servers. Client machines with limited memory may then con-
nect to these servers in order to request data or initiate geospatial queries, ranging from
requests for specific images in a given area to statistical analyses on quantitative data.

The issue of scale additionally requires that data representations be multiscale. The
immense difference in the scope of a city neighborhood against that of an entire country
makes it often impractical to visualize or process a data set at its native resolution. While
the cell hierarchy of a DGGS offers a natural multiscale representation for different data
sets, alternative representations — such as wavelet transforms — can offer additional bene-
fits to certain operations. In particular, appropriate multiscale representations can be used
to counteract the adverse effect of data size increases on transmission and query processing
times, and ensure that queries are handled quickly and accurately.

In this paper, we describe different methods that may be used to represent, in a multi-
scale manner, the three main types of geospatial data, with particular emphasis on client-
server Digital Earth architectures supported by an A3H DGGS. We present a number of
existing and novel methods that represent data with wavelet transforms or convert data
into a wavelet-supported form, largely for the purposes of efficient data transmission or
querying. Such methods allow for an initial visualization or query result to be produced
with approximate data, which may then be refined to the correct result using loss-less
wavelet techniques as additional data arrives via transmission or finishes processing.

In Section 3, we briefly overview how geospatial data may be stored in and retrieved
from a DGGS. The primary mechanism underlying these processes is a DGGS indexing
system. Two such indexing systems for A3H DGGSs, which assign a unique index to each
cell of the DGGS, are described in detail.

Section 4 then describes how imagery and elevation data sets can be extracted from the
cell hierarchy of an A3H DGGS for the purposes of transmission or rendering. This is then

2

followed by discussions on how these data may be loss-lessy compressed for transmission
to client machines using, e.g., the Haar wavelet transform. A novel wavelet transform that
is compatible with an A3H DGGS — the integer ternary Haar wavelet — is additionally
described.

Following this, in Section 5 we describe approaches to representing vector data in
a DGGS. These approaches include rasterization, hierarchical cell representation, and a
geometry-based spherical vector representation. We introduce here a generalization of the
hierarchical cell representation of [44] (which works with quadtrees) to more general types
of DGGS.

Finally, Section 6 discusses the management of quantitative data sets. Statistics per-
taining to each cell may be transmitted and analyzed before the transmission completes
(with a known, progressively decreasing error) using wavelet histograms and range trees.
We present a novel modification of nLT trees that allows storage requirements to be re-
duced, and a modification of the wavelet histogram that approximates the data using a
piece-wise linear function. By applying the wavelet histogram to the difference between
this function and the original data, the error from analyzing the incomplete data can be
controlled and reduced.

2 Related Work

Digital Earths, their applications (data analysis being an important example), and the
different methods used to build, visualize, and index them have been studied extensively
in the literature [21]. There are three important types of data sets for Digital Earths that
are considered in this paper: imagery/elevation, vector, and quantitative data. In the
following, we describe each of these data sets and note some of the methods that address
analysis and representation in geospatial applications.

2.1 Imagery and Elevation Data Sets

Geospatial imagery data sets are often beneficial to the visualization and analysis of loca-
tions, and are often used as textures for the Earth’s cells or used to provide special views
of the Earth (e.g. spherical panoramic views). Data assignment to the cells of a DGGS is
most commonly performed via rasterization, where each cell of the DGGS is treated as a
pixel-like entity, and attributes such as color or height are assigned to these cells [40].

DGGSs induce a natural multiresolution representation for images, as each resolution
of a DGGS contains a set of images that represent the Earth or specific regions at that
particular resolution. However, alternative multiresolution representations for images can
also be beneficial. For instance, mip-mapping [60] has been used in, e.g., [15] to establish a
continuous transition between different correlated images. In addition, wavelet transforms
(which are described in [51]) can be used to produce a low-resolution version of an image
that can be efficiently transmitted through a network and gradually restored to its original

3

resolution on a client as data arrives. A simple and useful wavelet transform, which we make
use of throughout the paper, is the Haar wavelet. Refer to Section 4.2 for a description.

Elevation data sets are often very similar to images, as Data Elevation Models are
uniform grids with values for heights instead of colors. As a result, their rasterization and
wavelet transforms are very similar to those employed for images; the only difference being
that there is no need to use integer wavelets for elevation data sets. This is because they
are typically represented using floating point values as opposed to integers.

2.2 Vector Data Sets

Vector data sets are available in the forms of points, polylines, or polygons. These points
are usually connected by spherical or ellipsoidal arcs and represent networks (such as road
or river networks) or region boundaries (such as those belonging to continents, cities, etc).
Vector data can be produced via ground surveying, LIDAR, and photogrammetry [20].
Features in LIDAR data sets can be detected and vectorized using different techniques
[3, 39, 31, 8], although imagery data alone can also be used to extract vector data sets
[31, 9, 47, 10, 30, 5].

Three main methods are available to visualize vector data sets: texture-based, geometry-
based, and shadow volume-based [63]. Texture-based approaches rasterize the vector data
into textures that are then mapped onto the terrain surface [16]. Geometry-based ap-
proaches consider the geometry of the vector data separate from the geometry of the ter-
rain [46, 45, 1, 38, 1, 57], and can be used with wavelet transforms [2] to provide multiscale
rendering. Shadow volume-based approaches extrude the vector geometry into polyhedrons
that are rendered via the stencil buffer to distinguish visible and invisible parts of the scene
[17].

As the individual grids of a DGGS each provide a rasterization of the Earth, vectors
are often converted into raster images for storage in a DGGS, particularly on the web as
in [14, 32]. Alternative approaches include the hierarchical cell representation, in which a
vector is represented as an ordered set of cells at each resolution of the DGGS. Treating
the cells of the DGGS as “buckets” allows data storage techniques similar to those used by
quadtrees to be employed [43, 44], and can be used to store the actual vector geometry to
address rasterization artifacts. Example works that use the approach include [37], which
uses the cells of a A3H DGGS to store vectors; and [63], which uses a multiresolution vector
pyramid to store vectors in a QQM (quaternary quadrangle model) DGGS.

2.3 Quantitative Data Sets

Quantitative data sets provide statistical and other numerical information related to loca-
tions. These statistical data can be environmental, biological, or demographic in nature
(e.g. average income of a particular location). They are usually collected by sampling
regions through various means (e.g. surveys or sensors) [62] and are assigned to the cells

4

of a DGGS as attributes related to that particular location.
In order to obtain useful information from these data sets, techniques from the field of

information processing may be used. Though not specific to DGGS, of particular impor-
tance is that query processing times on such data sets can become prohibitively expensive
in many situations (including data mining [19] and multidimensional aggregate computa-
tion [55]), whether due to the complicated nature of the query or the size of the data set.
As a result, it can be useful to run the queries on simplified versions of the data to provide
fast initial results, with the possibility to refine the data and query result a needed over
time. In order to accomplish this, wavelets can again prove useful, and have been used for
this purpose in [19, 55, 7, 56, 11].

3 Data Storage and Retrieval

In a DGGS, geospatial data are assigned to and retrieved from cells. In order to support this
functionality, each cell requires a unique identifier, called a cell index. Using these indices
as references into a database, folder structure, or file (e.g. a spreadsheet) allows cells to
be associated with data stored in any of these formats [28]. For instance, one possibility is
to utilize a nested folder structure, in which folders are associated with cells and contain
files for data sets belonging to the cell (e.g. textures, elevation data). The folder for a
child cell is contained within the folder for its parent, allowing the folder structure to be
traversed similarly to the DGGS cell structure. Of course, this is not the only method
for storing geospatial data sets on disk. Interested readers may refer to [50] for a DGGS
implementation and [61] for information on spatial database implementation.

Hence, an essential component of any DGGS is its associated cell indexing system.
There are three main types of indexing systems employed within different DGGSs: hierarchy-
based, coordinate-based, and space filling curve (SFC) based [28]. We describe in this sec-
tion two indexing systems that have been proposed for A3H DGGSs: one hierarchy-based
and one coordinate based.

In order to define a hierarchy-based indexing system on the hexagonal cells of an A3H
DGGS, a hierarchical relationship among the cells is needed [36, 54, 40]. However, as hexag-
onal refinements are not congruent, this hierarchical relationship is not straightforward to
define. The PYXIS hierarchy presents one possibility for defining hierarchical relationships
between cells at different resolutions [36, 54]. In this hierarchy, cells are categorized into
two types — A and B — generating different fractal shapes called tiles throughout the
resolutions that fit together to cover the entire surface of the sphere (see Figure 2). Type
B cells with index b have children with indices bi (0 ≤ i ≤ 6, i ∈ N) while a type A cell
has only one child with index a0. a0 and b0 are considered to be of type B, while the
other bi cells are of type A [24, 54]. We have used this type of indexing system and the
tree structure resulting from the parent-child relationships between cells in order to define
a hierarchical cell representation for feature vectors (as discussed in Section 5.2).

5

b

a

n

s

p
q

r
b0

a0

r0

q0

p0

s0

n0

b1 b2

b3

b4b5

b6

(a) (b) (c) (d) (e)

Figure 2: (a), (b) PYXIS hierarchical indexing method. (c), (d) Fractal tiles created from
type A and B cells. (e) A diamond covering a set of hexagonal cells. The vertices of the
refined diamond are aligned with the centroids of the hexagonal cells.

Hierarchy based indexing systems are efficient at addressing hierarchical queries, but
neighborhood queries (i.e. finding the neighbors of a cell) cannot be performed in constant
time and have O(r) time complexity (where r is the resolution). To overcome this issue,
a second, coordinate-based indexing system can be defined on the hexagonal cells of a
given A3H DGGS [24]. One such system is based on the duality relationship between
hexagons and triangles (see Figure 2). Once the centroids of the hexagons are connected
to form triangles, and pairs of triangles are combined into diamonds [23], the axes of a
coordinate system can be defined such that they align with the edges of the diamonds.
Using the resulting coordinate system, the vertices of the diamonds — and their associated
hexagonal cells — may be indexed. This coordinate-based indexing system can be used
to arrange hexagonal cells into a quadrilateral shape (i.e., diamonds) that are compatible
with standard graphics pipelines (e.g. OpenGL) and are easy to sample and render. For
more details, see Section 4.1.

However, in order to provide interoperability and retrieve data from an external DGGS,
a conversion between the cell indices of the different DGGSs is required. In essence, given a
cell in the destination DGGS, a corresponding cell that represents approximately the same
area in the target DGGS must be determined. This requires a correspondence between
the resolutions of the two DGGSs, which can be established based on, e.g., the number
of cells that each DGGS provides at specific resolutions. In the absence of an existing
conversion, a cell index from the destination DGGS can be converted to an index in the
target DGGS using a common intermediate DGGS or geospatial coordinate system (e.g.
latitude/longitude) for which an existing conversion is known. See [28] for more details on
converting between two Digital Earth frameworks.

4 Imagery and Elevation Data Sets

Imagery and elevation data sets are important to any Digital Earth, and hence need to be
integrated, analyzed, and visualized efficiently. In an A3H DGGS, cells are hexagonal and

6

store information about the region each encompasses. This includes imagery or elevation
data, which must be assigned to these cells in order to be represented within the DGGS.

In this section, we describe methods to assign imagery data to the cells of an A3H
DGGS and to transmit it through a network. The benefits to visualization offered by the
mechanism used to convert the data — namely, the dual conversion — are also discussed.
Due to similar structure, elevation data sets are handled similarly.

4.1 Converting from DGGS Cells to Images

Assigning imagery data to DGGS cells requires a correspondence to be established between
the cells of the DGGS and the pixels of the image. This can be accomplished using standard
cartographic projection techniques, such as Snyder’s projection [49]. However, for some
purposes, we may wish to convert the DGGS cells back into imagery. For instance, in order
to efficiently transmit imagery data to a client DGGS or to render a textured 3D globe,
it is important to note that standard image compression techniques and graphics libraries
(such as OpenGL) are designed to work with triangular or quadrilateral polygons rather
than the hexagonal cells of an A3H DGGS.

The basic idea behind this method is to use a dual conversion, forming triangles that
connect the centroids of neighboring hexagonal cells [23]. In essence, the vertices of a
triangle each correspond to a hexagonal cell. When these triangular cells are created, they
are packed into congruent quadrilaterals, or diamonds (see Figure 3), that can be used for
transmission or to render cells efficiently on the GPU [24, 27, 25]. Note that cracks or gaps
can appear between diamonds from different resolutions, but can be connected by a set of
“zippers” to patch the final surface of the Earth [26].

Given this conversion of hexagonal cells into diamonds compatible with standard com-
pression and rendering techniques, we can serialize hexagonal cells into quadrilateral images
by sampling the DGGS at each vertex of the diamond. As the aperture of the cells in an
A3H DGGS is three, the resulting sampled images have dimensions of 3n × 3n (where n
depends on the resolution of the DGGS cells). Figure 4 illustrates an example of image
sampling using diamonds.

4.2 Image Data Transmission: The Haar Wavelet

With a client-server DGGS architecture, imagery data sets are sampled and assigned on
a server, then sent over a network to clients. However, sending the entire data set can
be quite slow due to the potentially large volume of the data. As a result, compression
techniques — such as the wavelet-based GML in JPEG 2000 standard [35] — can be very
useful.

Wavelets can also be used to design loss-less compression techniques, which send an
initial approximation of the data that may be corrected as additional information arrives
over time. One of the simplest, yet most efficient, wavelet transforms is the Haar wavelet.

7

Figure 3: A zoomed-in view of the Earth rendered using diamonds.

(a) (b) (c)

Figure 4: (a) A globe textured using diamonds. One of the diamonds has been textured
differently to display its relationship to the original hexagonal cells. (b) A view of neigh-
boring textured diamonds. The red lines highlight the boundary of one of the diamonds.
(c) A close-up look at the hexagonal sampling of the textures.

8

Haar

Wavelet

f
0

f
1

3 7 5

c
0

d
0

2

Figure 5: Two fine points f0 and f1 are averaged to obtain c0 in the Haar wavelet transform.
The difference between f0 and c0 is the detail d0.

(c)(a) (b)

Figure 6: (a) A set of hexagons and a coordinate system defined on them. (b) The coarse
hexagons in (a) are refined using 1-to-3 refinement. (c) After two iterations of 1-to-3
refinement, the fine hexagons are aligned with the coarse hexagons in (a).

In this wavelet transform, low resolution data ci are built by averaging two consecutive high
resolution data values f2i and f2i+1 in a process called decomposition, which may be applied
to images by performing the decomposition both row-wise and column-wise. The details
corresponding to the decomposition are found as the difference between the low resolution
data and the high resolution data di = ci − f2i. Using the low resolution data and details,
the high resolution data can be reconstructed as f2i = ci−di and f2i+1 = ci+di (see Figure
5). As is readily apparent, the dimension of the coarse data and its associated details is the
same as that of the original high resolution data set (i.e. no additional information/storage
space is needed).

The Haar wavelet is a binary wavelet, as the dimension of the low resolution data is half
that of the high resolution data. However, this transform is not readily compatible with
an A3H DGGS, for which a 1-to-3 refinement is employed. Two iterations of the 1-to-3
refinement, however, provides a ternary refinement in which the number of cells is tripled
along the two main axes defined for cells (see Figure 6). As a result, we suggest a ternary
version of Haar that is compatible with an A3H DGGS [34].

4.3 Ternary Haar Wavelet

In the ternary Haar wavelet transform [34], low resolution data ci are built by averaging
three consecutive high resolution data values f3i, f3i+1, and f3i+2 in the decomposition

9

Figure 7: Applying the ternary Haar wavelet to an image two times.

process, i.e. ci = f3i+f3i+1+f3i+2

3 . To perfectly reconstruct the high resolution data, we
associate two details d2i and d2i+1 with ci, instead of just one, that are individually defined
as d2i = ci− f3i and d2i+1 = ci− f3i+1. In the reconstruction process, high resolution data
values are reconstructed via f3i = ci − d2i, f3i+1 = ci − d2i+1, and f3i+2 = ci + d2i + d2i+1.
Algorithms 1 and 2 outline the decomposition and reconstruction processes, respectively,
of the ternary Haar wavelet. In general, much as the ternary Haar wavelet is appropriate
for an A3H DGGS, an n-ary Haar wavelet ought to be used with a DGGS of aperture
n. A description (and proof of correctness) for general n-ary Haar wavelets is provided in
supplementary material.

Algorithm 1 Decomposition of a single row of an image f (of n pixels) into c and d via
the ternary Haar wavelet.

for i = 0 to n
3 , step 3 do

ci = f3i+f3i+1+f3i+2

3
d2i = ci − f3i
d2i+1 = ci − f3i+1

end for

Note that in the Haar wavelet transform, if the high resolution values are integers,
there is no guarantee that the obtained low resolution values will also be integers after
the averaging process. While this is not a problem for elevation data (as such data are
naturally available in floating point format), imagery data sets are represented in integer

10

Algorithm 2 Reconstruction of a single row of an image f (of n pixels) using c and d via
the ternary Haar wavelet.

for i = 0 to n
3 , step 3 do

f3i = ci − d2i

f3i+1 = ci − d2i+1

f3i+2 = ci + d2i + d2i+1

end for

format. Therefore, when applying the Haar wavelet transform, the data must be truncated
in order to obtain integer values. In this scenario, however, we cannot perfectly reconstruct
the high resolution data due to truncation error. To avoid this problem, we can employ
integer ternary Haar wavelets.

4.4 Integer Ternary Haar Wavelet

As proposed in [58], integer wavelets restrict the high resolution data, low resolution data
and details to remain as integers throughout the entire multiresolution process. To define
an integer ternary Haar wavelet, we modify the ternary Haar wavelet in such a way that
all details and low resolution data values become integers. Consider d2i = ci − f3i and
d2i+1 = ci − f3i+1. If we substitute ci = f3i+f3i+1+f3i+2

3 into these relations, we get d2i =
−2f3i+f3i+1+f3i+2

3 and d2i+1 = f3i−2f3i+1+f3i+2

3 . Since ci might not be an integer, instead of
saving ci, we save c̃i = bcic. In this case, d2i and d2i+1 are also not integers, so instead
of d2i and d2i+1, we save d̃2i = −2f3i + f3i+1 + f3i+2 and d̃2i+1 = f3i − 2f3i+1 + f3i+2. In

the reconstruction process, f3i and f3i+1 are reconstructed quite simply as f3i = c̃i−
⌊
d̃2i
3

⌋
and f3i+1 = c̃i −

⌊
d̃2i+1

3

⌋
. Finally, given f3i, f3i+1 and d̃2i, f3i+2 is reconstructed as

d̃2i + 2f3i − f3i+1. These decomposition and reconstruction processes are respectively
presented in Algorithms 3 and 4. Using this wavelet transform, we can compress imagery
data sets in a manner compatible with an A3H DGGS (see Figure 7).

Algorithm 3 Decomposition of a single row of an image f (of n pixels) into c̃ and d̃ via
the integer ternary Haar wavelet.

for i = 0 to n
3 , step 3 do

c̃i =
⌊
f3i+f3i+1+f3i+2

3

⌋
d̃2i = −2f3i + f3i+1 + f3i+2

d̃2i+1 = −2f3i+1 + f3i + f3i+2

end for

To examine the behavior of our integer ternary Haar wavelet, we compared the Peak
Signal to Noise Ratio (PSNR) of our integer ternary Haar wavelet with the PSNR of the

11

Algorithm 4 Reconstruction of a single row of an image f (of n pixels) using c̃ and d̃ via
the integer ternary Haar wavelet.

for i = 0 to n
3 , step 3 do

f3i = c̃i −
⌊
d̃2i
3

⌋
f3i+1 = c̃i −

⌊
d̃2i+1

3

⌋
f3i+2 = d̃2i + 2f3i − f3i+1

end for

Figure 8: Test pictures used in Table 1.

integer binary Haar wavelet. In both cases, we only used eighty percent of the original
data for reconstruction. The comparison shows that the integer ternary Haar wavelet is
comparable with integer binary Haar wavelet, as the PSNR of both methods are very close.
Table 1 provides the PSNR of both methods for the images shown in Figure 8.

Table 1: PSNR for the images in Figure 8 under integer ternary and binary Haar wavelets.
The three rows per method provide the PSNR of each color channel: red, green, and blue.

Method a b c d e f

Ternary
34.2025 29.8641 25.4580 22.9446 25.9309 29.3136
34.1923 29.8623 25.6380 22.7123 25.9668 29.3894
34.1824 30.2141 25.7534 22.9040 25.9336 29.3652

Binary
36.8128 32.7858 28.6623 25.9970 28.6422 32.2297
36.8058 32.7972 28.7183 26.0223 28.6733 32.2598
36.7980 33.0755 28.8164 26.0532 28.6650 32.2405

It is possible to extend the ternary integer Haar wavelet to an arbitrary n-ary integer
Haar wavelet for use with DGGSs of aperture n (refer to supplementary material). The
extension to n-ary integer Haar wavelets and their proof of correctness are provided in
supplementary material.

12

5 Vector Data Sets

Vector (or feature) data sets are defined as poly-lines, points, or polygons that describe
geospatial features, such as road networks or the boundaries of countries and cities. Typi-
cally, the points making up these vectors exist on a sphere and are connected with geodesic
arcs (i.e., great circle arcs), as geodesic arcs traverse the shortest path between two points
on the surface of the sphere.

Since these data sets may be very large — consisting, for example, of millions of points
— it is necessary to utilize a representation of these data sets that supports the efficient han-
dling of relevant queries, such as buffering or data transmission. In the context of a DGGS,
such a representation can be provided by rasterizing the vector into an image (rasteriza-
tion), by association with cells at different resolutions (hierarchical cell representation),
or by using wavelet transforms on the feature curves (spherical vector representation). In
the following section, we describe each method in the context of an A3H DGGS and its
benefits to different applications.

5.1 Rasterization

One approach that can be used to represent, store, transmit, and visualize vector data sets
is to rasterize them into an image, and is similar to texture-based approaches for attaching
vector data to a terrain [16]. Like the images described in Section 4.1, the pixels of these
images each share a one-to-one correspondence with a cell in the DGGS, and can be assigned
to the DGGS using the dual conversion. Furthermore, as in Section 4), the resulting images
can then be overlaid on the globe for visualization, and can be effectively compressed
and transmitted through the network using known techniques for image compression and
transmission [48].

In order to generate these images such that they have the same dimensions as the cells
in an A3H DGGS, the vectors are sampled using hexagons in a 3n × 3n diamond-shaped
tiling that is large enough to contain the features (where n depends on the resolution of the
corresponding DGGS cells). Those cells that contain parts of the feature receive a color,
while other cells are made to be transparent (see Figure 9). This technique can be used
with DGGSs of different apertures if the dimensions of the images are modified accordingly.

While the cells representing a feature can usually be made fine enough to provide
a good approximation of the feature, one problem with this representation is that the
accuracy of the representation for the feature is fixed. Once the image is created using
cells with a specific resolution, providing a more accurate representation of the feature
requires reacquisition of the whole feature curve and creation of a different image.

5.2 Hierarchical Cell Representation

In a hierarchical cell representation, the cell structure of a DGGS is directly used to obtain a
representation for vector data sets. The basic approach can be illustrated using quadtrees,

13

(a) (b) (c) (d) (e)

Figure 9: (a) Red feature and the diamond enclosing this feature on the sphere. (b)
Projecting the feature and the diamond to the 2D diamond. (c) Sampling the feature
using hexagonal cells. (d) Cells sharing a feature are colored. (e) A real example of a
rasterized geospatial feature.

0 00000 00

0 00000 00

0 11000 11
0 11000 11
0 11100 11

0 11110 11

0 11110 00
0 01110 00

B

N

IH

GF

J O

QL M

37 38

39 40

A

B C D E

F G H I J

K

L N OM

P

Q

57 58

59 60

37 38 39 40 57 58 59 60(a) (b) (c) (d)

Figure 10: (a) A simple feature. (b) Cells that are inside or outside of the feature are
assigned a number, 1 or 0, respectively. (c) Refinement of cells is used to approximate the
feature. (d) Trees and coloring of the nodes. Image is a reproduction of an image in [44].

which are widely used to approximate features on an image [44]. Given a quadtree, its
set of quad cells may be recursively refined until a good approximation of the feature is
achieved. A cell is refined if the cell is intersected by the feature, such as the grey cell in
Figure 10. If the cell is fully inside or outside of the feature, or if the cell size shrinks past
a particular threshold, it is not refined any more.

We instead use a hierarchical tree structure compatible with PYXIS indexing (refer to
Section 3). While the construction of the nodes of the tree is very similar to the quadtree
method of [44], the refinement is instead a hexagonal 1-to-3 refinement (see Figure 11)
with incongruent parent and child cells.

Deciding whether a cell is completely inside or outside a feature is more challenging,
as the children of type A and B cells create a fractal coverage throughout the resolutions.

14

A

A0

A1A2

A3

A4
A5

A6
A00

A03

A04

A05

A06

A40

A

A0 A1 A2 A3 A4 A5 A6

A00 A05 A40

A01

A10

A02

A10

(a) (b) (c)

(d)

Figure 11: (a) Red feature on a coarse hexagon with index A. (b), (c) Cells are refined
to approximate the feature. (d) Hierarchical tree associated with the refinement process.
Leaves store the geometry of the curves if they contain points less than a threshold.

15

(a) (b)

r R

Figure 12: Minimum and maximum radius for the fractal coverage of type B cells.

To simplify this decision, the coverage of type A and B cells are approximated using two
circles with different radii (see [40] for more details). Figure 12 illustrates the maximum
and minimum radii for type B cells. If the circle associated with a cell lies completely
outside or inside the feature, the cell is not refined anymore. Otherwise, it is considered
to be a grey cell and refinement continues. Refer to Algorithm 5 for pseudo-code that
describes this method.

This method produces rasterizations of the vector data, similarly to the rasterization
approach described above, but at all resolutions of the DGGS instead of at a single res-
olution. However, no raster approach can perfectly capture the original vector geometry;
hence inaccuracies will still result. In order to avoid this, the geometry of the vectors may
be stored at the leaves of the tree. Then, if a portion of a high resolution curve needs to
be visualized at its native resolution, only those feature points in the area of interest need
to be retrieved while the remaining portions can be rendered in raster form by cutting the
tree at a coarse depth.

5.3 Multi-scale Spherical Representation

A third approach to representing a feature curve is to provide a multi-scale representa-
tion/wavelet transform of the curve itself, rather than build a separate hierarchical struc-
ture on top of the feature curve. This is a general approach that can be used with any
type of DGGS as an independent data structure, and is not specific to A3H DGGS.

One natural approach is to project the feature curve into an intermediate 2D domain
(e.g. a map addressed using latitude/longitude coordinates (φ, θ)) using a spherical pro-
jection χ (see Figure 13). In this way, a feature curve can be projected to a 2D curve with

16

Algorithm 5 Hierarchical cell rasterization of a feature F into the cells of a DGGS.
The maximum and minimum radii associated with a cell c are denoted r(c) and R(c),
respectively.

for each cell c0 at the coarsest resolution do
cellsToCheck = {c0}
doubleCheck = {}
for each cell c in cellsToCheck do

Remove c from cellsToCheck
d = the distance from F to the centroid of c
if d > r(c) then
if the centroid of c is in F then

Mark c as black (inside the feature)
else

Mark c as white (outside the feature)
end if

else
if d ≤ R(c) then

Mark c as grey (intersected by the feature)
else

Add c to doubleCheck
end if
if c has children then

Add the children of c to cellsToCheck
else

(Optional) points = the points in F that are contained in c
(Optional) Store points in c

end if
end if

end for
end for
for each cell c in doubleCheck do
if any descendant of c is not white then

Mark c as grey (intersected by the feature)
else

Mark c as white (outside the feature)
end if

end for

17

(a)

X

X-1

φ

θ

f
i
=(θ

i
,φ

i
)

φ

θ
Revsers Subdivision

Reconsrtuction

c
i
=(θ’

i
,φ’

i
)

(b) (c)

X

X-1

(d)

Figure 13: (a) A feature curve located on the sphere. (b) Projecting the sphere and the
curve to the 2D domain (φ, θ) using function χ. (c) Using a wavelet decomposition, we
can generate a low resolution version of the curve with vertices c. Using reconstruction, we
can reconstruct the high resolution curve f . (d) The low resolution curve can be inverse
projected to the sphere to obtain a coarse feature curve using function χ−1.

coordinates in (φ, θ), on which we may apply a standard wavelet transform (e.g. the Haar
wavelet) [42]. Such a wavelet transform maps fine points f (the feature curve) to coarse
points c, where fi ∈ f has coordinates (θi, φi) and ci ∈ c has coordinates (θ́i, φ́i). To obtain
a coarse spherical curve, we can inverse project the coarse points c to the spherical domain
using the inverse projection χ−1.

However, as linear operations on geodetical coordinates (φ, θ) do not take into account
the non-linear domain in which the coordinates reside, undesired distortions are produced.
In particular, the shortest path between two points on the Earth generally maps to a curve
in the (φ, θ) domain, and their midpoint on the Earth does not necessarily map to their
midpoint in the (φ, θ) domain. This is especially true for features that cover large areas
of the Earth, features whose points are located at the singularities of χ, or features that
cross the boundaries of the (φ, θ) domain.

To avoid such artifacts, we can use spherical wavelet transforms to decompose and
reconstruct feature curves directly in the spherical domain. In [2], a simple geometric
construction for wavelet transforms on feature curves was introduced that is based on
a modified Lane-Riesenfeld algorithm [18]. As the construction is composed entirely of
SLERP (spherical linear interpolation) operations, it is possible to increase or decrease
the resolution of spherical curves without using intermediate domains (see Figure 14),
and thus avoid any distortions due to projection mappings. A simple spherical wavelet
transform (a spherical Haar wavelet) is described in Algorithms 6 and 7.

Algorithm 6 Decomposition of a feature curve f (of n points) into c and d via the spherical
Haar wavelet.

for i = 0 to n
2 , step 2 do

ci = SLERP (f∈〉, f∈〉+∞,
1
2)

di = the rotation from f2i to ci
end for

18

Algorithm 7 Reconstruction of a feature curve f (of n points) using c and d via the
spherical Haar wavelet.

for i = 0 to n
2 , step 2 do

f2i = c̃i rotated by d−1i

f2i+1 = c̃i rotated by di

end for

(a) (b) (c)

Figure 14: Progressive refinement of a geospatial feature curve. (a) Coarse feature curve.
(b), (c) Subdivision of the feature in (a), without and with details.

(a) (b)

Figure 15: Adaptive refinement of a geospatial feature curve. (a) Coarse feature curve. (b)
The curve can be locally reconstructed to full detail as necessary.

19

As with other wavelet transforms, this approach is loss-less and can be used to per-
fectly reconstruct a feature vector after decomposition. Furthermore, as it operates on
local neighborhoods, one can build a good coarse approximation of the feature and then
reconstruct portions of the curve in full detail on demand. It is therefore useful for ren-
dering spherical curves on top of a textured globe; both for displaying the overall shape
of the feature at a distance and a portion of the feature in detail when zoomed in (see
Figure 15). Such a multi-scale representation of geospatial vector curves has the potential
to additionally prove beneficial in handling queries on the vector data.

5.4 Selecting a Representation

Each of these representations carries its own advantages and disadvantages, and therefore
selecting an appropriate vector data representation depends a great deal on the queries
one expects to encounter. For instance, rasterization provides image representations of
feature vectors, which are compatible with the cell structure of a DGGS and can make use
of the efficient transmission and visualization techniques that exist for images. However,
rasterized vectors have a fixed resolution and performing geometric queries on these rep-
resentations can be difficult and inaccurate. Specifically, the error can be as large as the
radius of the largest cell at the target resolution. This error additionally propagates to line
representations (see [4] and [33] for line drawing algorithms in quadrilateral and hexagonal
grids, respectively).

Cell-based representations, in comparison, can efficiently support vectors up to any
resolution supported by a given Digital Earth. Theoretically, this representation offers
arbitrarily small error, but as the resolution of a Digital Earth is usually capped at a
maximum in practice, the error equates to that of rasterization at the maximum resolution
(unless the vector geometry is additionally stored). Furthermore, this representation is
very sensitive, as a slight modification to the feature vector has the potential to completely
alter the structure of the hierarchical cell tree.

The geometry-based multi-scale spherical representation of features is not sensitive to
perturbations and is not resolution dependent. Furthermore, spherical wavelet transforms
support efficient data transmission, geometric query handling, and adaptive reconstruction.
When fully reconstructed, this representation provides the same error as that of the original
vector data, however the coarse approximations are constructed based on a spherical shape
for the Earth that is less accurate than conventional ellipsoidal representations such as
WGS 84. Additionally, this representation exists independently of the underlying DGGS
cell structure; more research is needed to integrate this representation into the DGGS so
that one may fully benefit from the DGGS structure and coordinate system.

20

6 Geospatial Quantitative Data Sets

Quantitative data sets encompass a variety of data sets that are usually presented as
numerical numbers. For instance, the average age of the population living in a region,
the number of endangered species in a region, and the rates of rain in certain cities are
examples of quantitative data sets.

An important distinction that exists between quantitative data sets and imagery or
vector data sets is in the number of data values assigned to a given cell. Whereas imagery
and vector data sets associate a constant number of data values with each cell that depends
on the representation (e.g. four color channel values in the case of an image), the number of
data values per cell associated with a quantitative data set is variable and depends on the
data set itself (e.g. one data value per endangered species). In other words, while imagery
and vector data are solely distributed across space, quantitative data are both distributed
across space and across a variety of non-spatial categories.

While it is possible to represent each of these data values as a separate image (for
visualization purposes, especially), there are some statistical queries one may wish to run
over the entire data set that do not benefit from multiscale representations over the spatial
dimensions. One such query is the range query, in which the number of data values within a
particular range is requested. Hence, it can be useful to consider multiscale representations
for this additional non-spatial dimension of the data, which may be applied in conjunction
with or separately from the spatial dimensions. While the Haar wavelet may be used for
this purpose, an important goal in defining such a representation is to allow queries to be
asked at the data’s coarse scale without significant loss in accuracy, so that a user may be
presented with a fast estimate while awaiting the final result.

In this section, we discuss some methods to represent quantitative data sets in a mul-
tiscale manner that are specifically tailored towards addressing range queries at different
scales. These methods are general and can be used for any DGGS, but can be adapted
for a DGGS with a particular refinement (e.g. an A3H DGGS) to establish a correspon-
dence between the DGGS resolutions and the method structure. Note that as the methods
outlined in this section are based on the Haar wavelet, using an n-ary Haar wavelet (see
supplementary material) allows us to extend this adaptation to DGGSs of other apertures.

6.1 Wavelet Histogram

The first approach to managing quantitative data sets we discuss is the wavelet histogram,
which has been used in data cubes [29]. Suppose that we are given a data set outlining
how many people are of a certain age — ranging between age one and eight — and we are
interested to ask queries such as “How many people are between the ages of one and six?”.
To answer such queries, in [29], the total number of people having an age less than or
equal to a certain age n is calculated for each age n. This number is called the cumulative
frequency (CF). Formally, the cumulative frequency of age n is found as

∑n
i=1 fi in which

21

Age 1 2 3 4 5 6 7 8

Frequency

Cumulative

Frequency 4

4 4

8

2

10 10 10 12 12 14

2200 0

4 8 10 10 10 12 12 14

6

8 12

10 11 13

10

2 0 1 1

2

2

1

(a) (b) (c)

Figure 16: (a) Age data set and cumulative frequency. (b) Haar wavelet histogram. (c)
Detail tree associated with the wavelet histogram in (b).

fi is the frequency related to each age i (see Figure 16). Given the cumulative frequency,
the answer to the query “How many people are between the ages of one and six?” can be
found by subtracting the CFs of ages six and one.

Since the range of the data might be quite large, a tree structure called a wavelet
histogram is built over the range of the data set to efficiently address these queries. The
lowest level of the tree is built by placing CF values at each node. The higher levels can be
created using wavelet decomposition. For example, if using the Haar wavelet, higher level
nodes are formed by averaging two consecutive nodes.

Given such a tree, range queries can be estimated without accessing the entire data
set (for instance, if the data set has not finished transmitting to a client). In the wavelet
histogram, each node at any level of the tree provides an estimation for a range of data.
Consider a data set with range 0 ≤ i ≤ n for which a wavelet histogram has been built.
In general, the ith node at the kth level of this wavelet histogram (0 ≤ k ≤ log2 n and

0 ≤ i ≤ 2k−1) provides an estimate for all values in the range (i×n
2k
, (i+1)×n

2k
). For example,

consider a situation in which we have only the second level of the tree in Figure 16 and
we want to answer the query above: “How many people are between the ages of six and
one?”. Since six belongs to the right node of the tree at the second level; (4 ≤ 6 ≤ 8) and
one belongs to the left node (0 ≤ 1 ≤ 4), we can consult the second level of the tree and
estimate the answer as 12 − 8 = 4. Naturally, estimates carry a certain amount of error;
in this example, for which the correct answer is 12− 4 = 8, the error is equal to 4.

Note that it is not necessary to store the whole tree in order to reconstruct the data,
as we can store the detail tree associated with the Haar wavelet decomposition, whose
dimension is equal to the dimension of the initial data set. The detail tree is built using
the nodes of the wavelet tree. If N is a non-leaf node of the wavelet tree, it has two
children: Nl on the left and Nr on the right. The nodes of a (Haar) detail tree are defined
as N − Nl. Since the leaves of a wavelet tree do not have any children, detail trees are
one level shorter than wavelet histograms. Given only the root of the wavelet histogram
alongside the complete detail tree, the entire data set can be reconstructed (see Figure 16
(c)).

22

4 2 0

1-8
14

1-4
10

4-8
4

1-2
8

1
4
2

2-4
2

3 4

6-84-6
2

5

2

0
6
2

7
0

8
2 4

1-8
14

1-4
10

4-8
4

1-2
8

1
4
2

3
2

86
2 2

(a) (b)

Figure 17: (a) Bisection in a nLT histogram. (b) Range tree after optimization.

Although wavelet histograms are powerful, their usefulness is limited by four main
factors. First, if the data set consists of floating point numbers, the wavelet histogram
cannot be applied to the data set. Second, if the range of the data is not a power of two,
a complete tree cannot be made. Third, since wavelet histograms are created based on an
specific range of numbers, combining two wavelet histogram is not possible without making
a new tree. Fourth, the tree does not provide any information about the error and the
error is not controllable.

6.2 Range Trees

An alternative method for classifying quantitative data sets and addressing range queries
is known as the range tree, which is a modified versions of the nLT histogram [6]. In each
node of a nLT histogram, three numbers are saved. Two of the numbers record the range
of the data (i.e. the min and max of the range) and the last records the frequency of the
data. As demonstrated in Figure 17 (a), the root of the tree describes the range of the
entire data set and the sum of all frequencies. Each child node bisects the range of its
parent and contains the frequency over its bisected range. Range trees differ from nLT
histograms in one respect: in order to save memory, if the frequency of a node is zero or
one, or if all of the numbers associated with a node are the same, bisection is not applied
to the node (see Figure 17 (b)). To further optimize the structure, if a node is missing
either its left or right branch, the node is replaced by its only child.

While this structure can support floating point numbers (unlike wavelet histograms),
each node stores two floating point numbers and one integer, in comparison to the one
float per node required by a wavelet histogram and associated detail tree. Hence, the
amount of data used by range trees is higher than that used by wavelet histograms. A
comparison between the amount of memory required by range trees and wavelet histograms
is illustrated in Figure 18. For the data sets tested (with ranges (0, 1024) to (0, 8192)),
the wavelet histograms required much less memory than the range trees.

23

Figure 18: A comparison between the memory sizes of range trees and wavelet histograms
for different data set ranges. It is clear that the wavelet histogram requires less space to
store the whole data structure.

6.3 Modified Wavelet Histogram

With appropriate modifications, we can address the four issues that reduce the usefulness
of wavelet histograms. The first two issues can be solved by binning. Suppose that the
range of a data set is between min and max. We can distribute the data set into 2n

bins with bin size = max−min
2n . This way, both integer and floating point numbers can be

handled, and the number of bins is always a power of two. In order to solve the third
problem, we can fix min, max, and bin size based on the properties of the data set.

There are two strategies for choosing min and max. One is to choose an appropriate
min and max based on the type of the data. For instance, given an age distribution data
set, a sensible min and max could be zero and 100, as the majority of people fall within
this age range. The second strategy is to set the maximum and minimum based on the
data itself. For instance, given a data set of heights — (135.5, 157.6, 165, 190.5, 199.5) —
(see Figure 19), we can take max = 199.5, min = 135.5, and n = 3.

Both approaches suffer from some problems, however. For the first approach, it is
possible to select an unnecessarily large range beyond what the actual data requires. For
the second approach, if the data set changes, the bins may need to be resized and the data
redistributed. As a result, additional properties of the data, such as how dynamic/prone
to change it is, should be considered when selecting min and max.

Choosing a value for bin size should also be based on properties of the data set. As a
rule of thumb, bin size should be selected in such a way that all the data located in a single
bin can be processed and transmitted efficiently without the need for a multiresolution
approach. However, it must always be a power of two, so that a complete wavelet histogram
can be built. For example, in Figure 19, n = 3, bin size = 8, hence 8 bins are created.

24

1 1 2 3 3 3 4 5

1 2.5 3 4.5

3.751.75

2.75Height

135.5

157.6

165

190.5

199.5

(a) (b)

135.5

143.5

143.5

151.5

151.5

159.5

159.5

167.5

167.5

175.5

175.5

183.5

183.5

191.5

191.5

199.5

Figure 19: (a) Data set for the height of five people. (b) The wavelet tree created by the
forming the bins with size 8. The range of each bin is shown beside each leaf node.

Although the Haar wavelet histogram is simple and can been improved upon in this
way to better meet the needs of data representation in a Digital Earth framework, it does
not provide any information about the error at any level of the tree, nor can the error be
controlled. Here, the error — since each node of the tree summarizes all of its descendants
— is the maximum difference between the value of the parent node and the values of its
leaf descendants. (For instance, the error of the node with value 2.5 in Figure 19, whose
children have values of 2 and 3, is 0.5.) In order to overcome this issue, we have developed
a novel method called the Least Squares Wavelet.

6.4 Least Squares Wavelet

In the Least Squares Wavelet, we first approximate data with a piece-wise linear func-
tion with a known and reasonable error and then progressively improve the estimate by
reconstructing the data using the known error. This methodology is especially useful in
data transmission (an important process in any Digital Earth), allowing queries to be es-
timated with a known maximum error and then refined as the individual error values are
transmitted.

Consider n data points (fi, 0 ≤ i < n) that need to be retrieved or transmitted. We
propose that these data points be approximated with piecewise linear functions (connected
by control points pi, 0 ≤ i < m) by solving a least squares system (see Figure 22). Consider
a system of equations Φp = f in which p and f are vectors composed of pi and fi and Φ
is an n ×m matrix with linear basis functions. The solution of this system can be found
using the normal equation: p = (ΦTΦ)−1ΦT f [13]. Figure 20 illustrates a simple example,
featuring a single-piece linear function to approximate the data set from Figure 16.

The error (or residual) of this approximation is given by r = f − Φp. For example,
in Figure 20, solving a least squares system for two points (m = 2) produces p0 = 3.166
at age 1 and p1 = 0.337 at age 8, which form a line passing through the data set. To

25

Age Frequency

1

2

3

4

5

6

7

8

4

4

2

2

2

0

0

0

Age Estimation

1

2

3

4

5

6

7

8

3.166

2.761

1.142

2.356

0.337

1.546

1.951

0.736

Age Erro(ri)

1

2

3

4

5

6

7

8

0.834

1.239

0.858

-0.356

1.663

-1.546

-1.951

-0.736

(a) (b) (c) (d) (e)

Figure 20: (a) Data set for the age of eight people. (b) Plot of the data set in (a). (c) The
least squares line passing through the data set. (d) Estimation of the data set in (a) by
evaluating the linear function in (c). (e) The error, or residual, of the data evaluation.

evaluate the error, we can subtract the data set values from corresponding values on the
linear function l(t) = (1 − t)p0 + tp1. Therefore, the error for the ith data value, fi
(0 ≤ i ≤ 7), is ri = fi − l(i

7) (see Figure 20 (e)). To evaluate the total error, we can use

different norms, but the least squares solution minimizes norm-2, ‖r‖2 =
√
r20 + ...+ r2n.

By increasing the number of control points, m, we can reduce the total error and obtain a
better approximation of the data. Therefore, by evaluating ‖r‖2, we can gauge the error
of our approximation and decrease it as necessary, as opposed to setting up the histogram
on the actual data without control over the error.

Now we must determine how to gradually add more information to the data set and
reduce the error. To do so, we propose applying the wavelet histogram to the residuals
instead of the data itself (see Figure 21). We can then gradually send nodes of the tree at
different levels and improve the initial results obtained from the least squares solution.

Formally, suppose that we are given the residual r and the operators of a known wavelet
transform: the decomposition operators (a reverse subdivision operator A and detail calcu-
lation operator B) and the reconstruction operators (a subdivision operator P and detail
restoration operator Q). For the sake of convenience, let P i, Qi, Ai, and Bi be, respec-
tively, the matrices corresponding to i applications of the operators P , Q, A, and B. We
can decompose r into a coarse residual c[k] = Akr and details d[i] = Bir (i = k, k− 1, ..., 0;
see Algorithm 8 for the case of the Haar wavelet).

Note that the residuals can be approximated at different resolutions using c[i−1] =
Pc[i]+Qd[i] (with c[0] = r) (see Algorithm 9 for the reconstruction of r and f). Although the
coarse residuals c[i] (for i 6= 0) have fewer entries than r, c[i] can be repeatedly subdivided
to obtain a residual approximation r̂ = P ic[i]. As the root of the Haar wavelet histogram,
c[k], is the average of the residuals (which are always zero), c[k] is not needed to reconstruct
the residuals.

An important property resulting from using Haar wavelets to generate the residual tree

26

0.83 1.23 -0.36 -1.95 -1.54 0.85 -0.73 1.66

1.03 -1.15 -0.34 0.44

-0.05 0.05

0

0.2 -0.8 1.2 1.17

-1.09

0.05

0.39

(a) (b)

Figure 21: (a) Haar wavelet tree for residuals. (b) Detail tree for residuals.

Algorithm 8 Decomposition of r into dk,dk−1, ...,d0 (ck = 0).

for j = 0 to k, step 1 do
temp = new vector of size sizeof(r)

2
for i = 0 to sizeof(r), step 2 do

temp(i
2) = r(i)+r(i+1)

2
dj(

i
2) = r(i)− temp(i

2)
end for
r = temp

end for

Algorithm 9 Reconstruction of f after receiving dk,dk−1, ...,d0.

for j = k to 0, step −1 do
temp = new vector of size 2× sizeof(r)
for i = 0 to sizeof(r), step 1 do

temp(2i) = r(i)− d(i)
temp(2i+ 1) = r(i) + d(i)

end for
r = temp

end for
f = Φp + r

27

(a) (b) (c)

(d) (e) (f)

Figure 22: (a) Estimating the data set using piecewise linear functions. Control points are
shown as squares. (b), (c), (d), (e) Adding a portion of the residual to the piecewise linear
functions using a Haar wavelet tree, until the data set is perfectly reconstructed in (f).

is that the error of the approximation is bounded. That is, for a given 0 ≤ i ≤ k (with
r̂ = P ic[i]), ‖r− r̂‖ ≤ ‖r‖. To prove this, consider (without loss of generality) the first
entry of c[i], which we will denote as c. By construction of Haar multiresolution, c is the
average of the first 2i entries of r, and the first 2i entries of r̂ are duplicates of c. Now, we
can see that

c2 ≤ 2c2

c2 ≤ 2c
r0+r1+...+r2i

2i

2ic2 ≤ 2c · r0 + 2c · r1 + ...+ 2c · r2i
(c2 − 2c · r0) + (c2 − 2c · r1) + ...+ (c2 − 2c · r2i) ≤ 0.

By adding r20 + r21 + ...+ r2
2i

to both sides, this becomes

(r0 − c)2 + (r1 − c)2 + ...+ (r2i − c)2 ≤ r20 + r21 + ...+ r22i .

As this was found without loss of generality, it holds for all entries of c[i], hence for all
entries of r̂ and r. Therefore, ‖r− r̂‖ ≤ ‖r‖. Table 2 illustrates an example in which the
error has been reduced by adding the nodes of the Haar residual tree to the data set (the
data is the same as in Figure 22).

28

Table 2: Adding the nodes of the Haar residual tree at different resolutions reduces the
error. There is no change at the first resolution since the average of the residuals is always
zero.

Resolution Error

0 1.3461

1 1.3461

2 1.3391

3 1.3181

4 1.2497

5 0

(a)

4 2

1-3
10

1
4
2 3 8

2

6
2

9
2

8-9
4

16
1-9

0.83 1.23 -0.36

0.56

-1.95 -1.54 0.85 -0.73 1.66 0.35

-0.88 0.42

0.03

(b)

Figure 23: (a) Ternary Haar wavelet tree. (b) Ternary range trees.

6.5 Refinement Extension

The wavelet histogram tree and its associated binning method as discussed above are
based on a binary Haar wavelet. Although a wavelet histogram can be built on the data
independent from the underlying DGGS, it is also possible to adopt the tree and cell
structure of the DGGS. In this case, the same factor of refinement as the DGGS can also
be used for the wavelet histogram tree. For instance, given an A3H DGGS, a ternary Haar
wavelet (in which each coarse node is found as the average of its nine children) can be
used to build a wavelet histogram tree or range tree that is compatible with the DGGS
cell structure (see Figure 23). For DGGSs with different refinements (aperture n), it is
also possible to use the appropriate n-ary Haar wavelet to construct the wavelet tree (see
supplementary material for the general Haar wavelet) or a range tree. Establishing a
similar structure between these trees and the DGGS cell hierarchy supports the possibility
of forming a correspondence between the resolution of the DGGS and the accuracy of the
approximated data.

7 Conclusion and Future Work

In this paper, we reviewed different techniques — both new and pre-existing — to represent
data sets in an A3H DGGS. Some of these methods (such as the least square wavelet,

29

modified wavelet histogram, and spherical vector representation) are general and can be
applied to any DGGS. Our discussions of data representation were divided among different
types of data — imagery/elevation, vector, and quantitative data sets — and began with
an overview of data storage and retrieval using cell indices.

There are many potential directions that can be explored to improve upon the methods
presented here. For instance, one may wish to determine the performance of these methods
in combination with different queries. Finding the intersection or union of two vector data
sets as represented in any of the forms described above, or the use of wavelet histograms for
queries other than range queries, are two such examples. In addition, combining different
representations of vector data sets, such as a combined multi-scale spherical representa-
tion and cell based representation, is an interesting research path. Finally, designing new
multiresolution frameworks besides Haar that can support the compression of quantita-
tive data sets while preserving the quality of the data (i.e. with minimal error) could be
interesting for future work.

References

[1] Anupam Agrawal, M. Radhakrishna, and R. Joshi. Geometry-based mapping and
rendering of vector data over LOD phototextured 3D terrain models. In Proc. of
WSCG ’06, 2006.

[2] Troy Alderson, Ali Mahdavi-Amiri, and Faramarz Samavati. Multiresolution on spher-
ical curves. Graphical Models, 86:13 – 24, 2016.

[3] Aleksey Boyko and Thomas Funkhouser. Extracting roads from dense point clouds
in large scale urban environment. ISPRS Journal of Photogrammetry and Remote
Sensing, 66(6):S2–S12, 2011.

[4] J. E. Bresenham. Seminal graphics. chapter Algorithm for Computer Control of a
Digital Plotter, pages 1–6. 1998.

[5] M. A. Brovelli, M. Cannata, and U. M. Longoni. Managing and processing LIDAR
data within GRASS. In Proc. of the GRASS Users Conference, volume 29, 2002.

[6] Francesco Buccafurri and Gianluca Lax. Fast range query estimation by n-level tree
histograms. Data & Knowledge Engineering, 51(2):257 – 275, 2004.

[7] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Ap-
proximate query processing using wavelets. The VLDB Journal, The International
Journal on Very Large Data Bases, 10(2-3):199–223, 2001.

[8] Simon Clode, Franz Rottensteiner, Peter Kootsookos, and Emanuel Zelniker. Detec-
tion and vectorization of roads from LIDAR data. Photogrammetric Engineering &
Remote Sensing, 73(5):517–535, 2007.

30

[9] A Fortier, D Ziou, C Armenakis, and S Wang. Survey of work on road extraction
in aerial and satellite images. Technical report, Département de mathématiques et
d́ınformatique, Université de Sherbrooke, 1999.

[10] M.-F. Auclair Fortier, D. Ziou, C. Armenakis, and S. Wang. Automated correction
and updating of road databases from high-resolution imagery. Canadian Journal of
Remote Sensing, 27(1):76–89, 2001.

[11] Minos Garofalakis and Phillip B Gibbons. Wavelet synopses with error guarantees. In
Proc. of the 2002 ACM SIGMOD International Conference on Management of Data,
pages 476–487. ACM, 2002.

[12] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, USA, 3rd edition, 1996.

[13] Google Inc. Google Earth. http://earth.google.com, 2017.

[14] Charles Han and Hugues Hoppe. Optimizing continuity in multiscale imagery. ACM
Transactions on Graphics, 29(6):171:1–171:10, 2010.

[15] Oliver Kersting and Jürgen Döllner. Interactive 3D visualization of vector data in GIS.
In Proceedings of the 10th ACM International Symposium on Advances in Geographic
Information Systems, pages 107–112. ACM, 2002.

[16] M. Lambers and A. Kolb. Ellipsoidal cube maps for accurate rendering of planetary-
scale terrain data. In Proc. of the Pacific Conference on Computer Graphics and
Applications, PG ’12, pages 5–10, 2012.

[17] Jeffrey M Lane and Richard F Riesenfeld. A theoretical development for the com-
puter generation and display of piecewise polynomial surfaces. IEEE Transactions on
Pattern Analysis & Machine Intelligence, (1):35–46, 1980.

[18] Tao Li, Qi Li, Shenghuo Zhu, and Mitsunori Ogihara. A survey on wavelet applications
in data mining. ACM SIGKDD Explorations Newsletter, 4(2):49–68, 2002.

[19] P. Longley. Geographic Information Systems and Science. Wiley, 2nd edition, 2005.

[20] Ali Mahdavi-Amiri, Troy Alderson, and Faramarz Samavati. A survey of digital Earth.
Computers & Graphics, 53, Part B:95 – 117, 2015.

[21] Ali Mahdavi-Amiri, Faraz Bhojani, and Faramarz F. Samavati. One-to-two digital
Earth. In Proc. of the International Symposium on Visual Computing, ISVC ’13,
pages 681–692, 2013.

[22] Ali Mahdavi-Amiri, Erika Harrison, and Faramarz Samavati. Hierarchical grid con-
version. Computer-Aided Design, 79:12 – 26, 2016.

31

[23] Ali Mahdavi-Amiri, Erika Harrison, and Faramarz F. Samavati. Hexagonal connec-
tivity maps for digital Earth. International Journal of Digital Earth, pages 1–20,
2014.

[24] Ali Mahdavi-Amiri and Faramarz F. Samavati. Connectivity maps for subdivision
surfaces. In Proc. of GRAPP/IVAPP, pages 26–37, 2012.

[25] Ali Mahdavi-Amiri and Faramarz F. Samavati. Adaptive atlas of connectivity maps.
In Proc. of the 8th International Conference on Curves and Surfaces, Lecture Notes
in Computer Science. Springer, 2014.

[26] Ali Mahdavi-Amiri and Faramarz F. Samavati. Atlas of connectivity maps. Computers
& Graphics, 39:1 – 11, 2014.

[27] Ali Mahdavi-Amiri, Faramarz F. Samavati, and Perry Peterson. Categorization and
conversions for indexing methods of discrete global grid systems. ISPRS International
Journal of Geo-Information, 4:320–336, 2015.

[28] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-based histograms for
selectivity estimation. In Proc. of the 2002 ACM SIGMOD International Conference
on Management of Data, volume 27, pages 448–459. ACM, 1998.

[29] Helmut Mayer, Ivan Laptev, and Albert Baumgartner. Multi-scale and snakes for
automatic road extraction. In Computer Vision — ECCV’98, volume 1407 of Lecture
Notes in Computer Science, pages 720–733. Springer Berlin Heidelberg, 1998.

[30] J. B. Mena. State of the art on automatic road extraction for GIS update: a novel
classification. Pattern Recognition Letters, 24(16):3037–3058, 2003.

[31] Microsoft Corporation. Bing Maps - Directions, trip planning, traffic cameras & more.
https://www.bing.com/maps, 2017.

[32] Lee Middleton and Jayanthi Sivaswamy. Hexagonal Image Processing: A Practical
Approach. Advances in Computer Vision and Pattern Recognition. Springer-Verlag
London, 2005.

[33] Susanna Minasyan, Radomir Stankovic, and Jaakko Astola. Computer Aided Systems
Theory - EUROCAST 2009: 12th International Conference, Las Palmas de Gran
Canaria, Spain, February 15-20, 2009, Revised Selected Papers, chapter Ternary Haar-
Like Transform and Its Application in Spectral Representation of Ternary-Valued
Functions, pages 518–525. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[34] OGC. GML in JPEG 2000 for geographic imagery encoding — OGC. http://www.

opengeospatial.org/standards/gmljp2, 2017.

32

[35] Perry Peterson. Close-packed, uniformly adjacent, multiresolutional, overlapping spa-
tial data ordering. US Patent 8,400,451 (issued March 19, 2013), 2004.

[36] PYXIS innovation Inc. PYXIS Studio. https://www.pyxisglobe.com/, 2017.

[37] Zhiyuan Qiao, Jingnong Weng, Zhengwei Sui, Heng Cai, and Xuzhao Zhang. A rapid
visualization method of vector data over 3D terrain. In Proc. of the 19th International
Conference on Geoinformatics, pages 1–5, 2011.

[38] F. Rottensteiner. Automatic generation of high-quality building models from LIDAR
data. IEEE Computer Graphics and Applications, 23(6):42–50, 2003.

[39] Kevin Sahr. Location coding on icosahedral aperture 3 hexagon discrete global grids.
Computers, Environment and Urban Systems, 32(3):174–187, 2008.

[40] Kevin Sahr, Denis White, and A. Jon Kimerling. Geodesic discrete global grid systems.
Cartography and Geographic Information Science, 30(2):121–134, 2003.

[41] Faramarz F. Samavati and Richard H. Bartels. Multiresolution curve and surface
representation: reversing subdivision rules by least-squares data fitting. Computer
Graphics Forum, 18:97–119, 1999.

[42] Hanan Samet. Using quadtrees to represent spatial data. In Computer Architectures
for Spatially Distributed Data, pages 229–247. Springer, 1985.

[43] Hanan Samet. Foundations of Multidimensional and Metric Data Structures (The
Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[44] Arne Schilling, Jens Basanow, and Alexander Zipf. Vector based mapping of polygons
on irregular terrain meshes for web 3D map services. In Proc. of the 3rd International
Conference on Web Information Systems and Technologies, WEBIST ’07, pages 198–
205, 2007.

[45] Martin Schneider, Michael Guthe, and Reinhard Klein. Real-time rendering of complex
vector data on 3D terrain models. In Proc. of the 11th International Conference on
Virtual Systems and Multimedia, pages 573–582, 2005.

[46] A.K. Shackelford and C.H. Davis. Fully automated road network extraction from
high-resolution satellite multispectral imagery. In Proc. of the IEEE International
Geoscience and Remote Sensing Symposium, 2003, volume 1 of IGARSS ’03, pages
461–463, 2003.

[47] Jaya Shukla, Manoj Alwani, and Anil Kumar Tiwari. A survey on lossless image com-
pression methods. In Proc. of 2nd International Conference on Computer Engineering
and Technology, 2010.

33

[48] J. P. Snyder. An equal area map projection for polyhedral globes. Cartographica,
29:10–21, 1992.

[49] Southern Terra Cognita Laboratory. DGGRID software - Discrete global grids. http:
//www.discreteglobalgrids.org/software/, 2017.

[50] Eric J. Stollnitz, Tony D. Derose, and David H. Salesin. Wavelets for computer graph-
ics: theory and applications. Morgan Kaufmann Publishers Inc., 1996.

[51] Xiaochong Tong, Jin Ben, Ying Wang, Yongsheng Zhang, and Tao Pei. Efficient
encoding and spatial operation scheme for aperture 4 hexagonal discrete global grid
system. International Journal of Geographical Information Science, 27(5):898–921,
2013.

[52] A. Vince. Indexing the aperture 3 hexagonal discrete global grid. Journal of Visual
Communication and Image Represention, 17(6):1227–1236, 2006.

[53] A. Vince and X. Zheng. Arithmetic and Fourier transform for the PYXIS multi-
resolution digital Earth model. International Journal of Digital Earth, 2(1):59–79,
2009.

[54] Jeffrey Scott Vitter and Min Wang. Approximate computation of multidimensional
aggregates of sparse data using wavelets. In ACM SIGMOD Record, volume 28, pages
193–204. ACM, 1999.

[55] Jeffrey Scott Vitter, Min Wang, and Bala Iyer. Data cube approximation and his-
tograms via wavelets. In Proc. of the 7th International Conference on Information
and Knowledge Management, pages 96–104. ACM, 1998.

[56] Zachary Wartell, Eunjung Kang, Tony Wasilewski, William Ribarsky, and Nickolas
Faust. Rendering vector data over global, multi-resolution 3D terrain. In Proc. of the
Symposium on Data Visualisation, VISSYM ’03, pages 213–222, 2003.

[57] Thomas Wendler. Verfahren für die hierarchische Codierung von Einzelbildern in
medizinischen Bildinformationssystemen. PhD thesis, Aachen, 1987. Aachen, Techn.
Hochsch., Diss., 1987.

[58] Denis White, Jon A. Kimerling, and Scott W. Overton. Cartographic and geometric
components of a global sampling design for environmental monitoring. Cartography
and Geographic Information Science, 19(1):5–22, 1992.

[59] Lance Williams. Pyramidal parametrics. ACM SIGGRAPH Computer Graphics,
17(3):1–11, 1983.

[60] Albert K. W. Yeung and G. Brent Hall. Spatial Database Systems: Design, Imple-
mentation, and Project Management. Springer Netherlands, 2007.

34

[61] C. Zhang. Fundamentals of Environmental Sampling and Analysis. Wiley, 2007.

[62] Mengyun Zhou, Jing Chen, and Jianya Gong. A virtual globe-based vector data
model: quaternary quadrangle vector tile model. International Journal of Digital
Earth, (ahead-of-print):1–22, 2015.

35

