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ABSTRACT
With the advances in cardiovascular imaging technologies in re-
cent years, 4D (3D+time) patient-speci�c modeling of the heart
has attracted many research interests. Computational modeling
approaches such as Computational Fluid Dynamics (CFD) and Fi-
nite Element (FE) have been increasingly used to quantitatively
diagnose and predict cardiovascular diseases. In these methods,
the geometrical reconstruction of the heart anatomy is usually an
indispensable step. This work presents a robust method for recon-
structing time-varying subdivision surfaces from the segmentation
masks of cardiac images. We �rst reconstruct a 3D mesh for the
�rst time step by iteratively �tting an initial mesh based on error
and tension terms. Each subsequent time step uses the model from
its previous time step as the control mesh for subdivision surface
�tting. This method preserves the 1-to-1 vertex correspondence
between meshes in di�erent time steps and allows us to control
the mesh quality (i.e. resolution, smoothness, and accuracy). Fur-
thermore, in contrast to contour-based algorithms, our method can
handle non-trivial topological changes such as holes and tunnels.
The method has been tested on 3D and 4D datasets of di�erent
modalities (i.e. CT and MRI), resolutions, and chambers. For cre-
ating visually appealing results, we show that synthetic textures
can be mapped to the 4D reconstruction due to the vertex corre-
spondence. We also quantitatively evaluate the reconstructed 3D
meshes in terms of mesh quality and conformity to the data.
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1 INTRODUCTION
Cardiovascular disease is the leading cause of death worldwide.
Cardiac imaging technologies provide non-invasive ways for the
diagnosis, monitoring, and treatment of cardiac diseases. Various
imaging technologies such as computed tomography (CT), cardiac
magnetic resonance (CMR), single photon emission CT (SPECT),
and echocardiography have enabled the acquisition of both 3D and
4D (time-varying) cardiac images for various purposes. With the ad-
vances in imaging techniques, the creation of personalized cardiac
anatomical models has received much research attention recently
[13, 22]. Patient-speci�c computational modeling and simulation
can help us better understand cardiac functions and make clinical
predictions. For instance, Computational Fluid Dynamics (CFD) and
Finite Element (FE) have been increasingly used to quantitatively
analyze the behavior of cardiac blood �ow (hemodynamics) [16].
Moreover, personalized heart models are a prerequisite to surgi-
cal planning tools such as visual reality (VR) and 3D printing [2].
In these applications, the geometrical reconstruction of the heart
anatomy, either 3D or 4D, is usually an indispensable step.

Besides being fundamental to simulation and analysis, geometric
models are also important to the visualization of complex heart
anatomies. In clinical practice, medical images are mostly viewed
as 2D slices or cross sections. Personalized cardiac anatomic mod-
els can be used as a complementary tool in training and patient
education. Furthermore, dynamic information about the heart (e.g.
blood �ow behavior, myocardial motion and deformation) cannot
be easily obtained from 2D cross-sectional images. Constructing
a time-varying heart model not only provides important insights
into the anatomical information, but also helps the physicians un-
derstand and evaluate the mechanical function of the heart. Addi-
tionally, with the rapid development of automatic segmentation
techniques for cardiac imagery [7], there is a growing need for both
3D and 4D patient-speci�c heart model reconstruction methods.

Constructing patient-speci�c cardiac model is challenging: the
anatomy of the heart is complex and unexpected abnormalities
(e.g. holes) may occur. Many approaches have been proposed over
the years to reconstruct geometric models of the heart from car-
diac images. Most of the studies are focused on reconstructing
heart chambers and aorta as these components are usually easier
to be delineated from medical images [10]. Some reconstruction
methods are image-independent, which means that the geometry is
extracted from prior segmentation results (e.g. contour lines, binary
segmentation masks, and point clouds) [5, 17, 27–29]. Whereas oth-
ers involve segmentation and image processing (e.g. registration)
in the mesh construction pipeline [11, 30, 31].

56

https://doi.org/10.1145/3487027.3487036
https://doi.org/10.1145/3487027.3487036


ICBRA 2021, September 11–13, 2021, Berlin, Germany Wang, et al.

More generally, surface reconstruction methods can be broadly
categorized into two major types: explicit and implicit [15]. Ex-
plicit approaches (e.g. Delaunay triangulation [3] and ball-pivoting
algorithm [4]) reconstruct the data as parametric or triangulated
surfaces that precisely represent the object with vertex locations.
Whereas implicit approaches (e.g. marching cubes [19] and radial
basis function [6]) typically de�ne the surface as implicit func-
tions. Readers are referred to [15] for a more detailed review on
3D surface reconstruction. Regarding 4D surface reconstruction,
deformable models and statistical shape models (SSM) are widely
used [5, 11, 30]. One of the challenges of these methods is that they
mostly rely on prior knowledge of the shape or topology for con-
structing the initial model. Our method di�erentiates from other
related algorithms as it only requires a segmentation as input and
works for arbitrary topology.

Subdivision plays an important role in computer graphics for
producing a smooth appearance. Starting with a coarse control
mesh, new mesh elements (i.e. faces, vertices, and edges) are gener-
ated based on subdivision rules, and di�erent levels of details can
be achieved. Due to the coarse-to-�ne (or multiresolution) prop-
erty of subdivision surfaces, they have been widely used in ar-
eas such as animation [8], Discrete Global Grid Systems [1], and
sketch-based modeling [20]. The hierarchical structure of subdi-
vision also enables multiresolution manipulation for curves and
surfaces [21, 23, 24], where the change of control mesh is re�ected
on the re�ned mesh. Additionally, the ability of modeling arbitrary
topologies [25] makes subdivision surfaces suitable for reconstruct-
ing complex heart anatomy.

In this paper we present a framework for extracting temporally
coherent (i.e. 1-to-1 vertex correspondence) surface models from
time-varying segmented cardiac images using Loop subdivision.
Using a subdivision representation allows us to create a smooth
approximation and to capture details at multiple scales. The method
is outlined as follows (Figure 1):

(1) From a 3D segmentation mask of one of the time frames,
we construct a high-resolution mesh using marching cubes
algorithm to capture all geometric details of the surface.

(2) An initial control mesh is constructed by simplifying the
high-resolution mesh, and its subdivision matrix is obtained.

(3) A weighted least-squares system is constructed and solved
for optimizing the control mesh. This step can be iteratively
performed until a desirable threshold has been reached.

(4) After the control mesh of the current frame is optimized, we
use the current control mesh as an initial mesh for the next
frame. Subsequent time frames can be constructed using the
same approach.

The main contribution of this method is the ability to produce
temporally coherent 4D cardiac meshes which balance the visual
appearance and the �tting accuracy. The novel use of subdivision
surfaces in the reconstruction allows us to �t the data at a con-
trollable resolution. Subdivision is also important in tackling the
problem of topological variations.

2 RELATEDWORK
Topology is one of the main challenges of heart surface reconstruc-
tion. Depending on the speci�c problem, simpli�ed heart models or

sophisticated topology handling can be used. In [5], the left heart
model is divided into three parts (i.e. the LV sac, the Y-junction,
and the connection between them) before the surface �tting. [28]
assumes that the segmentation of a heart chamber is topologically
equivalent to a sphere and ignores other structures such as valves.
In [17], all delineation contours are mapped onto a single plane and
construct meshes using Delaunay triangulation. A tree structure is
then extracted to take into account the intra- and inter-frame topol-
ogy changes. One of the limitations of this method is that it only
works for parallel contours. Another challenge is to balance the data
�tting accuracy and the visual appearance. In [27], the authors use
thin plate splines (TSP) to iteratively �t an initial mesh to the con-
tour lines and use butter�y subdivision and Laplacian smoothing to
improve the visual appearance of the surface. However, the subdi-
vision is followed by an independent coarsening step to regularize
the vertex location. This loses the inherent coarse-to-�ne hierarchy
of subdivision surfaces and increases the computational time. Our
method is similar to [11] which uses decimation, smoothing and
remeshing to reconstruct a high-quality initial mesh and uses it
to �t subsequent meshes. In comparison, our method constructs a
coarser initial mesh and uses its subdivision to capture details in
the data �tting. A more comprehensive review of cardiovascular
modeling techniques is presented in [10].

3 SUBDIVISION SURFACE FITTING
In order to �t a subdivision surface to the volumetric data of a single
time frame, we �rst construct an initial control mesh from the data,
and then we model the problem as a weighted least-squares system.
We �t the subdivided initial mesh to the boundary of the volumetric
data by solving a linear system, from which an optimized control
mesh is obtained. Figure 2 gives a high-level overview of the surface
�tting process.

The �rst subsection introduces the datasets, followed by the
details of the surface �tting process.

3.1 Data representation
The datasets we use are segmentation masks of di�erent heart
components (e.g. LV, LA, and left heart). A segmentation mask
of a 3D cardiac image can be represented by a binary function
� : N3 ! {0, 1},

�(i) =
(
1 inside

0 outside
,

where i 2 N3 is the index of a voxel. A signed distance transform
(D : N3 ! R) is then computed from the segmentation mask to
measure the Euclidean distance of a point in space to the heart
surface. The distance transform D(i) of voxel i is positive if the
voxel is inside the volume and negative if outside. From the discrete
distance transform, we compute d(v), the distance of a vertex v ,
using tri-linear interpolation (i.e. linear interpolation along x,y,z
directions).

3.2 Control mesh construction
A control mesh of a subdivision surface is the coarsest level mesh
that controls the geometry of the subdivision surface. To reduce
the stair-stepping e�ect and take advantage of the hierarchical
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Figure 1: Time-varying subdivision surface construction. �i is volumetric image of time frame i.C0 is the initial control mesh
of the �rst time frame. C̃i and F̃i are the optimized control mesh and re�ned mesh of time frame i, respectively. The initial
control mesh for time frame i is C̃i�1. S is the subdivision matrix.

Figure 2: Subdivision surface construction for the �rst time frame.

structure, the control mesh should be coarse and have the same
topology as the volumetric data. In order to capture topological
details of the data in the control mesh, we �rst construct a high-
resolution mesh using the marching cubes. We then apply an edge-
collapsing mesh decimation algorithm to reduce the number of
polygons on the dense mesh [14]. Given an appropriate decimation
rate, the simpli�edmesh (denoted byC) will have the same topology
andwill keep important geometry details of the original data (Figure
2).

3.3 Mesh optimization
Once the initial control meshC is obtained, it is deformed to better
�t the volumetric data. This surface �tting process is controlled
by two terms: error and tension. The error term maintains the
closeness of the mesh to the boundary, while the tension term
maintains the fairness and smoothness of the mesh.

3.3.1 Error term. The error energy determines how close the cur-
rent mesh is to the boundary. It acts as an external force to “pull"
the vertices toward the boundary. For each vertex v , we want

to minimize its distance to the boundary of the volume (i.e. its
distance transform d(v)). The per-vertex error is determined by
e(v) = | |d(v)| |2,) We de�ne the error term as the summation of
all vertex errors. The error term of a mesh M = (V ,E) is E(M) =Õ
vi 2V | |d(vi )| |2. Since the distance transform is a scalar �eld (i.e.

the magnitude of the external force), we use the unit vertex normal
n̂(v) to determine the direction of the external force. Assume V 0 is
the vertex set after the mesh evolving (the edge connection is not
changed during surface �tting), the error term is minimized when

V 0 = V + N (V ), (1)

where

N =

266666664

d(v1)n̂(v1)
d(v2)n̂(v2)

...
d(vm )n̂(vm )

377777775
.

3.3.2 Tension term. The tension energy determines how smooth
and fair the current mesh is. It acts as an internal force that redis-
tributes the vertices to ‘unfold’ the mesh and to avoid triangles that
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Figure 3: Illustration of Loop subdivision. Each triangle face
on themesh is split into 4 new faces. After face splitting, the
odd vertices (i.e. the new vertices on each original edge) and
the even vertices (i.e. the old vertices) will be re-positioned
based on di�erent rules.

are too skinny and stretched. Mesh Laplacian [9] has been used
for improving mesh smoothness and fairness. For each vertex, a
tension force is computed as a vector from its current position to
the center of its neighbors:

L(vi ) =
1

�alence(vi )
’

(i, j)2E
vj �vi .

The tension term of a meshM = (V ,E) isT (M) = Õ
vi 2V | |L(vi )| |2.

The tension term is minimized when

LV 0 = 0, (2)

where

Li j =

8>>><
>>>:

1
�alence(�i ) if (i, j) 2 E,

�1 if i = j,

0 otherwise.

3.4 Surface �tting
The initial control mesh is �tted by iteratively minimizing the two
constraints. The optimization is an over-determined system which
is solved in a least-squares sense. In order to capture the details,
we use the re�ned mesh to minimize the energy and to get an
optimized coarse mesh.

3.4.1 Least-squares system. From the energy minimization equa-
tions (1) and (2), we obtain an over-determined system:

L
I

�
V 0 =


0

V + N (V )

�
.

We can assign di�erent weightsWT andWE to the error and tension
terms: 

WT L
WE

�
V 0 =


0

WE (V + N (V ))

�
. (3)

The solution is the minimizer of

W 2
T | |LV

0 | |2 +W 2
E

’
i

| |vi + d(v)n̂(vi ) �v 0
i | |2.

Note thatWT andWE are constants that determines how important
the tension and error terms are. Based on our experiments, the
combination of WT = 1 and WE = 0.25 ensures a good visual
appearance and a good �t to the data. Table 1 depicts the e�ect
of di�erent weights: a larger tension weight produces a smoother
mesh, while a larger error weight makes the mesh closer to the data
and reduces the mesh smoothness.

Figure 4: The left atrium with a hole. Left: marching cubes
mesh. Right: our method with one level of subdivision.
Dataset is obtained from [26].

3.4.2 Loop subdivision matrix. Loop subdivision is a subdivision
scheme that is designed for triangle meshes. Loop subdivision is a
generalization of cubic B-spline subdivision, and it hasC2 continuity
at regular vertices (i.e. valence of six). The subdivision process is
composed of two steps: face splitting and vertex re-positioning. As
depicted in Figure 3, each triangle face on the mesh is split into
4 new faces. The 3 new vertices on the original edges are called
“odd vertices", and the 3 old vertices are “even vertices". Each vertex
are then re-positioned based on the subdivision masks proposed in
[18].

Subdivision is a coarse-to-�ne approach, where the re�ned mesh
can be represented by the product of a subdivision matrix and the
coarse mesh. Let C , C̃ , F and F̃ be the vertex sets of the initial
control mesh, optimized control mesh, initial re�ned mesh, and
optimized re�ned mesh, respectively. Then, we have(

F = SC

F̃ = SC̃
,

where S is the subdivision matrix. The subdivision matrix can be
computed when the vertices are iteratively subdivided, and it can
represent any level of subdivision. For instance, let C0 be the ver-
tex set of the control mesh and Ci be the vertex set after the i-th
iteration of subdivision. Then Ci = SiCi�1, i = 1, 2, · · · , where Si
is the subdivision matrix of the i-th iteration. Thus, the vertex set
after n levels of subdivision isCn = SnSn�1 · · · S1C0 = SC0, where
S = SnSn�1 · · · S1 represents the collective subdivision matrix of
the entire process. Since the subdivision matrix is sparse, the com-
putation can be done e�ciently, and the result can be saved for
subsequent time frames. From equation (3), we derive the linear
system for the subdivision �tting:

WT L(F )
WE

�
F̃ =


0

WE (F + N (F ))

�

)

WT L(F )S
WES

�
C̃ =


0

WE (F + N (F ))

�
, (4)

where L is the mesh Laplacian obtained from the re�ned initial
mesh, and N (F ) is the scaled vertex normal of the initial re�ned
mesh. The optimized control mesh C̃ is found by solving equation
(4) in a least-squares sense.

4 TIME-VARYING SURFACE
The subdivision surface �tting method in Section 3 can be used to
e�ciently reconstruct time-varying datasets. As depicted in Figure
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Table 1: Demonstration for di�erent parameters. In each of
(b)-(f), the left is the control mesh and the right is the re-
sult after one level of subdivision, optimized using the cor-
responding weights. Dataset is obtained from [26].

(a) MC mesh and initial mesh (b)WE =WT

(c)WE = 0.25 ⇤WT (d)WE = 0.1 ⇤WT

(e)WE = 0.02 ⇤WT (f)WE = 0.005 ⇤WT

1, given a set of time-varying volumes {�0,�1, ...,�n }, the goal
is to construct a sequence of control meshes {C̃0, C̃1, ..., C̃n } such
that their corresponding subdivided meshes {F̃0, F̃1, ..., F̃n } are op-
timized with respect to the volumes. Since the di�erence between
two consecutive volumes is not signi�cant (i.e. a slight change in
the geometry and no change in the topology), we only need to
construct one initial control mesh for the �rst time step, and then
use the optimized control mesh as the initial control mesh for the
optimization in the next time step. This not only helps to keep
the topological constancy, but also improves the performance. The
process of constructing C̃i is as follows, whereCi denotes the initial
control mesh to be �tted at time step i:

(1) If i = 0, then construct Ci by mesh decimation, otherwise,
Ci = C̃i�1,

(2) Compute themesh LaplacianLi and the scaled vertex normal
Ni based on the subdivided initial control mesh Fi = SCi ,

(3) Solve

WT LiS
WES

�
C̃i =


0

WE (SCi + Ni )

�
for C̃i .

Figure 1 depicts the pipeline for time-varying subdivision surface
construction. The resulting coarse mesh sequence has vertex-to-
vertex correspondence between the time steps, which can be easily
interpolated to produce quality animation.

5 RESULTS AND DISCUSSION
Since MC is a widely used surface reconstruction algorithm in the
�eld of medicine and since many other methods are built on top
of MC [11, 30, 31], we compare our method to MC in the quantita-
tive evaluation. We have applied our method to multiple datasets
for di�erent heart components. Table 2 compares our method and
the MC method in terms of mesh resolution and least-squares er-
ror. The result is based on four datasets: normal left atrium (LA1),
left atrium with a hole (LA2), left heart with the aorta (LH), and

Table 2: Compare ourmethodwithmarching cubes. Column
#FMC and #Fours are the number of faces of the marching
cubes mesh and our mesh, respectively. Column ĒMC and
Ēours are the average per-vertex least-squares errors.

Data Size #FMC #Fours ĒMC Ēours
LA1 60*83*48 14168 2832 0.431 0.346
LA2 56*74*44 14296 5144 0.499 0.297
LH 69*32*60 8114 2592 0.981 0.906
LV 67*24*55 7944 1904 0.827 0.530

Table 3: Evaluation of the mesh stair-stepping e�ect.
Columns VPMC and VPours are the number of total vertex
pairs in the meshes constructed by marching cubes and our
method. Columns hMC and hours are the coplanar ratios of
MC mesh and ours.

Data VPMC VPours hMC hours
LA1 21252 4248 45.61% 0.66%
LA2 21444 7713 41.43% 2.81%
LH 12170 3888 25.07% 0.23%
LV 11908 2856 58.58% 5.25%

one time frame from a 30-frames time-varying left ventricle (LV).
Since these datasets are segmented pieces of the entire heart, we
use the their bounding boxes to represent their sizes (in terms of
number of voxels along x, y, z directions). From the comparison,
we note that our surface has less number of faces than MC while
our least-squares error remains low. The result indicates that our
method is able to construct high-quality meshes (in terms of ac-
curacy and smoothness) with lower mesh resolution. Figures in
Table 1 and Figure 4 show visual comparisons between MC and
our method. In Table 1, the optimized subdivision mesh ((c) right)
well-approximates the volumetric data and captures important de-
tails. The optimized mesh signi�cantly reduces the jaggedness in
the MC mesh ((a) left). Figure 4 shows that the topology unchanged
(i.e. the hole) in our mesh, while the surface is smoother than the
MC construction.

In order to quantitatively evaluate the mesh jaggedness (stair-
stepping e�ect), we have used the quadric error metrics (QEM). The
QEM method was �rst proposed by Garland [12] for mesh simpli�-
cation. The error quadricQ for a vertexv is a 4⇥4 symmetric matrix
that depicts the distance of a point in space tov’s neighboring faces.
For each valid vertex pair (vi ,vj ) (i.e. connected by an edge), we
compute the cost of the vertex contraction (vi ,vj ) ! v̄ using the
quadratic error: Ei, j = v̄>(Qi +Q j )v̄ . The target point v̄ is selected
fromvi ,vj , and their midpoint such that it has the lowest cost. The
one-ring neighborhoods of v1 and v2 are considered coplanar if
Ei, j < � (we use � = 1e � 06). The jaggedness can be measured by
the ratio of coplanar vertex pairs (VPcoplanar ) to the total vertex
pairs (VP ):

h =
VPcoplanar

VP
.

A lower coplanar ratio indicates less stair-stepping e�ect. Table
3 compares the coplanar ratios of the marching cubes and our
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Figure 5: Reconstruction of the left heart and the aorta sur-
face.

Figure 6: Four time frames of a reconstructed left ventricle
animation.

method on four datasets. The results show that the coplanar ratio
of marching cubes reconstruction is higher than that of our method.
Our subdivision surface signi�cantly reduces the stair-stepping
e�ect of the marching cubes mesh.

Our method can be used to create more visually-appealing re-
sults by attaching textures. Figure 5 shows a textured result of a
reconstructed left heart surface (including left atrium, left ventricle,
and the aorta). Figure 6 shows four time frames from the animation
of a left ventricle during diastole. The time-varying data comes
from the segmentation masks of 4D Flow MRI images over the
entire cardiac cycle. The data originally consists of 30 time frames,
from which we �t 30 temporally coherent meshes (i.e. having the
same vertex connectivity) using the method described in Section 4.
An animation with higher temporal resolution is then generated by
linear interpolation. Thanks to the 1-to-1 vertex correspondence, a
single synthetic texture can be mapped to all time frames.

6 CONCLUSION AND FUTUREWORK
Wepresented amethod for �tting subdivision surfaces to segmented
time-varying cardiac images. The method produces smooth, hierar-
chical subdivision surfaces while maintaining the reconstruction
accuracy. The evaluation demonstrates that our surface model is
able to reconstruct the segmented data with fewer polygons while
reducing the jaggedness. We have also shown that it works for
arbitrary topology and preserves 1-to-1 vertex correspondence in
the time-varying model.

As future work, the twisting motion (or torsional motion) of the
heart could be incorporated in the reconstruction. As proposed by
[5], manually placed landmarks and control points can be added
to take into account the torsion on the myocardium surface. Fur-
thermore, we can adopt semi- and fully-automatic segmentation
tools in the future to make it a complete pipeline for visualizing
time-varying cardiac images.
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