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ABSTRACT
Globe-based Digital Earth is a promising system that uses 3D models of the Earth
for integration, organization, processing, and visualization of vast multiscale geospa-
tial datasets. The growing size and scale of geospatial datasets present significant
obstacles to interactive viewing and meaningful visualizations of these Digital Earth
systems. To address these challenges, we present a novel web-based multiresolution
Digital Earth system using hierarchical discretization of the globe on both server
and client sides. The presented web-based system makes use of a novel data encod-
ing technique for rendering large multiscale geospatial datasets, with the additional
capability of displaying multiple simultaneous viewpoints. Only the data needed for
the current views and scales are encoded and processed. We leverage the power of
GPU acceleration on the client-side to perform real-time data rendering and dy-
namic styling. Efficient rendering of multiple views allows us to support multilevel
focus+context visualization, an effective approach to navigate through large mul-
tiscale global datasets. The client-server interaction as well as the data encoding,
rendering, styling, and visualization techniques utilized by our presented system
contribute toward making Digital Earth more accessible and informative.

KEYWORDS
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1. Introduction

A globe-based Digital Earth (DE) is a 3D representation of the Earth on which geospa-
tial datasets of multiple different types and scales can be efficiently integrated and
visualized using the globe as a reference model (Goodchild 2000). In this approach, a
curved Earth is used to model, organize, and visualize geospatial datasets as opposed
to 2D map layers used in conventional GIS. Such representations aim to address grand
challenges of geosciences – data integration, meaningful visualization, and effective
user-interactions (Gil et al. 2018; Liu et al. 2020). It is an important challenge to
make large dynamic multiscale datasets accessible, both in terms of their availabil-
ity and in terms of interactive viewing. Although image-wrapping DE systems such
as Google Earth (Google 2020) has made a noticeable impact in the user commu-
nity through many fascinating applications, they organize geospatial datasets using
2D map layers, and consequently inherit map distortions and positional uncertainty
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Figure 1. Multilevel focus+context visualization of a Digital Earth.

(Goodchild 2018). Alternatively, a multiresolution globe-based DE such as a Discrete
Global Grid System (DGGS) can reduce map distortions while supporting multiple
resolutions to capture an equal-area sampling of geospatial datasets (Alderson et al.
2020; Mahdavi-Amiri, Alderson, and Samavati 2019; Alderson, Mahdavi-Amiri, and
Samavati 2016; Mahdavi-Amiri, Alderson, and Samavati 2015). In this work, we detail
approaches to tackle the problem of accessing and displaying multiple large datasets
in multiple scales at once using a globe-based multiresolution DE. To this end, we
introduce a generalized web-based system that supports a novel rendering and visual-
ization framework capable of displaying large multiscale datasets for the entire globe,
while allowing for context-aware user-interactions.

To develop this globe-based DE, we face several challenges. The first challenge lies
in the size and variety of datasets. A single operation, such as the rendering of the
globe, may require the use of several large datasets at varying resolutions. Execution
of the underlying queries and rendering of resulting visualizations should be performed
in real-time and through interactive interfaces. Another challenge, related to the visu-
alization, is the limitation of screen space, which introduces difficulties in the effective
presentation of large differences in scale, large distances between locations on the globe,
and the wide varieties of data available. An important challenge is that of visualizing
two distant cities, for example, at a detail level high enough to discern roads with a
single point of view. Furthermore, datasets often have interesting information at mul-
tiple levels of detail. Viewing a dataset at city-scale and country-scale simultaneously
is often impossible without special visualization techniques. Likewise, there is a limit
to the amount of data that can be overlaid on a single view of the globe.

Finally, the simultaneous integration and visualization of multiple datasets poses an-
other challenge. It becomes even more complicated when combining disparate datasets,
such as elevation, cities, roads, labels and population density.

We overcome visualization challenges through the use of multilevel focus+context
visualization. We use multiple views of the globe to allow for per-focus styling and
scale. In a web-based application, utilizing all required datasets at their native resolu-
tion over the entire globe is an extremely slow and resource-intensive approach. Hence,
we utilize only what is necessary to accommodate the various views of the globe. For
a set of different views, chosen interactively, our system requests only those data re-
quired by these views, and at resolutions proportional to the size of the viewports.
In summary, our system generates a multi-view aware Digital Earth where multiple
active views of the globe are concurrently displayed, at a variety of locations and
at separate levels of detail, as shown in Figure 1. See Section 6.2 for further related
usecases supported by our view-aware DE.

To create an efficient web-based DE framework, we divide the required operations
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between the server and the web browser application (client). An efficient data struc-
ture is required to handle the thousands of pieces of data at multiple resolutions,
and geometry of the Earth. This data structure should also facilitate communica-
tion between the server and clients. For this purpose, we introduce a new web-based
DGGS (Mahdavi-Amiri, Alderson, and Samavati 2015; Alderson et al. 2020). A DGGS
is a hierarchical discretization of the globe to highly regular cells, each representing an
area on the surface of the Earth. This contrasts with conventional geographical coor-
dinate systems, which encode infinitesimal point locations. DGGS provides a powerful
reference system for organizing, integrating, and transmitting geospatial data on-the-
fly, without the need for GIS experts to process the data (Mahdavi-Amiri, Alderson,
and Samavati 2015). The challenge is that the functionality required of the grid system
on the server-side is different from those on the client-side. In our new system, the
DGGS on the server-side is more complex and sophisticated, geared towards providing
an efficient hierarchical data structure for rapid integration, accurate sampling, and
data analytics for data associated with the Earth. On the other hand, the DGGS on
the client-side is streamlined for the tasks of handling user interactions resulting in
queries, organizing multiple views, and creating flexible and high-quality renderings
for various scenarios. Hence, our method expects the server and clients to use different
grid systems, and therefore, it is necessary to have an efficient means of converting
between these grids.

In order to integrate and visualize multiple datasets at once, we use a quadrilateral
DGGS to encode data as 2D textures. Each pixel in such a 2D texture represents
a single cell within the DGGS that can be utilized together during the rendering
process in various ways. These textures, which we hereafter refer to as data textures,
are transmitted as standard image files. The data textures, when passed to the GPU
on the client-side, can be used for stylized rendering in real-time. An advantage of
this system is that we can use a wide variety of rapid styling (e.g., blending colors,
animating multiple styles, changing the shading effect, and texture mapping) without
the need to request differently-styled data from the server. This allows us to expand
the range of techniques used to display datasets simultaneously.

Overall, this work includes three main contributions:

(1) We introduce and develop a view-aware globe-based Digital Earth system that
can dynamically retrieve and manage multiple large datasets using a novel client-
server DGGS and data textures. Visualization within our system is hardware-
accelerated, interfacing with the client’s GPU, and is capable of real-time integra-
tion of disparate datasets and rendering multiple views of the Earth concurrently.

(2) To overcome the visualization challenges that come the with the size, scale,
and disparity of global datasets and to showcase the strength of our proposed
client-server DGGS architecture in interactive and context-aware exploration of
multiple datasets in varying levels of resolution within the same visualization, we
also introduce multilevel focus+context visualization for curved Earth models.

(3) Furthermore, we introduce a novel data encoding technique for client-side real-
time data rendering and styling.

2. Background and related work

In this section, we review background literature on Digital Earth, multilevel fo-
cus+context visualization, and geovisualization.
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Figure 2. An initial polyhedron (a), is refined (b), and then projected to the sphere (c).

2.1. Digital Earth

Globe-based Digital Earth is a virtual model of the globe (i.e. curved Earth) for integra-
tion, processing, visualization, and retrieval of various types of geospatial data (Good-
child 2000). Large multiscale data integration is a central property of DE as opposed
to virtual globes that focus mostly on the visual aspects related to one or two datasets
(such as terrain rendering (Leigh et al. 2009)). One effective method for constructing
a globe-based Digital Earth is the DGGS (Goodchild 2000; Mahdavi-Amiri, Alderson,
and Samavati 2019; Purss et al. 2016; Mahdavi-Amiri, Alderson, and Samavati 2015).
A DGGS encodes a globe as a hierarchy of discrete indexed cells, preferably regular.
Each cell represents an area on the surface of the Earth as opposed to conventional
geographical coordinate systems with infinitesimal point locations. These indexed cells
are the key to on-the-fly data integration.

One method for achieving consistent cell areas is to initially approximate the globe
with a regular polyhedron, such as a cube or icosahedron. The faces of this polyhe-
dron are subdivided to create a hierarchy of repeatedly refined flat cells (i.e. triangle,
quad, or hexagon) down to an arbitrary level of detail. The final (curved) cells are the
result of un-projecting the resulting flat cells to the surface of the Earth, preferably
using an equal-area projection (see Figure 2). Different types of initial polyhedrons
and cell types have been used to create different grid structures used in various DG-
GSs (Mahdavi-Amiri, Alderson, and Samavati 2015). Although, the required type of
grid system is dictated by the application’s requirement, it causes some issues for inter-
operabilities among various DGGSs. Mahdavi-Amiri, Harrison, and Samavati (2016)
provide a general framework for converting one hierarchical grid to another using sim-
ple transformations. This grid conversion is also fundamental for our client-server DE
system.

Every cell within a DGGS is referenced by an index. This index is analogous to
a latitude/longitude coordinate pair in that it indicates a particular location on the
globe. Indices also serve as the entry point for data queries on a DGGS, since an index
can be referenced to retrieve data from the area it represents. Several methods exist for
producing indices, such as space-filling curve-based indexing, hierarchical indexing, and
coordinate-based indexing; Mahdavi-Amiri, Samavati, and Peterson (2015) present
various indexing methods in DGGS and conversions between them.

4



2.2. Focus+context visualization

In the fields of information and scientific visualization, Hauser generalized the common
methods for discrimination between focus and context based on their degrees of impor-
tance (Hauser 2006). The use of a virtual lens to magnify foci is a common method for
discriminating between focus and context (Taerum et al. 2006; Hsu, Ma, and Correa
2011; Wang et al. 2011). Such visualizations draw their inspiration from preexisting
techniques common to medical and scientific imagery, where the artist highlights areas
of interest with magnified parts of an illustration (Hodges 2003). Our implementation
uses a discontinuous undistorted technique (Taerum et al. 2006), rather than the con-
tinuous style (Hsu, Ma, and Correa 2011; Wang et al. 2011), as the views are discrete
and independent.

Packer et al. (Packer 2013; Packer, Hasan, and Samavati 2017) created a system
allowing for multilevel focus+context visualization of layered tube-shaped structures
with continuous artistic transitions between different levels of detail. However, unlike
ours, their work does not support branching structures. Other related works include
multifocal visualization of medical data by Ropinski et al. (2009), a multifocal, mul-
tilevel system by Cossalter, Mengshoel, and Selker (2013) for visualizing networks, a
multifocal treemap visualization by Tu and Shen (2008), and multifocal and multi-
context augmented reality systems by Mendez, Kalkofen, and Schmalstieg (2006) and
Kalkofen, Mendez, and Schmalstieg (2007), respectively. Our approach primarily dif-
fers from these works in that it is based on view-dependent resource allocation derived
from the viewing volumes of the foci.

Conventional Digital Earths suffer from visualization difficulties stemming from the
scales and distances involved in geospatial data. It is difficult to visualize regions
that are vastly different in scale, as a single perspective is often insufficient. Viewing
two or more distant areas at a high level of magnification is also problematic with
a single point of view. Multilevel focus+context visualization technique of Hasan et
al. (Hasan, Samavati, and Jacob 2014, 2016; Hasan 2018) overcomes this limitation
by providing multiple dynamic views of the data at customizable resolutions and per-
spectives. Their work produced a system that supports the exploration of large-scale
2D and 3D image data through a multilevel focus+context environment. The work is
based upon a balanced wavelet transform (Hasan, Samavati, and Sousa 2015; Hasan
2018) of the dataset being visualized, and produces a tree structure where each level
of magnification is available for further magnification by adding additional foci. Ex-
cept for the root, each node in the tree can represent both focus and context in this
environment and has varying degrees of interest (Card and Nation 2002) for directing
resource allocations. Inspired by this work, our system uses virtual cameras to achieve
multilevel focus+context visualization. However, our work applies to a curved Earth
and relies on the server’s available data for regions of interest (ROIs) as opposed to a
multiresolution construction.

2.3. Geovisualization

One cannot meaningfully have a discussion of Digital Earth without referencing Google
Earth (Google 2020). Google Earth supports a wide variety of data, and is possibly
the best example of a photorealistic interactive 3D globe. It achieves a great level of
data integration, though it lacks the analysis capabilities that are present in a DGGS.

With a similar set of features, Cesium (Cesium 2020) is an open-source JavaScript
library for web-based 3D globe visualization. It contains a wide variety of tools that
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span the spectrum from photorealistic visualization to plotting data on the globe.
Their API allows for splitting the view of the globe, rendering different data on each
pane. These panes, however only split the view between two different static sets of
data. Our system improves on this by allowing the mixing of scales, moving distant
locations closer together, and producing dynamic visualizations of data in real-time.

On the other hand, ArcGIS Online (ESRI 2020) is a web-based globe with more
focus on data analysis compared to Google Earth and Cesium. This solution is part
of a powerful analysis and visualization engine that supports a variety of data formats
and sources. However, due to not being DGGS-based, some operations such as those
benefiting from GPU-based hardware acceleration due to the straightforward corre-
spondence between multiple large datasets at varying levels of resolutions offered by
a DGGS, are difficult to run in real-time.

Finally, Global Grid Systems features a web-based globe that is constructed using
our client-side system as a starting point (Global Grid Systems 2020). A wide variety
of data can be imported and visualized, and a variety of cell-based analyses can be
performed interactively because it is based on a DGGS.

3. Methodology

Figure 3. Overview of client and server responsibilities.

Our methodology for visualizing DE in
a web browser is broken down into three
separate topics: how we reference data,
how we construct the view-aware DE,
and how we build the data visualization
system.

3.1. System overview

We present the implementation of a
view-aware DE system capable of in-
teractively displaying multiple simul-
taneous viewpoints, supporting multi-
level focus+context visualization on the
globe. It also supports several real-time
data styling techniques that are designed
to work efficiently on both the client
and server. In our method, the client-
side is responsible for triggering queries
for missing data, managing the viewing
area, and rendering various styles and ef-
fects. The server is responsible for gen-
erating data representations for DGGS
cells in response to queries from clients.
Only the data required for the current
views and scales need to be processed,
so the task of processing the datasets
at their native resolution can be circum-
vented.

As illustrated in the visual synopsis of
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Figure 4. As opposed to a series of cell-based queries, a single tile-based query can request for all descendant

cells at a desired resolution, reducing the cost of requesting those cells over the network.

client and server responsibilities in Figure 3, tasks are divided between a server and
one or more clients. Each client machine runs our client-side web application within
a web browser, accessible via a URL. The client-side web application is programmed
in JavaScript, so it runs in a variety of web browsers. It is functional in Microsoft
Edge, Google Chrome, and even Chrome running on Android mobile devices. Our
implementation makes use of WebGL, an API which is based on OpenGL ES for use
in web browsers.

Although a DGGS is a very efficient framework for the storage and retrieval of data,
queries sent over a network connection still have overhead. Because many thousands
of cells need to be visible on the globe at a time for a visualization to be meaningful,
this means that thousands of cells need to be queried. Individually requesting these
cells is extremely impractical over a network. Therefore, data are shared between the
client and server in the form of quadrilateral tiles composed of cells. These cells are
the same as those used in the server DGGS, arranged into a quadrilateral tile through
the use of an existing hierarchical grid conversion method (Mahdavi-Amiri, Harrison,
and Samavati 2016). This hierarchical grid conversion for the case of hexagons to
quadrilaterals is accomplished through the dual conversion method – the dual of a
hexagonal grid is a triangular grid, where each vertex of a triangle corresponds to
the centroid of a hexagon. The triangles of this dual grid are paired up to produce
a quadrilateral grid. Next, to produce tiles, the cells in the quadrilateral grid are
aggregated along the coordinate axes U and V of the parametric domain, as shown in
Figure 3 and explained further in Section 3.3 (see Figure 6).

A tile is formed of cells sampled at a particular resolution and can be considered
to be a special type of lower-resolution ancestor cell. Instead of containing a single
datum, each tile contains an array of data values that correspond to its descendants’
data at a higher level of detail. As shown in Figure 4, the process of requesting a tile
from a DGGS is only slightly modified from the cell-querying process. Since many cells
result from a single tile query, the cost of requesting these cells over the network is
significantly reduced.

The web application houses a hierarchy of tiles, which is created when the finer-
detail data are requested and transmitted. Since these tiles are analogous to cells, this
hierarchy serves as its own DGGS. We refer to this as the client DGGS. The client
is responsible for determining which tiles need to be downloaded based on each tile’s
visibility within the current views and its size on the viewing screen. Each tile has its
own unique index, which is used when the client sends queries for the desired data to
the server. The server responds with data in tile form, which the client stores within
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Figure 5. A particular tile’s geometry sampled at different levels of detail – here the cusp on the left edge of

the tile is caused by the subdivision method applied to the dual hexagonal grid on the server DGGS.

the client DGGS.
The server has access to a database of geospatial datasets, referenced using the

server DGGS. When the server is queried with the index of a given tile and a dataset,
it samples the DGGS-referenced data and produces the result for the query as a tile.
The query result takes one of two forms: the geometry of the cell being requested or
a data texture representing the data thereupon.

Since tiles are collections of cells from the server DGGS, which can be sampled at
different resolutions, they can contain a variable number of cells, as shown in Figure 5.
A particular tile index has an accompanying resolution that indicates which level of
detail the server DGGS was sampled at in order to produce it. Our system typically
uses relatively low resolution data for geometry, but high resolution data textures to
achieve a balanced trade-off between accuracy and performance.

3.2. Discrete Global Grid System

As discussed in Section 2, a core concept in DGGS is the idea that a cell with a
particular index represents a physical piece of the Earth and is a bucket to which
geospatial data may be assigned. Within a particular DGGS, the cell structure is
immutable, giving every cell a known resolution, position, and size. When a dataset is
stored into a DGGS, the data take on the same structure as the DGGS in which they
are housed.

Though DGGSs often include complex indexing and projection schemes, these are
not needed on the client-side if the server has the ability to serve cell geometry. Cell
geometry, like other data, is provided to the client in the form of tiles. The two tests
that the client needs to perform are tests for on-screen visibility and cell size, both
of which may be performed on the geometry of the tiles. Using the server’s ability to
create and transmit tile geometry enables us to support interoperability with different
DGGSs, since the client is not dependent upon a particular server-side DGGS and can
interact with servers of a variety of data providers without modification.
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3.3. Client-server DGGS

The client requests geometry and data tiles starting at the coarsest level of resolution
and, in ROIs, requests refined tiles until an appropriate level of detail is acquired. This
requires the client to be able to predict the indices of children cells, which is easily
provided by the client-side hierarchy.

It is impractical to load full datasets onto the client due to limitations of memory
and network throughput. To reduce the amount of data transmitted between the client
and the server, we limit the data to only that which is required to render the globe
from the current views. As views are changed (e.g., by zooming or panning) or added,
the data needed to accommodate these views are requested and downloaded. The
client requests the missing data from the server DGGS as shown in Figure 3. Since the
exact size and resolution of cells are explicitly available from the client DGGS, they
allow the client to send very specific queries to the server DGGS about which data are
needed to complete a view.

In our client-server framework, the server transmits two types of information for
rendering geospatial data on the client. The first type is globe geometry, consisting
of 3D meshes that approximate the curved surface of the globe for a chosen tile, an
example of which is shown in Figure 5. Because DGGS cells are indexed at various
levels of resolution, the server DGGS can be queried in a manner capable of producing
the mesh for a globe, in part or in whole, at a wide variety of resolutions. The second
type of transmitted information is a preimage-tile of data that are to be visualized on
the globe. To acquire these data, the client query references a data-source, an index,
and a tile size, and the server responds with a sampling of data values within the
corresponding cell. Since the tiles in both of these query types represent the same
areas on the globe, their correlation is straightforward.

To reduce the processing load on the server, tasks such as rendering the globe and
visualizing requested data are performed using client-side resources. Additionally, for
the sake of efficiency, our server behaves in a stateless manner. Therefore, the client is
also tasked with monitoring its downloaded tiles and for querying any missing data at
its own discretion. To accomplish this, the client maintains a tree structure containing
its downloaded tiles, which behaves as a client-side DGGS. Although the server and
client DGGSs are closely connected, they do not necessarily have the exact same cell
structure or hierarchy.

The DGGS underlying the server is typically not tuned for rendering or data trans-
mission in a web-based environment. For example, as shown in Figure 3, the native
DGGS (PYXIS innovation, the 2020) on our server is built using hexagonal grids.
Hexagons are a better choice for sampling data (Mahdavi-Amiri, Alderson, and Sama-
vati 2015), but are not natively supported by graphics hardware. Thus, many systems
require specialized methods for transmission and rendering.

Though the server in our implementation manages hexagonal cells, rectangular data
are preferred on the client due to the ease of transmitting and rendering rectangular
arrangements of data. Hierarchical grid conversion is a method by which hierarchical
regular grids can be easily converted from one cell type to another (Mahdavi-Amiri,
Harrison, and Samavati 2016). In this technique, triangular, quadrilateral and hexag-
onal grids can be made interchangeable so that a system may utilize the various
advantages of each, as needed. This conversion technique allows us to pack and con-
vert hierarchical hexagonal grids into hierarchical quadrilateral grids with their own
indexing methods. This packing is shown in Figure 6. The resulting indexing method
allows us to build a tree of downloaded cells on the client-side, which can be efficiently
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Figure 6. An example client-server cell refinement process.

traversed. Moreover, the resulting quadrilateral cells are compatible with the rendering
pipeline, including shaders’ 2D texture samplers.

DGGSs use a variety of projection methods, typically area preserving, in order to
map planar data to the surface of the Earth. To maintain interoperability with different
DGGSs, our system relies on the server DGGS to perform the projection. This frees
the client of the need to consider the often complex projection methods specific to any
particular server. Therefore, the geometry and hierarchy of cells on the client DGGS
depends on the structure of the server DGGS. A result of this is that the client cell
hierarchy may not be perfectly congruent if the server DGGS is not congruent itself.
To address this lack of congruency, when performing screen visibility tests, we use a
bounding volume of the current cell that contains all descendant cells. Ensuring the
bounding volume is sufficiently large is essential in order to prevent false-negatives in
these tests.

4. View-aware Digital Earth and multiple views

One of the main goals of this work is to support multiple virtual cameras for DE
applications. Each camera is responsible for the live creation of one view of the DE.
In this Section, we show how our system can support multiple simultaneous views of
the globe and how this enables multilevel focus+context visualization. We also explain
how our system manages appropriate levels of detail and determines what new data
to download.

4.1. View-aware Digital Earth

To render a high-detail DE in real-time, a system has to be discerning about its
allocation of resources. A complete high-detail globe is impractical to download or
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render in real-time. Instead, our client-side globe tracks the extant cameras and adapts
to each of them. Such adaptation ensures that the portions of the globe that are
rendered are those that can be seen by the camera and are of appropriate resolution.
Therefore, we base our method on two factors – determining what parts of the globe
are visible to a camera, and determining the appropriate level of detail that should be
presented to a camera.

For a given camera, we determine which tiles are outside of the view camera frustum
so that they can be ignored by the rendering process. The tree hierarchy of the client
DGGS, introduced in Section 3.3, is useful for determining the visibility and scale of
portions of the globe. Additionally, to determine the appropriate level of detail, we
determine the ratio of visible data samples in a tile to the number of screen pixels
that it covers. To approximate the size of each tile on the screen, a bounding volume
is calculated. In our implementation, we use bounding spheres, though other types of
volumes are possible.

After projecting the bounding volume into screen space via the camera, we estimate
the number of pixels that the tile covers on the screen by calculating how many pixels
are covered by the bounding volume. By measuring the approximate ratio of cells in
the tile to the number of screen pixels the tile occupies, we calculate a factor that
determines whether the tile’s resolution is appropriate for the current view. If this
ratio is lower than a certain threshold, the tile is too large on the screen and is then
replaced with its children. On the other hand, if this ratio is high, the tile is too small
and contains data that are sub-pixel on the screen. In this case, its rendering costs
exceed its benefit to the visualization, so it (and its siblings) are replaced with the
parent tile instead.

The bounding volumes are also used to determine whether a particular tile is visible
to the camera. If the bounding volume of a tile does not intersect the viewing frustum,
the tile and its children are not visible. It is this property that makes the culling of
the globe efficient, as entire branches of the tree can be quickly pruned without the
need to test every individual tile in each branch.

This culling process can run many times between frames of animation. This allows
the globe to adapt to a multitude of concurrent cameras. We render the cameras
sequentially, adapting the globe to each in turn just before it is rendered.

4.2. DGGS tree traversal

In our method, the processes of rendering the globe and queuing the download of
missing data are combined into a single traversal of the tree structure that represents
the tile hierarchy of the client DGGS.

Since our client starts with very little information about the DGGS it is about to
use, it requires a starting set of data. Therefore, when first created, the client requests
from the server a list of indices for the tiles at the coarsest resolution and queues these
tiles for download. Once the geometry for these tiles is received, it becomes possible
to determine each tile’s size and location, and traverse the client’s DGGS tree for each
camera. Algorithm 1 outlines this traversal. This algorithm recursively produces a
list of tiles that should be rendered for a particular camera for a single frame, while
it queues the download of any missing data. Since these downloads are an automatic
by-product of our visibility checks, any camera in the scene can trigger the globe to
download additional data as needed.
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input: node, a tile in the client DGGS
input: α, a detail tuning parameter
if node is not in the camera frustum then

return
end
if number of cells in node÷ screen pixels covered by node > α then

add node to the render queue;
else

foreach child c of node do
if c has no data then

queue data download for c;
end

end
if any c had no data then

add node to the render queue;
return

end
foreach child c of node do

call Algorithm 1 recursively;
end
if no descendants were added to the render queue then

add node to the render queue;
end

end

Algorithm 1: Depth-first tree traversal for requesting data and culling.

4.3. Multiple views and multilevel focus+context

One of the challenges of this work is to create a visualization and rendering framework
capable of showing multiple and diverse geospatial datasets in the context of Digital
Earth. As discussed in Section 2.2, multilevel focus+context is a method that may
address this challenge.

While the techniques we have described thus far are sufficient to create multilevel
focus+context, some challenges remain. Our system supports dynamic multilevel fo-
cus+context visualization, in which multiple ROIs can be viewed simultaneously, re-
gardless of proximity or difference in scale. These different views form a multilevel,
multiview hierarchy and provide context cues where applicable, allowing a viewer to
easily identify the areas or different types of data being emphasized.

We extend the method proposed by Hasan et al. (Hasan, Samavati, and Jacob 2014,
2016; Hasan 2018) for the creation and management of our multilevel focus+context
visualization hierarchy for flat images to work with curved Earth models. In our work,
the view-aware DE reacts to cameras to perform view culling and provide a compara-
ble functionality. Thus, to extend multilevel focus+context visualization to our view-
aware DE, we associate regions of interest (ROIs) with interactive cameras, interacting
with datasets in varying resolutions indexed by the client DGGS. Our visualization is
achieved as follows.

Initially, a new ROI can be chosen on the globe view interactively. This may be
achieved in a variety of ways, such as by sketching strokes or by drawing a bounding
box. A new camera is then created in the scene so that its viewable area matches
the chosen ROI. Next, a magnified view of the ROI as viewed by the new camera
is rendered separately on the screen. Finally, we render semitransparent connections
between the chosen ROI and its magnified view. In the focus+context creation scenario
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thus described, the ROI is located on the initial globe view, which provides contextual
information. Additionally, a magnified view of a ROI can recursively serve as the
context for new ROIs. This allows the system to facilitate the creation of a multilevel
focus+context visualization hierarchy (see Figure 1, for example).

Each of the newly created cameras is dynamic and can be controlled interactively.
Alternatively, these cameras may be moved or animated procedurally. For example, a
camera can be made to follow the orbit of a satellite, providing a live view from the
satellite’s point of view.

As discussed in Section 4.1, our DE system adapts to the views of the cameras,
showing the globe from each view in the scene with an appropriate level of detail.
Because downloading new data is also a byproduct of this process, creating, moving,
or zooming any of these cameras requests missing data where applicable. As this
process only downloads missing data, regions viewed by two cameras at the same level
of detail do not require the data to be acquired twice.

Internally, the cameras form a tree hierarchy, the root camera having the respon-
sibility of rendering the globe to the main canvas. Any other camera is assigned a
WebGL viewport, which represents the focus. All non-root cameras are also assigned
a parent camera. A camera is the parent of all cameras whose ROIs appear within
its focus. Thus, if a ROI is selected on the main view of the globe, a new camera is
created as a child of the root camera, and its ROI is drawn on the main view. If a ROI
is then selected within the viewport of this new camera, a third camera is created.
This newest camera is the child of the previous, with its ROI being drawn within its
parent’s viewport.

4.4. Multilevel focus+context interface

To support multilevel focus+context visualization, we have to be able to place new
cameras dynamically in positions that represent an increase of detail. This happens
as the result of a user interaction within the browser. When an interaction event
is detected, we check to see if it was produced within an existing viewport area. If
the interaction is within a viewport, a new camera is produced that is a child of the
viewport’s associated camera, otherwise the new camera is a child of the original scene
camera. This relationship defines a hierarchy for the various cameras in the scene.

In order to position the new camera in the scene, a ray is cast from the interaction
coordinates into the 3D scene. The new camera is then positioned at some point along
this ray, proportional to the zoom level desired. Alternatively, the new camera could
be placed at a distance to the globe identical to its parent’s, but with an altered Field
of View (FOV) to produce zoom instead. These camera placements produce zoomed-in
views that visually emulate the lens effect that is common in focus+context.

Once the cameras are placed, the ROIs need to be rendered, along with their connec-
tions to the foci. Cameras in 3D environments can be considered to possess a virtual
rendering plane, somewhat like the film in a real-world camera. This virtual plane can
be placed anywhere within that particular camera’s viewing frustum. To aid with the
visual association of where the camera is, and what it is looking at, our experiments
reveal that a good approach is to pick a viewing plane that is very close to the surface
of the globe. This produces a viewing plane that is large and also very close to the area
on the Earth that it is viewing. Choosing a large viewing plane is beneficial because
it is more likely to be visible if the parent view differs greatly in scale. The plane’s
proximity to the surface draws a strong correlation between the the camera and the
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Table 1. Comparison between the number of tiles checked for visibility, tiles visible to a camera, the total

number of DGGS tiles at various resolutions, and average times taken to download the tiles checked for

visibility. Server and client DGGS prototypes were equipped with 3.2GHz Intel R© CoreTM i7-8700 and
2.6GHz Intel R© CoreTM i7-6700 CPUs, respectively and 16 GB of RAM each.

Level of Checked Visible Total Time to Download
Resolution Tiles Tiles Tiles Checked Tiles (ms)

1 90 45 90 670
2 153 78 810 976
3 279 41 7,290 1,869
4 315 34 65,610 2,172
5 351 33 590,490 2,340
6 414 56 5,314,410 2,550
7 486 56 47,829,690 2,950
8 495 67 430,467,210 3,323

area it is viewing.

5. Performance considerations

The performance of the proposed system is a major factor in its design, as there
are various interacting constraints. For our solution to work in practice, the server
should be efficient, and ideally should benefit from technologies that scale well to
large numbers of clients. The client’s limitations also need to be considered, as caching
large amounts of data within a web browser is not practical; only the RAM of the
client machine should be considered available. Our system achieves a balance between
these constraints while providing benefits to rendering and interactivity over current
technologies. Here, we examine the performance characteristics of the main areas where
performance bottlenecks could occur. These areas are the tree culling algorithm, which
needs to be efficient in order to support multiple views, and the data encoding and
caching mechanisms. These factors impact memory, network, and CPU usage on both
the client and server.

5.1. Tree hierarchy and culling

Fast and appropriate culling is vital to this work. In order to render multiple simulta-
neous live views of a globe in real-time, we need to produce visible geometry that is
suitable for fast rendering. Additionally, this decision needs to be quick as it has to be
made for each camera in the scene. We expect our spatial tree to be able to cull data
very quickly. We validated this hypothesis experimentally using Algorithm 1. Ren-
dering 10 concurrent cameras, we typically maintained approximately 60 frames per
second, with frame times between 13 ms and 20 ms. We also tested a render made up of
tiles predominantly at the 8th resolution. At this resolution, it would take 430,467,210
quadrilaterals to fully cover the globe. As shown by the examples in Table 1, our sys-
tem only needs to consider 495 of these quadrilaterals in the process of determining
the 67 required for this rendering. Table 1 additionally shows the average time taken
to download the tiles checked for visibility at each resolution, where the reported time
is an average of 15 test runs.

A drawback to using downloaded globe geometry to populate a spatial tree is that
lower resolution regions must be downloaded before their higher resolution children.
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However, the overhead of a single parent tile is shared by all of its children. Thus,
on average, the overhead is t ·

∑R
r=1

1
nr , where t is the number of visible tiles and n

is the number of children tiles in the multiresolution scheme, and R is the level of
resolution for a viewed area. Experimentally, we find that this is close to the trend
in our system. From the example above, the 67 visible quadrilaterals required only 7
tiles from coarser resolutions to support them within the hierarchy, close to the 8.37
we would expect.

5.2. Data transmission and encoding

Our primary method of encoding data is in the form of data textures. This encoding
system uses the indexing scheme of Mahdavi-Amiri et al. (Mahdavi-Amiri, Samavati,
and Peterson 2015; Mahdavi-Amiri, Harrison, and Samavati 2016), which can produce
square textures wherein each texel represents a single tile of the DGGS from which it
was sampled. In essence, the data textures are used as a method of batching a series
of tiles for transmission. With this in mind, next we compare this process against
the transmission of the hierarchical DGGS data if it were transmitted in some other
format.

If the data were, for example, batched as a hierarchy of hexagons rather than data
textures corresponding to the quadrilateral regions used in our client-side DGGS, the
total amount of data sent would be similar. The hierarchy would, however, represent
a region that is difficult to access within a shader. It would be possible to run the
grid conversion algorithm (Mahdavi-Amiri, Samavati, and Peterson 2015; Mahdavi-
Amiri, Harrison, and Samavati 2016) on the client to take some load off the server. We
considered this model, but opted for the server-side grid conversion largely due to the
asymmetry in the environments between client and server. The server has the ability
to work with large hard drives and sizable caches, whereas a browser-based client is
largely limited to just RAM. This allows the server to access small sections of a large
dataset to handle the grid conversions per-request. A client-side grid conversion would
likely require the client to maintain a memory-resident cache of cellular DGGS data as
well as an entirely duplicate set of render-friendly rectangular textures and geometry.

Our method of packing datasets into data textures is not exclusively used for im-
proving the visual results; it also produces some considerable performance benefits. A
particular dataset can be used for different purposes by different users. On one visu-
alization, an elevation dataset may be used for shading terrain, whereas on another
it could be used to colour a topographic map. To meet the demands of both clients,
the server only needs to generate a single texture. This result can be used by both
clients for their respective visualizations (see Figure 7, for example). This consider-
ably improves the server’s efficiency as it is able to cache results from a wide variety
of visualizations with a relatively small number of textures.

Similar benefits exist on the client-side as well. Some data textures on the globe can
be reused between visualizations. If the client switches between two renderings where
geopolitical boundaries are visible, the textures defining these boundaries do not need
to be re-downloaded, even if they are styled differently. Our interactive data styling
method utilizes this property. Since styling is purely a choice on how the textures are
converted into colours on the screen, no new request for data is sent to the server when
styling parameters are altered.

Though web caching works well with our system, there is a second type of caching
that additionally helps with the overall server performance. A web cache will only get
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Figure 7. Data textures shared between different visualizations (data sources: 1, 2, 4).

a successful cache hit on a texture if all four of the image channels match a previous
request and if they were normalized and quantized with the same functions. Cache
hits are therefore most probable if the images contain data which are commonly used
together. To improve cache efficiency further, we also cache the individual data layers
before they are packed into data textures for transmission to clients. This allows for
cache hits even when a client asks for data arranged in a layer order not previously
requested.

6. Data styling and visualization

In this section, we show how our work addresses several of the issues of web-based
visualizations of data on the globe. Since an interface built atop a DGGS provides
access to many datasets, we have been able to produce a variety of results using our
implementation. Each render in this Section is the product of multiple datasets used
in a variety of manners. Results are divided into two subsections: the first subsection
highlights the results of using data textures to produce visualizations beyond RGB
values, and the second subsection focuses on results using multilevel focus+context
visualization.

Data visualization is at its most useful when it can show us multiple data attributes
at the same time. When the toolset is limited to only RGB texture values, colours
can be quickly expended. This problem is compounded in datasets with pre-assigned
colour codings. When blending such datasets using a preset colour legend, collisions
between colours are both very likely, and difficult for a user to resolve. Since our system
separates colour from the data, these conflicts can be altered in real-time through
interactive styling and visualization. Furthermore, the visualization has access to a
wider set of rendering parameters (e.g., lighting attributes) that yield effects that are
more than just standard RGB texturing.
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Figure 8. Topographical visualization with landmarks included as a normal perturbation to give location
context (data sources: 1, 4).

6.1. Data styling

Providing an interface that can map data to various rendering parameters allows us to
produce a variety of complex results. Also, since these parameters are commonly used
by the shaders within the rendering API, we produce 3D scenes with consistent lighting
throughout. This is useful as it allows for digital globes to be used in a wider variety
of applications. Rather than being confined to a purpose-built application designed to
render only the Earth, the globe can be integrated seamlessly into visualizations that
include other objects within the 3D space.

The ability to customize how light interacts with the globe is a useful added fea-
ture in itself. In Figure 8, topographical data is shown on the globe. In this case, it
allows for the inclusion of a map dataset, which would normally interfere or obscure

(a) Artistic texture and styling
emphasizing topography and

bathymetry (data sources: 1, 3).

(b) Map textures and embossed
political boundaries (data sources:

1, 2, 4).

(c) Population data and political
boundaries as light-emitting tex-

tures (data sources: 1, 2, 5).

Figure 9. Various client-side data styling scenarios.
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Figure 10. Three different visualizations of the same data but using different styling matrices (data sources: 1,

2, 3, 4, 5).

parts of the visualization, without compromising the information being conveyed. This
visualization was produced by filtering a map dataset to highlight roads and labels,
meanwhile suppressing features like lakes and parkland, then assigning the result to
rendering parameter responsible for normal perturbation.

Rendering effects can be used to increase the perception of variations in a dataset, as
shown in Figure 9(a). Variations in ocean depth, when visualized as colour gradients,
can convey some information. However, since our own sense of detail in the real world
often takes into account variations of lighting on a surface, these details stand out
more when they interact with a scene’s lighting model.

Figure 9(b) illustrates how lighting can be used to elevate the importance of par-
ticular features in a visualization. In this image, political boundaries are given some
slight depth and light emission, allowing them to stand out from other map features,
such as roads or parks, which are also shown but not highlighted. The textures for
topographic and bathymetric shading are reused from Figure 9(a) and do not need to
be re-downloaded if the client transitions from one to the other.

Figure 9(c) illustrates a more extreme use of light and shadow. In this visualization,
population density is made to stand out from the rest of the map by moving the light
source. Light emission allows a surface to produce some degree of light, effectively
becoming glow-in-the-dark. Thus, interaction with the scene’s light source acts as a
method of switching between or blending multiple visualizations.

Figure 10 shows the versatility of styling matrices. The three types of visualization
shown use the same four underlying data textures on the globe. Styling matrices can be
used to produce a variety of visualizations, emphasizing different aspects of the data.
These styling matrices may be blended or altered in real-time on the client, producing
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(a) These two road networks in Alberta and Nova Scotia cannot be viewed at high detail simultane-
ously without special techniques due to their distance and difference in scale.

(b) Effective comparison of the road networks in Alberta and Nova Scotia utilizing multivel fo-

cus+context visualization.

Figure 11. Canadian road networks in Alberta and Nova Scotia (data sources: 1, 8, 9).

smooth animation from one style to another. Since these styling calculations are run on
the client, these changes are made without any additional interaction with the server.

Conventional shaders used in applications such as video games typically dedicate
one texture per lighting parameter, such as having a specular map, a texture map, a
bump map, and so on. Our shaders needed to loosen this constraint, so they employ
a styling matrix to remap each texture dynamically. This matrix is provided to the
shader so that it may transform the sampled values for the provided textures, and
create a set of virtual samples, as if we were actually using a specular map, a texture
map, etc. The rest of the shader runs much like conventional ones. Simple changes to
this styling matrix allows for considerable manipulation of the meanings of each input
texture.
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6.2. Multilevel focus+context visualization

Datasets vary by location and in scale considerably, and this presents an obstacle to
visualization. Figure 11(a) shows road networks for Alberta and Nova Scotia. Unfor-
tunately, if one were to attempt to compare the differences in the arrangements of
these road networks with a typical single-view visualization, they would be forced to
pan back and forth between the areas. A single view that captures both datasets is
too distant to display enough detail, and a closer view is incapable of displaying both
sets of features.

To confront this obstacle, as discussed in Section 4.3, our view-aware DE is capable
of presenting appropriate levels of detail to multiple views at the same time, with little
overhead. We chose to demonstrate this functionality through an implementation of
multilevel focus+context visualization on DE. Figure 11(b) clearly shows the different
patterns present in these datasets, as an appropriate level of detail is possible. Our
system also facilitates easy and effective comparisons of ROIs in very distant locations
or at very different scales. Despite the scales and distances involved, the respective
contexts allow a user to easily perceive scale and location of the data being viewed.

In Figure 12(a), we display the population densities of a few ROIs on the Earth. In
a single-view DE visualization, it would not be possible to show this level of detail for
areas so far apart.

Our multi-view visualizations are also compatible with all of the benefits of our data
integration and visualization systems. In Figure 12(b), we illustrate another benefit
of a client-side rendering of data. Here we present a flood warning dataset, which
originally comes in the form of vectors. When overlaying such a dataset on a map,
the result can be confusing because the colours used by the dataset may conflict with
those employed by the map. To avoid such confusion in this visualization, we apply
an animated water-like ripple to the flood dataset, allowing it to stand out strongly
against the background map. As all of our views are real-time, these regions animate
within the foci and on the base globe simultaneously.

The views themselves may also interact with the data rendering techniques, as
shown in Figure 13. In these visualizations, each globe view may possess its own
styling parameters. Thus, focus+context visualizations can be used for side-by-side
analysis of a single location, or as a method of browsing other styling options for the
chosen datasets.

7. Conclusion and future work

Our presented globe-based multiresolution DE overcomes several major challenges in
the visualization of large geospatial datasets, particularly in the areas of data integra-
tion, versatility of visualization, effective user-interactions, and performance.

Data integration is a difficult task in many areas of geospatial visualization. Our
presented system overcomes this difficulty by the use of a novel client-server DGGS
that provides an interface to data that is free of conflicting projections or coordinate
systems. The equal-area nature of DGGS cells also contributes to an environment
where data can be easily compared and combined without expensive analysis.

The versatility of visualization in our presented system can be largely attributed
to the consistent manner in which we treat various geospatial datasets – as data
textures. Our rendering techniques process an array of data textures, wherein each
texel represents the same location and area as its equivalent in another data texture,
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(a) Population densities in different parts of the world (data sources: 1, 2, 5).

(b) Calgary water bodies and flood projection (data sources: 4, 10, 11).

Figure 12. Multilevel focus+context visualization on the globe.
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(a) Visualization comparing freezing point in winter versus spring (data sources: 1, 3, 6).

(b) Mean temperatures for 2015, using a map dataset for context (data sources: 1, 4, 6).

Figure 13. Multilevel focus+context visualizations which influence dataset styling.
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or channel therein. This enables the use of GPU-based hardware acceleration on the
client-side, where a shader performs the required operations on multiple data textures.
The ability to combine these data textures on the shader allows for fast and diverse
client-side styling, and even animations between different styles.

By extending the multilevel focus+context visualization technique to curved Earth
models through the concurrent and coordinated use of multiple cameras, our pre-
sented system provides an effective context-aware method to interact with and navi-
gate through large multiscale geospatial datasets. While allowing for such multi-view
visualisation, our presented system remains interactive by dynamically adapting to
the views of the cameras within the scene – only the data viewable by a camera are
requested for download, and at a level of detail that is appropriate for its proximity
to the surface of the globe.

Relevant future works include the expansion of this system to handle large-scale
time-varying data. An example of this would be smoothly and interactively traversing
through years of Landsat data. We are also interested in the exploration of data-driven
procedural content on the surface of the globe, such as the generation of 3D forests with
high levels of detail. Additionally, we would prefer extending the set of data styling
functions for use on the client-side. Further integration of the rendering process into
DGGS is also a point of future interest, as we believe that a GPU-based referencing
scheme for DGGS is inevitable, and would allow the grid to be drawn directly without
the need for intermediate geometry. We are also interested in the inclusion of volumet-
ric data within a web-based DE, as this would allow for the modeling and visualization
of weather and subterranean features.
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