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Abstract

Many papers have applied the meshless method to approximate a function by using a set of scattered data.

To use a meshless method, we need to predefine a positive real number as a radius of the local sphere or a

positive integer as the number of interior points. This is while the effect of a fixed number as the radius of a

local sphere or as the number of interior points could be different for different parts of a complex domain. This

paper contains the construction of ellipsoidal neighborhoods for the meshless interpolation and approximation

methods with local support functions and local behavior. By using these new neighborhoods, the trend of local

data could be found easily.

The advantage of this method over the current methods is the use of ellipsoidal local neighborhoods which

include points with the most impact on the approximation of the function. We applied these methods to the

data of the daily temperature and humidity of Alberta, Canada.

Keywords: Moving Least Squares; Inverse Distance Weighting; Interpolation; Localization; k-Nearest

Neighborhood.
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1. Introduction

There are many reasons that short-term and long-term weather forecasts affect our decision making. Daily

weather approximations of components such as air temperature, humidity, and wind speed are important for

practical situations. Generally, long term weather forecasts deal with partial differential equations that can

be solved by numerical methods. Methods of solving weather forecast problems numerically typically involve5

divided differences, tensor products, finite elements, finite differences, and finite volumes. Another technique

to solve such problems is the meshless method. Using the meshless method, the problem of interpolation may

be considered over a set of scattered points without any preconditioned structure. For the climate problem,
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(a) The location of weather sta-

tions in Alberta

(b) The set Ω and an arbitrary

point x

(c) The maximum distance be-

tween a station and its nearest

and furthest stations

Figure 1: Distribution of Weather Stations in Alberta, Canada

the structure of scattered points is the distribution of weather stations in a specific region. For our study, we

consider the weather station data in Alberta, Canada. (See Figure 1(a).)10

Let X = {x1, · · · , xn} be the set of the locations of all stations in the region Ω ⊂ R2. Temperature, humidity

and wind speed are each a function of the station location in the region, name it f . The values of function f

over the set of stations are known as fi,= f(xi), for i = 1, · · · , n. (See Figure 1(b).)

To solve the weather daily data interpolation problem, we need to approximate the values of f over all points

of Ω. So, for an arbitrary x ∈ Ω we need to approximate f(x).15

The question is whether to use all points xi in Ω for approximating f(x) (i.e. global methods) or, alterna-

tively, consider a subset of points in a local neighborhood of x. When a data point xi changes, it is commonly

expected to get a local modification of the approximating function; therefore, local methods are preferred over

global methods. Additionally, global methods require more computations than local methods.

For the local method, a neighborhood is defined for each data point, and locations within the neighborhood20

will be used for the approximation of that data point. The challenge is the definition of a proper neighborhood

for each point x. The structure of this neighborhood can affect the accuracy and the cost of computations.

There are two approaches to defining a local domain. The first approach defines a disk of specific radius as the

neighborhood without constraining the number of points in that neighborhood, while with the second approach,

a predetermined number of points are considered as the neighborhood. Local meshless methods such as local25
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Radial Basis Functions (RBF) [55], Kernel-based and reproducing kernel approximation methods [20], and

Moving Least Squares (MLS) [31] are examples of the first approach, while k-Nearest Neighborhood (KNN) [4,

47] and the local least squares method [10, 11] are examples of the second one.

In the context of daily weather data approximation, Inverse Distance Weighting (IDW) has been widely

used. This method is a modified version of the Shepard Interpolation method [50]. IDW is a global method30

where closer points have a greater effect on a specific location’s approximation than points farther away.

It is clear that daily weather interpolation at a specific point is inherently a local problem, so we use

local MLS. To use local methods for daily weather approximation at a given x in the domain, the following

issues should be considered. First, in methods such as KNN, the effects of all k nearest points of x are the

same regardless of their distances to x. Second, in methods such as MLS and RBF [5], the radius of the disk35

neighborhood of x should be specified as a predefined value. Additionally, the RBF method is related to a

parameter named “shape parameter” and the approximating function is very sensitive with respect to this

parameter.

In this paper, we introduce a novel method for defining the neighborhood of points to improve weather

forecast approximation accuracy without considering a predefined number of data points in its neighborhood.40

This neighborhood can be applied for the approximation of a function using any kind of local methods, especially

for a meshless method such as MLS, that needs a local support weight function. We then find and compare

several local neighborhoods by applying them to the weather data of Alberta in 2018 and 2019. We introduce

three methods for constructing a local neighborhood that does not require specification of a predefined value.

Specifically, we use an ellipsoidal domain rather than a disk domain to support the weight function. In an45

application of these methods to daily weather data, we show that the approximations of a function by using

these neighborhoods have acceptable approximations based on Root Mean Squares (RMS) error and Mean

Absolute Errors (MAE).

For approximating the function at any given point, we must determine what the most impactful points in

its neighborhood are, how these points are distributed in that neighborhood, and the number of points there50

for a local interpolation. In this paper, we introduce new localization methods to address these challenges.

These localizations have ellipsoidal structures rather than spherical shape, and contain the points with the

most impact on computation. Such an asymmetric local neighborhood improves the approximation accuracy in

comparison to other methods.

The rest of this paper has been organized as follows. Section 2 contains a compact history of related works.55

In Section 3, we present some basic tools in our work including IDW and MLS methods for interpolation,

various localization methods, and the Mahalanobis distance. Section 4 contains our definition of two new types

of elliptical quantiles based on generalized covariance and the Mahalanobis distance. Our model is described in
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Section 5. In section 6, the results of applying MLS and using our new ellipsoid neighborhoods are presented.

Lastly, the conclusions are given in Section 7.60

2. Related Works

The weather forecasting problem was first introduced in 1904 by V. Bjerkness [13] as an initial value problem.

In the 1950s the first weather numerical forecast was done with a computer, and since then there have been

many developments in Numerical Weather Prediction (NWP). Several partial differential equations and ordinary65

differential equation problems applied in weather forecasting are considered in [27].

The k-nearest neighborhood (KNN) algorithm introduced in [18] is a non-parametric method. The goal of

KNN is to find an optimal value of k for a specific dataset, which is related to the structure of the dataset

and the given point [38]. In kernel-based methods [3, 20], a choice of the weight vector is considered, however

choosing the kernel function and its bandwidth is a challenge by itself.70

Inverse Distance Weighting (IDW) is one of the most used methods for interpolating climate data. IDW

was used in [16] for the estimation of rainfall in Taiwan, and it is used in [56] to estimate the temperature in

the US. The general IDW method uses a parameter named β, which tunes the effect of sample points on the

final result. In [22], the authors gave an adaptive method to control the effect of this parameter in the general

IDW method.75

In [32], the authors proposed an efficient method by combining the local RBFs with the Shepard method

for the multivariate interpolation of scattered data sets. Kernel-based approximation methods for scattered

data interpolation and their stable computation are presented in [20]. The authors explained the accuracy and

optimality of reproducing kernel Hilbert space methods. A radial basis function based on the partition of unity

method (RBF-PUM) is proposed in [34] and it is used in localization of the computation and because of its80

concurrent nature, it can be programmed parallelly. A parallel algorithm is proposed through the OpenCL

standard in [15]

Kriging is also a very applied method in this area [52] which uses linear regression. Kriging represents a

family of generalized least-square regression algorithms. A modification of Ordinary Kriging is used for GIS

in [12]. Drift kriging is a type of kriging method which was introduced in [41]. A hybrid kriging method for85

interpolation on high-resolution temperature maps presented in [53].

Angular distance weighting (ADW), Kriging, thin-plate splines (TPS), and Natural neighbor interpolation

(NNI) are compared as different interpolation methods over daily European climate data in [24]. In [51],

daily temperature from British Columbia were approximated using the IDW, gradient-plus-inverse-distance-

squared (GIDS), sea-level regression Kriging (SLRK) sea-level inverse distance (SLID) and multiple linear90
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regression (MLR) methods. The authors compared twelve interpolation methods for daily temperature.

Ozone data in Huston, Texas are analyzed in [40] using a prediction method based on Spatio-temporal Krig-

ing. Spatio-temporal Kriging method also used for estimation of weather variables in [19]. In [48], mean daily

temperature data were analyzed by using “Central Massachusetts 1971-2000” test data. Detrended Universal

Kriging (DUK), Multiple Linear Regression (MLR), CoKriging, and Spline tension are presented and compared95

over a region in Brazil in [14]. Additionally, a bivariate stochastic model for the Spatio-temporal field of min-

imum and maximum temperature is presented in [28]. Three Machine Learning algorithms, Gene Expression

Programming (GEP), M5 model tree (M5), and Support Vector Regression (SVR) were used to model and esti-

mate the point temperature of a region in [45]. Three Neural network techniques, adaptive network-based fuzzy

inference system (ANFIS), Auto-regressive Integrated Moving Average (ARIMA), and Genetic Algorithm (GA)100

were also used in [9] for prediction of the daily temperature of Dhaka, Bangladesh. A study comparing several

techniques for mapping the rainfall erosivity indices over the Ebro basin (NE Spain) in [8]. Recently, a non-

stationary extreme value model formulation for rainfall is considered in [49]. Hourly temperature and ozone

concentration data are analyzed by a stochastic local interaction model in [25].

A useful tool for analyzing a set of data points is classifying them into different categories. Many works have105

been done on the classification of data and using a distance for finding a neighborhood of a point. A local-mean

based classification algorithm was presented in [35] based on the average and largest distance of a local region.

Also, in [39] the authors presented a k-means algorithm by using Mahalanobis distances between points. The

effect of statistical distance is studied on the IDW interpolation method in [3]. An ellipsoid bounding region is

used as a neighborhood of a point in some literature [29, 30]. Also, a study was done on fire-related weather in110

Alberta by comparing different interpolation methods [26]. There is some other literature containing ellipsoidal

neighborhoods and adaptive nearest neighbor [42, 57].

In this paper, we define new ellipsoid neighborhoods and test the presented method on Alberta weather data

for minimum and maximum temperatures.

3. Preliminaries115

In this section, we present the problem of approximation in Rd, and for the problem of weather forecasting

in an area, we set it to d = 2.

Given a set X = {x1, · · · , xn} ⊂ Ω as the set of distinct points in Rd belonging to a bounded domain Ω, and a

set of n real numbers F = {f1, · · · , fn}, which are the values of the function f (e.g. temperature) over the set120

X, the goal is approximating the value of f over given x = (γ1, · · · , γd) in Ω.
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In the following subsections, we review two approximation methods, localization and Mahalanobis distance of

data, all required for describing our methods.

3.1. IDW and MLS

One of the most used methods for approximating the weather data is IDW. The basic idea of IDW for

approximating of f on x is to use a weighted average of known f values at xi, where the weights are inversely

proportional to distance between xi and x. More specially, the interpolating function is defined as:

s(x) =


∑n
i=1 d

−β
i fi∑n

i=1 d
−β
i

, x 6= xj , j = 1, · · · , n

fj , x = xj ,
(3.1)

where di is the distance between x and the data point xi, and β is a real positive number that controls the125

impact of di in the weighted average. The parameter β is a predefined parameter where a larger value means

less effect of more distant points. Also, when β tends to ∞, the value of the approximating function is equal to

the value of the nearest point to x.

The second method we consider is Moving Least Squares (MLS). This is a powerful method to approximate

f over Ω with respect to X. This method is introduced in [31] and it is widely used in various application of130

Physics [1, 36, 54], Computer Graphics [2, 33, 43, 44], Economics [6], and etc.

The basic idea of this method is to minimize the error of the approximating function at x ∈ Ω, where the closer

data points have more impacts proportional to the inverse of distance and the impact of each data point is tuned

by a local weight function. Also, for any point x in the domain, a different weighted least squares problem is

solved to approximate the function at x.135

More formally, given a point x ∈ Ω, the value of approximation is given by p∗(x) in which p∗(x) is the solution

of

min
p∈Πm(Rd)

n∑
i=1

(p(xi)− fi)2w(x, xi), (3.2)

where Πm(Rd) is the set of all d-variate polynomials of degree at most m, and w is the weight function for MLS

defined by w(x, xi) = φ(||x− xi||2/δ), where φ : R+ −→ R+ is a compact supported decreasing function which

its support is a subset of [0, 1]. The weight function’s domain is a closed interval in 1D, a disk in 2D, a ball in

3D, and a hyper-ball in general.

Figure 2 illustrates the situation for a set of six 1-dimensional points and for a fixed polynomial p(x). In this140

figure, for fixed x and δ, three points are located in the neighborhood of x (See Figure 2(a)) and the impact of

their errors are proportional to the value of corresponding weight functions at x (See Figure 2(b)). Changing

the position of x affects the number of neighborhood points and the magnitude of the weight functions. In this

method for every x ∈ Ω we look for a polynomial with minimum error quantity at this point.
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(b) Contributing weight functions

at x

Figure 2: MLS for point t using a set of data points in one dimension.

In MLS, not only is the number of points in the neighborhood of x important, but also the distances of them145

to x.

By considering a disk with radius δ, the problem can be reduce to [7]

min
∑

i∈Ix,X,δ

fi − q∑
j=1

bjpj(xi)

2

w (x, xi) , (3.3)

where Ix,X,δ is the set of all indices of points in a disk centred in x with radius of δ:

Ix,X,δ = {i ∈ {1, 2, . . . , n} : ‖x− xi‖2 ≤ δ} , (3.4)

and {pj}qj=1 is a set of basis for Πm(Rd). It is shown in [17] that q = m!d!
d! .

As shown in [55], to solving (3.3) it is sufficient to solve a linear system for any given x. We define

F = (f (xi) : i ∈ Ix,X,δ)T ,

P = (pj (xi)) ,

D = D(x) = diag (Φδ (x− xi) : i ∈ Ix,X,δ) ,

R = R(x) = (p1(x), . . . , pq(x))
T
,

M = PTDP,

(3.5)

then, we solve the system of equation

MG = R, (3.6)

and finally, the approximated value is computed by p∗(x) = FTDPG.

Figure 3 shows the best polynomials of degree 2 at three points x = 0.67, 0.68, 0.69 for the data set of

Figure 2, by using δ = 0.3.150

In (3.6), M is called the moment matrix of x. It can be shown that in some special cases the moment matrix

is singular. A special case is given in the following remarks:
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(a) p∗(t) at x = 0.67

p*(x)

x = 0.68
0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

(b) p∗(t) at x = 0.68
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(c) p∗(t) at x = 0.69

Figure 3: MLS for three close points x = 0.67, 0.68, 0.69.

Remark 3.1. If the number of points in the neighborhood of the given point x is less than q, then the moment

matrix M will be singular.

Remark 3.2. If all of the points in the neighborhood of the given point x create a subspace of Rd which has155

less dimension than Rd, then the moment matrix M will be singular.

Both Remarks 3.1 and 3.2 are consequences of this fact that the rank of matrix M is equal to the rank of

matrix P . So, in this method, for each x, the number of points in the neighborhood of the given point x, must

be greater than or equal to q.

3.2. Localization160

Localization is a vital aspect of our method. Rather than using all of the data points for determining the

approximation at x, a local subset in a neighborhood of x is used. One important factor for localization is the

number of points in that neighborhood. We set α ∈ [0, 1] as the percentage of data points in the neighborhood.

For creating the local subset of x ∈ Ω several bounding region can be used:165

• S(x,X, α): the minimum bounding sphere,

• B(x,X, α): the minimum bounding box,

• CP(x,X, α): the minimum bounding convex polygon (i.e. convex hull),

• OB(x,X, α): the minimum oriented bounding box,

• E(x,X, α): the minimum bounding ellipsoid,170

The value of α for these methods should be considered as a predefined value, and if we set α = 1, all the

data points in X will lie in the neighborhood.
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3.3. The Mahalanobis Distance

It is important to use a proper metric for measuring distance in localization. We consider Mahalanobis

distance which includes the distribution of the data points. The Mahalanobis distance between a point x ∈ Rd

and an arbitrary set of points X ⊂ Rd is defined as [37]

DX(x) =
√

(x− µ)T cov−1(X)(x− µ), (3.7)

where cov(X) is the covariance matrix of the set X. The Mahalanobis distance between two points y, z ∈ Rd

with respect to the set of points X ⊂ Rd is given as:

dX(y, z) =
√

(y − z)T cov−1(X)(y − z). (3.8)

If there is no specific trend in X (i.e. no correlation between coordinates of points), then the matrix cov(X)

becomes a diagonal matrix. Thus, the Mahalanobis distance between points simplified to a scaled Euclidean

distance:

d(y, z) = ||Σ−1(y − z)||2, (3.9)

where Σ = diag(σ1, · · · , σd), in which σi is the standard deviation of i-th variable, for i = 1, · · · , d.

4. Ellipsoidal Quantiles175

To approximate a function by a local method at x ∈ Ω, any localization methods described in Section 3.2

can be used to define the neighborhood of x. For MLS, the neighborhood of x is a disk D(x, δ)(or in general case

a hypersphere) with radius δ centred at x. The challenge is that the distribution of points is ignored when we

use a hypersphere. In this work, we change that and consider ellipsoidal regions centred at x. This ellipsoidal180

neighborhood is constructed based on the trend of local data and it contains points with the most impact on

the approximating function (See Figure 4). For constructing the ellipsoidal neighborhoods, we use quantiles to

include a specific percentage of data [21, 23].

We consider three types of ellipsoidal quantiles. The first one is independent of the location of the point

while the others are centred at the given point and constructed from the covariance of data.185

4.1. Mean-Centric Ellipsoidal Quantiles

Suppose µ to be the mean of the points set X. For the given α in the interval [0, 1] we define E(X,α) as

the smallest ellipsoid centred in µ where α is percentile of the points in E(X,α).

The directions and magnitudes of radii of the ellipsoid are defined by the covariance of X. The radii of

the ellipsoid are scaled versions of the eigenvalues of cov(X), and the directions of them are defined by the
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(a) Different ellipsoid sets E(X,α)

E(x,X,1)

x

μ

E(x,X,0.6)

E(x,X,0.2)

(b) Different ellipsoid sets E(x,X, α)

Figure 4: This figure shows the ellipsoidal neighbourhoods of a given set of points for α = 0.2, 0.6 and 1.

eigenvectors of cov(X). If we rank from the largest to smallest eigenvalues, the largest eigenvector shows the

direction of the largest radius (i.e. the largest variation in data), the second-largest eigenvector shows the

direction of the second radius, and so on. We use Mahalanobis distance DX in Equation (3.7) to determine

E(X,α) by

E(X,α) = {y ∈ Rd : DX(y) = Cα}, (4.1)

where Cα is a constant related to α that should be determined.

Figure 4(a) shows three different mean-centric ellipsoidal quantiles for α = 0.2, 0.6 and 1. E(X,α) does not190

depend on the point x and the challenge is how to find a point centric ellipsoidal quantile for a given point x.

One may translate E(X,α) to x (by x− µ), but this ellipsoid does not capture the distribution of data in the

neighborhood of x.

4.2. Point-Adaptive Ellipsoidal Quantiles

The main goal is to properly approximate the function at x ∈ Ω. Therefore, we introduce a method to

centralize the ellipsoidal quantile at x. For a given α in the interval [0, 1], we define E(x,X, α) as the smallest

ellipsoid centred in x, where α is the percentile of the points in this ellipsoidal neighborhood. We use Mahalonobis

distance dX in Equation (3.8) to determine E(x,X, α) by

E(x,X, α) = {y ∈ Rd : dX(x, y) = Cα}, (4.2)

where Cα is a constant related to α, that should be determined. Figure 4(b) shows three different point-adaptive195

ellipsoidal quantiles for α = 0.2, 0.6 and 1.
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4.3. Weighted Point-Adaptive Ellipsoidal Quantiles

To have a proper approximation of the function at x ∈ Ω, it is better to control the impact of the points in the

neighborhood of x (i.e. farther points less and closer points more impact). Therefore, we use a weight function

proportional to the inverse of the distance between the data point and x. We introduce and compare two200

weighting methods from the mean and covariance. Some types of weighted covariance are applied in Computer

Graphics [2, 46]. To define weighted mean and covariance, we apply an auxiliary function ψ : R+ → R+ which is

a decreasing function. For the given point x ∈ Ω, we extend the definition of mean and covariance by including

ψ as a weight function, capturing the importance of different points in the neighborhood of x. Also, recall that

X is as an n× d matrix, with columns Xj = (γ1,j , · · · , γn,j)T , for j = 1, · · · , d.205

4.3.1. Directional Weighted Covariance

Since the distribution of data points around x can be directional, the weight function can depend on the

axes of the ellipsoid and, consequently, the covariance of X. For this purpose, the function ψi is considered as

a weight function in the i-th direction. Thus, we define the i-th component of the generalized weighted mean

of X with respect to x as follows:210

µ̂i =

∑n
k=1 γk,iψi(|γi − γk,i|)∑n
k=1 ψi(|γi − γk,i|)

, i = 1, · · · , d. (4.3)

Also, the weighted covariance of the i and j dimensions of X related to the point x, can be defined by

wcov1,x (Xi, Xj) =

n∑
k=1

(γk,i − µ̂i)(γk,j − µ̂j)
√
ψi(|γi − γk,i|)ψj(|γj − γk,j |)∑n

k=1

√
ψi(|γi − γk,i|)ψj(|γj − γk,j |)− 1

. (4.4)

Therefore, the weighted covariance matrix related to the point x and with respect to the weight functions is

wcov1,x(X) = [wcov1,x (Xi, Xj)]i,j=1,··· ,d.

By defining Wi = [ψi(|γi − γk,i|)]k=1,··· ,n, Vi = diag(Wi) and Di = W
1
2
i , Equation (4.4) can be written as

wcov1,x (X)i,j =
(X − µ̂)Ti DiDj(X − µ̂)j

trace(DiDj)− 1
, i, j = 1, · · · , d. (4.5)

Now, we can define a new Mahalanobis distance between two points y and z in Rd with respect to the data

set X and the given point x as follows:

dX,x(y, z) =
√

(y − z)T wcov−1
1,x(X)(y − z). (4.6)

Furthermore, For a given point x ∈ Ω, we use the new Mahalanobis distance defined in (4.6) to determine a

new ellipsoidal quantiles GE1(x,X, α) by

GE1(x,X, α) = {y ∈ Rd :
√

(x− y)T wcov−1
1,x(X)(x− y) = Cα}, (4.7)

where wcov1,x is the weighted covariance matrix defined in (4.4) and Cα is a constant related to α, that should

be determined.
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4.3.2. Multivariate Weighted Covariance215

Same as the previous subsection, in this subsection, we want to specify a weight to each data point such

that this weight is proportional to inverse of distance between data point and x. However, we want to define a

single weight function, rather than considering a weight function for each dimension.

By using the function ψ, we generalize weight functions to multivariate case and we define a weight function

w : Rd → R as a radial function of ψ:

w(x) = ψ(||x||), x ∈ Rd. (4.8)

In this case, we can define the general mean as a linear combination of the points by using the following equation:

µ̃x =

∑m
i=1 xiw(x− xi)∑m
i=1 w(x− xi)

. (4.9)

This mean value is related to the point x and based on this mean value, the generalized covariance is defined

by:

wcov2,x (X) =
(X − µ̃x)TW (X − µ̃x)

trace(W )− 1
, (4.10)

where W = diag(w(x− x1), · · · , w(x− xn)) and trace(W ) =
∑n
i=1 w(x− xi).

Same as Equation (4.6), we can define a new Mahalanobis distance between two points y and z in Rd with

respect to the data set X and the given point x as follows:

dX,x(y, z) =
√

(y − z)T wcov−1
2,x(X)(y − z). (4.11)

For a given point x ∈ Ω, we use the new Mahalanobis distance defined in (4.11) to determine a new ellipsoidal

quantiles GE2(x,X, α) by

GE2(x,X, α) = {y ∈ Rd :
√

(x− y)T wcov−1
2,x(X)(x− y) = Cα}, (4.12)

where wcov2,x is the weighted covariance matrix defined in (4.10) and Cα is a constant related to α, that should220

be determined.

In summary, for approximating a function at an arbitrary point x ∈ Ω we consider ellipsoids E(x,X, α),

GE1(x,X, α) and GE2(x,X, α) as a local neighborhood of x in MLS.

Remark 4.1. MLS in general, is a deterministic interpolation method, same as IDW, because these methods

are based on specific function that determine the smoothness of the resulting surface. The proposed MLS is225

also lying in this class of interpolation methods. Some methods such as the family of the kriging method are

based on statistical models that include autocorrelation. From the other hand, Kriging is a good interpolation

technique, if the data is stationary, has a normal distribution and doesn’t contain any trend. The advantage

of MLS in comparison with Kriging methods is that for MLS, the data does not need to meet the mentioned

criteria.230
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5. Model Description on Daily Air Temperature and Humidity

To evaluate and compare the models, we used a core i7-3632 computer with 2.2GHz CPU and 8 GB RAM,

and all algorithms were coded in Mathematica 12.1. We considered the region Ω to be Alberta Province,

Canada. Alberta is a large province with an area of 661,848km2. The province extends 1,223km north to south235

and 660km east to west at its maximum width and its climate, varies considerably.

We use a weather dataset for Alberta, Canada. Figure 1 shows the location of weather stations in this

province. The data were downloaded from the website of Climate Data Canada (https://climatedata.ca). The

data observations are limited to the daily average minimum and maximum temperatures and daily average

minimum and maximum humidity values.240

The data of these stations are used in the period of two years 2018 (January 01 to December 30) and 2019 (Jan-

uary 01 to December 31).

By using a code in Mathematica, the raw data is processed and filtered to extract the coordinates of the

stations as well as the maximum and minimum temperature and humidity over the course of days, months and

years.245

We expand the selected stations by some close out of the province weather stations to approximate the

weather function at points near to the border of the province. Therefore, we have collected the data of 196

stations, 120 inside the province, and 76 outside of the province. The minimum and maximum distances

between a station and its nearest station are 1.3km and 210km, respectively. Also, the furthest distance

between to stations is 1130km. (See Figure 1(c).)250

We use a Voronoi-based buffering for the expansion. From the selected region Ω (Alberta in our case study),

we define the extended region

Ω1+ε = Ω + εS1, (5.1)

where S1 is the unit circle in R2. (In general we consider Ω1+ε = Ω + εSd−1, where Sd−1 is the unit sphere

surface in Rd.) Now, let XG be the set of all data points (stations) and X be the set of all nodal points in the

region Ω. i.e. X = XG ∩ Ω. So the set of all data points (stations) in Ω1+ε is X1+ε. For every x ∈ Ω, the

ellipsoids can be built over X1+ε:

GEi(x,X1+ε, α) = {y ∈ R2 : dX1+ε,x(x, y) = 1}, x ∈ Ω, i = 1, 2. (5.2)

In this case, there is more information on the points near the boundary. Figure 5, shows Ω1+ε and a new

ellipsoid for a specific point x ∈ Ω.

In order to specify a value for ε, we can consider the smallest positive number ε, such that the Voronoi diagram

of all points in Ω1+ε covers Ω. i.e. Ω be a subset of Voronoi diagram of Ω1+ε. For the weather stations in

13



Ω
Ω + ϵS2

x

GE(x, X1+ϵ )

Figure 5: A set of points and a band around it and the new ellipsoidal for the point x.

Alberta see Figure 6.255

Based on Remark 4.1, it is better to compare the proposed method with IDW. Also, since KNN is a widely

used method with lots of applications, we combined KNN with both MLS and IDW in this section. The MLS

weight function φ is considered positive inside the unit interval [0, 1] and zero elsewhere. Also, the degree of

bivariate polynomials is chose to be 2, so the polynomial basis is {1, γ1, γ2, γ
2
1 , γ1γ2, γ

2
2}.

In this comparison, we used local MLS over 6 neighborhood sets:260

• E(x,X, α) using (4.2), with a specific α such that Cα = 1,

• Insphere or interior disk of E(x,X, α),

• Circumsphere or Outerior disk of E(x,X, α),

• GE1(x,X, α) using (4.5) and (4.7), with a specific α such that Cα = 1,

• GE2(x,X, α) using (4.10) and(4.12), with a specific α such that Cα = 1,265

• a region containing k nearest points.

and we named them MLS-E, MLS-I, MLS-O, MLS-GE1, MLS-GE2 and MLS-KNN, respectively. Figure 7 shows

the sets E, I and O for an arbitrary point x ∈ Ω. Another method which used in this comparison is IDW. We

applied both global IDW which uses all data points and a local IDW with k nearest points, named IDW-KNN.

In the methods MLS-E, MLS-I, MLS-O, MLS-GE1 and MLS-GE2, the number of points located in the270

ellipsoids or disks, varies for different stations, so we used the average number of points used in them as a

fixed number of neighborhood points in computations for KNN methods. i.e. In two methods MLS-KNN and

IDW-KNN, k is the average number of points used in MLS-E, MLS-I, MLS-O, MLS-GE1 and MLS-GE2. The

14



(a) Voronoi diagram of stations

which are needed for all Alberta

province weather computation.

(b) Alberta and a band around it as

Ω1+ε.

Figure 6: Detecting the useful points for computation.

I

O

E

Figure 7: Different neighborhoods of a points: An ellipse E, its insphere I and its outerior disk O.
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results obtained from k nearest neighbors with both IDW and MLS interpolation methods are used to have a

better comparison between the methods.275

Algorithm 1 describes the steps of ellipsoidal MLS computation.
Algorithm 1 Ellipsoidal MLS

Input: A set of data points {xi, fi}ni=1 ∈ Rd+1, and x ∈ Ω.

Output: The approximating value for f(x).

1. Compute the mean of data (traditional mean, weighted means form (4.3), or (4.9)).280

2. Compute the covariance of data (traditional covariance, weighted covariance form (4.4), or (4.10)).

3. Determine the ellipsoid related to the computed covariance. For MLS-I and MLS-O, we consider disks

with the minimum and maximum radius of the ellipsoid, respectively.

4. Compute the points lie in the related ellipsoid.

5. Apply MLS on the obtained points using (3.5) and (3.6).285

The main difference between the proposed method and the traditional MLS method is consideration of the

ellipsoidal neighborhood instead of disk or ball one. Also, in this method, the radii of the ellipsoid are the

deviations of data, rather than a predefined positive number. The only difference between the computational

cost of this method and traditional MLS is the ways of choosing local points. The extra computation we need

for this method with respect to MLS is the computation of the mean (a 2D vector) and the inverse of the290

covariance matrix (2 by 2). Therefore, approximating by these methods has O(n) more computational cost

than traditional MLS.

6. The Results and Discussion

To assess the performance of each method, we exclude one of the stations and approximate the function295

values (temperature and humidity) at the location of that station from the approximating function. The value

of the function at a station is approximated by using the values of the function on the other stations. The

aggregation of approximation errors over all points were expressed by RMS, MAE, RMSP, and MAEP as four

criteria.

In this section, we present the results of applying MLS in different types of neighborhoods. To have the300

same situation, the Gaussian function used for all MLS methods with a parameter 0.01.

To compare the results, we used two quantities; Root Mean Squares (RMS) Error and Mean of Absolute

Errors (MAE). These are defined as:

RMS =

√∑n
i=1 e

2
i

n
, (6.1)
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and

MAE =
1

n

n∑
i=1

ei, (6.2)

where n is the number of all points and ei is the absolute error for ith point.

We also apply a quantity named “Pointwise Error Effect” to compare the methods based on both their

neighborhood points and the obtained errors:

pei = pi · ei, (6.3)

in which ei is the error of the method on ith point and pi is the percentage of the number of points in the local305

domain in order to obtain the results. So, for two error quantities RMS and MAE, we also computed RMSP

and MAEP, which are RMS and MAE of pei, respectively, and show the performance of error with respect to

the percentile of all used points in the computation.

Algorithm 2 shows the steps of evaluation of the methods.
Algorithm 2 Evaluation by Ellipsoidal MLS310

Input: A set of data points {xi, fi}ni=1 ∈ Rd+1, and x ∈ Ω.

Output: The error of the method.

1. Considering a fix index i, do the following:

(a) Omit the ith point: Xi = {x1, · · · , xi−1, xi+1, · · · , xn}
(b) Approximate the value of function over Xi and name it si.315

(c) Compute the error: ei = fi − si.

2. Compute RMS, MAE, RMSP and MAEP.

In Tables 1 and 2, RMS and MAE of the methods for the approximated values of temperature of the whole

years 2018 and 2019 are shown. In Tables 3 and 4, also RMSP and MAEP of the methods for the same periods

are given.320

In Figures 8 and 9, the diagrams of RMS and MAE of the methods for the approximated values of tempera-

ture of the whole years 2018 and 2019 are shown. In Figures 10 and 11, also RMSP and MAEP of the methods

for the same period are given.

Figures 12 and 13, shows RMS and MAE of the local methods for the approximated values of temperature

of the whole years 2018 and 2019 period. Figures 14 and 15, also shows RMSP and MAEP of these methods325

for the same periods.

In Table 5, RMS and MAE of the methods and in Table 6, RMSP and MAEP of the methods for the

approximated values of humidity of the whole year 2019 are given.

Also, in Figure 16, RMS and MAE of the methods and in Figure 17, RMSP, and MAEP of the methods for

the approximated values of humidity of the whole year 2019 are shown.330
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RMS-Tmin RMS-Tmax MAE-Tmin MAE-Tmax

MLS-E 2.089 1.674 1.590 1.175

MLS-GE1 2.128 1.654 1.606 1.166

MLS-GE2 2.079 1.640 1.575 1.157

MLS-I 3.457 2.615 1.867 1.334

MLS-O 2.306 1.913 1.645 1.237

MLS-KNN 2.084 1.755 1.580 1.167

IDW-KNN 2.260 1.984 1.712 1.342

IDW 2.398 2.185 1.794 1.482

Table 1: MAE and RMS for Tmin and Tmax of year 2018.

RMS-Tmin RMS-Tmax MAE-Tmin MAE-Tmax

MLS-E 1.839 1.566 1.312 1.039

MLS-GE1 1.923 1.611 1.350 1.051

MLS-GE2 1.882 1.636 1.330 1.058

MLS-I 2.760 2.068 1.526 1.158

MLS-O 1.902 1.803 1.317 1.085

MLS-KNN 1.784 1.673 1.279 1.050

IDW-KNN 1.878 1.830 1.356 1.206

IDW 2.008 2.096 1.442 1.416

Table 2: MAE and RMS for Tmin and Tmax of year 2019.

RMSP-Tmin RMSP-Tmax MAEP-Tmin MAEP-Tmax

MLS-E 1.077 0.865 0.820 0.607

MLS-GE1 0.884 0.688 0.668 0.486

MLS-GE2 0.956 0.755 0.725 0.533

MLS-I 1.596 1.209 0.861 0.616

MLS-O 1.323 1.098 0.943 0.710

MLS-KNN 1.013 0.855 0.769 0.569

IDW-KNN 1.097 0.965 0.832 0.653

IDW 2.398 2.185 1.794 1.482

Table 3: MAEP and RMSP for Tmin and Tmax of year 2018.
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RMSP-Tmin RMSP-Tmax MAEP-Tmin MAEP-Tmax

MLS-E 0.875 0.744 0.624 0.494

MLS-GE1 0.726 0.607 0.510 0.396

MLS-GE2 0.784 0.680 0.554 0.440

MLS-I 1.146 0.857 0.634 0.481

MLS-O 1.015 0.961 0.703 0.578

MLS-KNN 0.789 0.739 0.566 0.464

IDW-KNN 0.831 0.809 0.601 0.534

IDW 2.008 2.096 1.442 1.416

Table 4: MAEP and RMSP for Tmin and Tmax of year 2019.
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Figure 8: MAE and RMS for Tmin and Tmax for year 2018.
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Figure 9: MAE and RMS for Tmin and Tmax for year 2019.

RMS-Hmin RMS-Hmax MAE-Hmin MAE-Hmax

MLS-E 3.706 2.718 2.766 1.988

MLS-GE1 3.838 2.801 2.778 2.035

MLS-GE2 3.730 2.816 2.755 2.033

MLS-I 4.464 3.298 2.970 2.165

MLS-O 3.893 2.776 2.819 1.995

MLS-KNN 3.739 2.733 2.756 1.957

IDW-KNN 4.010 2.794 3.012 2.004

IDW 4.299 2.892 3.261 2.058

Table 5: MAE and RMS for Hmin and Hmax of year 2019.
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Figure 10: MAEP and RMSP for Tmin and Tmax for year 2018.

RMSP-Hmin RMSP-Hmax MAEP-Hmin MAEP-Hmax

MLS-E 1.764 1.293 1.317 0.945

MLS-GE1 1.447 1.057 1.048 0.767

MLS-GE2 1.554 1.173 1.149 0.846

MLS-I 1.852 1.368 1.233 0.898

MLS-O 2.073 1.481 1.502 1.064

MLS-KNN 1.652 1.209 1.219 0.865

IDW-KNN 1.773 1.236 1.333 0.886

IDW 4.299 2.892 3.261 2.058

Table 6: MAEP and RMSP for Hmin and Hmax of year 2019.
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Figure 11: MAEP and RMSP for Tmin and Tmax for year 2019.
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Figure 12: MAE and RMS for Tmin and Tmax for year 2018.

22



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1.5

2.0

2.5

3.0

3.5

MLS-E

MLS-GE1

MLS-GE2

MLS-I

MLS-O

MLS-KNN

IDW-KNN

(a) RMS-Tmin

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1.5

2.0

2.5

3.0

MLS-E

MLS-GE1

MLS-GE2

MLS-I

MLS-O

MLS-KNN

IDW-KNN

(b) RMS-Tmax

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1.0

1.5

2.0

2.5

MLS-E

MLS-GE1

MLS-GE2

MLS-I

MLS-O

MLS-KNN

IDW-KNN

(c) MAE-Tmin

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.8

1.0

1.2

1.4

1.6

1.8

2.0

MLS-E

MLS-GE1

MLS-GE2

MLS-I

MLS-O

MLS-KNN

IDW-KNN

(d) MAE-Tmax

Figure 13: MAE and RMS for Tmin and Tmax for year 2019.
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Figure 14: MAEP and RMSP for Tmin and Tmax for year 2018.
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Figure 15: MAEP and RMSP for Tmin and Tmax for year 2019.
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Figure 16: MAE and RMS for Hmin and Hmax for year 2019.
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Figure 17: MAEP and RMSP for Hmin and Hmax for year 2019.

Figure 18 shows the heat-map of the results for Max-Temperature on Feb 01, 2019. In this figure blue color

shows the smaller error and red color shows the larger error.

Based on the results of Tables 3, 4 and 6, among all methods, MLS-GE1 has the best performances in Tmin,

Tmax, Hmin and Hmax, for both RMSP and MAEP. The method MLS-GE2 has also very good performances in

Tmin, Tmax , Hmin and Hmax, for both RMSP and MAEP. MLS-KNN and MLS-E, have also better performance335

than IDW based on RMS and MAE results.

Moreover, from the results, it is clear that the local methods all have better performance than the global

method IDW except MLS-I. This is expected because of Remark 3.1, as some of the inspheres did not contain

enough data points. For the situation that the moment matrix is singular, we use the least-squares method to

solve the given system of equations.340

The comparison between the run-time of these methods for finding the stations in the neighborhood of a

given point for all Alberta weather stations is given in Table 7

We, also computed the value of a function(minimum temperature) at all the Alberta stations for a day, using

the given methods. The computation time for different methods is given in Table 8.345
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Figure 18: Heat Map of Absolute Error of Max-Temperature in Feb 01, 2019.

MLS-I MLS-O MLS-E MLS-GE1 MLS-GE1 KNN-MLS KNN-IDW IDW

0.080071 0.102345 0.388112 2.111604 0.997865 0.096014 0.097517 ——

Table 7: The computation time for locating all neighborhood stations of all Alberta stations (Second).

MLS-I MLS-O MLS-E MLS-GE1 MLS-GE1 KNN-MLS KNN-IDW IDW

3.424717 4.606448 3.838209 4.035241 4.083312 4.084423 4.060301 18.471395

Table 8: The computation time for evaluation of a function over all Alberta stations (Second).

7. Conclusions

In this paper, we used the Moving Least Squares method with two new local ellipsoid domains, rather than

the disk domain, by using a new method based on weighted covariance and Mahalanobis distance between points.

We applied these methods over the problem of daily temperature and humidity approximation over Alberta,350

Canada. Based on the results, these types of neighborhoods are useful, and MLS has acceptable behavior over

them.
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