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RIAS: Repeated Invertible Averaging for Surface
Multiresolution of Arbitrary Degree

Troy Alderson, Ali Mahdavi Amiri, Faramarz Samavati

Abstract—In this paper, we introduce two local surface av-
eraging operators with local inverses and use them to devise
a method for surface multiresolution (subdivision and reverse
subdivision) of arbitrary degree. Similar to previous works by
Stam, Zorin, and Schröder that achieved forward subdivision
only, our averaging operators involve only direct neighbours
of a vertex, and can be configured to generalize B-Spline
multiresolution to arbitrary topology surfaces. Our subdivision
surfaces are hence able to exhibit Cd continuity at regular
vertices (for arbitrary values of d) and appear to exhibit C1

continuity at extraordinary vertices. Smooth reverse and non-
uniform subdivisions are additionally supported.

Index Terms—Geometric Modeling, Subdivision, Multiresolu-
tion.

I. INTRODUCTION

It is said that “Simplicity is the ultimate sophistication,” yet
the principle of simplicity often offers benefits aside from any
philosophical beauty. Within the realm of mesh editing, for
instance, the simplicity of editing operations (or lack thereof)
has impacts on understandability, ease of implementation,
and runtime efficiency. However, it is not always clear how
complex goals can be achieved through simple means.

Generating smooth curves and meshes is one such goal that
at first glance would not appear to have a simple solution.
Yet the Lane-Riesenfeld algorithm [1] and its generalization
to surfaces by Stam [2] and Zorin and Schröder [3] offer a
comprehensive solution to smooth subdivision based on simple
operations. Unlike typical subdivision algorithms that converge
to B-Spline curves/surfaces at the limit, this “classical ap-
proach” allows one to select the degree of the resulting surface
(i.e. the degree of the associated B-Spline basis functions).
Hence, a curve/surface with a finite but controllable level of
continuity (i.e. arbitrary smoothness) can be generated without
implementing alternative algorithms.

For surfaces in particular, the classical approach enjoys two
particularly desirable properties:

• Simplicity/Locality: Much like the Lane-Riesenfeld al-
gorithm, the method is composed of simple operations: an
initial topology subdivision followed by several averaging
steps. These operations involve only the local direct
neighbours (i.e. the one-ring) of each vertex, and as a
result, are not only efficient but also easy to implement.
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• Cd Continuity at Regular Vertices: At regular ver-
tices, the subdivision rules reduce to tensor product B-
Spline subdivision rules of arbitrary bi-degree. Hence, the
method is arbitrarily smooth at regular vertices.

However, unlike the widely-used Catmull-Clark [4] and Doo-
Sabin [5] schemes, the classical approach cannot be reversed.
This is because its averaging steps are not invertible, and so
cannot be undone in a similarly general way. As a result,
reverse subdivision schemes must be implemented on a case-
by-case basis if one wishes to support applications such as
level-of-detail rendering, compression, or multiscale editing.

In this paper, we propose a similarly comprehensive ap-
proach to surface subdivision, reverse subdivision, and mul-
tiresolution. Our subdivision can produce Cd continuity at
regular vertices, but can also be reversed in a general manner
using simple operations that involve only direct neighbours of
a vertex. The high-resolution version of a reverse subdivided
mesh can additionally be reconstructed on-demand.

Our work extends the methodology of [6], which operates
on spherical curves. In their method, which we refer to as
repeated invertible averaging (RIA), Alderson et al. replaced
the Lane-Riesenfeld algorithm’s averaging operator with in-
vertible variants whose inverses involve only direct neighbours
of a vertex. Each averaging operator moves a vertex towards
an average of its neighbours, controlled using an associated
weight value. Their method was shown to be able to reproduce
B-Spline curve multiresolution up to degree 3.

We present a generalized framework for repeated invertible
averaging on surfaces (RIAS), which we use to construct
multiresolution representations for general topology surfaces.
Novel contributions of RIAS include:

• Two surface averaging operators defined on direct vertex
neighbours with inverses also defined on direct vertex
neighbours. The properties of these operators can be
adjusted using weighting parameters.

• A class of surface subdivision and reverse subdivision
schemes that includes B-Spline schemes of any degree.

• A recipe for the weighting parameters that configures
our method to reproduce these B-Spline schemes. These
weighting parameters can be blended in order to blend
between different schemes.

• Constructions for smooth reverse, non-uniform, and adap-
tive subdivision that can be reversed on demand.

RIAS supports several existing concepts from the literature
(refer to Table I), offering a single framework that can be
used to define arbitrary degree subdivision, smooth reverse
subdivision (see [7], [8]), as well as non-uniform and adaptive



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

TABLE I: Summary of RIAS’s features compared to prior
works.

Arbitrary Smooth Reverse Non- Compact
Degree Primal Dual Uniform MR

RIAS Yes Yes Yes Yes Yes
[2], [3] Yes N/A N/A No N/A

[9], [10] No No No No Yes
[7] No Yes No No No
[8] No Yes No No Yes

subdivision — all of which can be reversed and restored
on demand. Its generality and comprehensiveness allows us
to craft a variety of schemes by tailoring the weighting
parameters to target specific requirements, and can be used
to underpin practical applications such as multiscale editing
in CAD (where smooth surfaces of up to C7 continuity are
regularly used [2]) or mesh compression. The framework
additionally offers significant speed gains over the classical
approach of [2], [3], as vertex positions do not need to be
cached and our operations can be parallelized on the GPU
with minimal overhead.

After discussing some related work in Section II, we de-
scribe our invertible averaging operators and surface multires-
olution schemes in Section III. This is followed in Section IV
by discussions on how RIAS can be used to support smooth
reverse and non-uniform subdivision. Considerations on the
selection of weighting parameters are presented in Section V.
We then remark on the continuity of our subdivision surfaces
at extraordinary vertices in Section VI. Finally, we present our
results and conclude the paper in Sections VII and VIII.

II. RELATED WORK

The earliest subdivision schemes for general topology sur-
faces were proposed in 1978 by Doo and Sabin [5] and
Catmull and Clark [4]. Others, including Loop subdivision
[11] and Simplest subdivision [12], soon followed. Since then,
and despite advances in the field (see [13] for a survey),
Catmull-Clark subdivision has become a go-to standard for
surface subdivision due to its simplicity and C2 continuity at
regular vertices.

While the tensor product connectivity of regular vertices
allows for simple continuity analysis, the analysis at extraor-
dinary vertices has always been much more difficult. In [14],
Reif introduced the characteristic map, which can be used
to rigorously analyze the continuity of surface subdivision
schemes at extraordinary vertices. Given a local subdivision
matrix S for a surface subdivision scheme, the characteristic
map ψ parametrizes the limit subdivision surface using the
subdominant eigenvectors of S.

From Reif’s work, necessary and sufficient conditions for
continuity at extraordinary vertices — largely dependent on the
eigenvalues of S — were derived (see [15] and [16, Chapter
8]). In [17], it was shown that Catmull-Clark subdivision and
Doo-Sabin subdivision are both C1 at extraordinary vertices.

Though subdivision is an important tool within the field of
geometric modeling, the usefulness of multiresolution frame-
works and the ability to reverse subdivision has also been
recognized [7], [18]. Reverse schemes have been proposed for

Catmull-Clark [10], [19], Doo-Sabin [20], and Loop subdivi-
sion [9]. As reverse subdivision schemes are not unique and
developing multiresolution frameworks with nice properties is
difficult, work is ongoing to improve the behaviour of different
schemes and the appearance of the resulting surfaces [8], [21].

In 2001, Stam [2] and Zorin and Schröder [3] introduced a
subdivision algorithm designed to exhibit arbitrary continuity
at regular vertices, though the continuity at extraordinary
vertices remains C1. Their construction is based on a general-
ization to surfaces of the Lane-Riesenfeld algorithm [1], which
reproduces B-Spline curve subdivision of any arbitrary degree.
Regrettably, neither algorithm has a known reverse scheme.
This becomes problematic when we wish to represent the
curves or surfaces resulting from these algorithms at multiple
levels of detail.

While curve subdivision schemes can be reversed using opti-
mization on a given subdivision matrix [18], [22], this method
does not generalize well to surface subdivision schemes or
non-Euclidean spaces. For this reason, Alderson et al. [6], [23]
explored modifying the Lane-Riesenfeld algorithm using local
smoothing operators with local inverses (see [8]) in order to
establish multiresolution for curves on the surface of a sphere
in a general and efficient way. Our work generalizes this
repeated invertible averaging method to surface subdivision,
much as Stam, Zorin, and Schröder generalized the Lane-
Riesenfeld algorithm.

III. RIAS FOR MULTIRESOLUTION SURFACES

In this section, we present our invertible averaging operators
for surfaces and the multiresolution schemes constructed using
them.

At a high level, these schemes work as follows. To in-
crease the resolution of a mesh, we start with an initial
subdivision/refinement (e.g. linear subdivision) and then apply
several (say, m) iterations of our averaging operators (see
Figures 1 and 3). The reverse subdivision consists of applying
m iterations of the inverse averaging operators followed by a
basic reverse subdivision scheme corresponding to the initial
subdivision.

The number of averaging operations applied, m, is linked
to the support of the scheme (and its bi-degree, when the
subdivision reproduces polynomial surfaces at the limit — as
in the case of B-Spline subdivision). Similarly to the works of
[2] and [6], we divide our schemes into odd degree (primal)
schemes and even degree (dual) schemes.

Before delving into the specifics of these schemes, we first
introduce some basic terminology and remark on the design
of averaging operators with local inverses.

A. Terminology

A mesh M = (V,E, F ) consists of a set of vertices V , a
set of edges E, and a set of faces F . We denote by v ∈ V
a vertex in 3D space, e = (v0, v1) ∈ E an edge connecting
vertices v0 and v1, and f = (v0, v1, · · · , vn−1) a face with
n ≥ 3 vertices v0, v1, · · · , vn−1.

A vertex q is said to be connected to a vertex p if there
exists an edge e ∈ E such that p, q ∈ e. Vertex q is said to be
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a direct neighbour of p (or in the one-ring of p) if there exists
a face f ∈ F such that p, q ∈ f . The neighbourhood N(v) of
vertex v is the set of all direct neighbours of v. The valence
of a vertex v is the number of edges e ∈ E such that v ∈ e.

A subdivision scheme P is a mapping from the mesh M
to a new mesh M ′ = (V ′, E′, F ′) with |V ′| > |V |. A
reverse subdivision scheme P̂ maps a mesh M to a new
mesh M ′ = (V ′, E′, F ′) with |V ′| < |V |. The reverse
scheme P̂ is considered to reverse a subdivision scheme P
if P̂ ◦ P (M) = M for any mesh M .

B. Remarks on Local Inverses

Our averaging operators, inspired by those of [6], have the
property that both the operator and its inverse are both local
(i.e. operate on direct neighbours of a vertex only), in contrast
to other averaging operators that do not guarantee locality of
the inverse (if, indeed, they are invertible at all).

The core obstacle to ensuring locality of the inverse lies
in the co-dependency of vertex positions after averaging.
Consider two neighbouring vertices p and q that are moved
to new positions p′ and q′ by an averaging operator, with

p′ = a1p+ a2q + · · · , q′ = b1p+ b2q + · · · .

Formula rearrangement gives the original positions p and q as

p = 1
a1
p′ − a2

a1
q − · · · , q = 1

b2
q′ − b1

b2
p− · · · .

These formulae are co-dependent: finding p depends on
q, but finding q also depends on p. Therefore, q′ and p′

in the formulae for p and q must be replaced by different
combinations of points, destroying the locality of the original
formulae. Indeed, returning the original p and q can depend on
every vertex position in the averaged mesh, or, if the operator
is not invertible, become impossible.

Our averaging steps avoid such co-dependency: if finding
an original vertex position p depends on q, then q can be found
without knowledge of p. Inevitably, this requires knowledge of
a set of “fixed points” — point positions that are unchanged
by the averaging. (Note that these need not be explicit vertices
in the mesh.) Smoothing of the entire mesh is accomplished
by varying the set of fixed points with every application of the
averaging operators.

C. Primal Schemes

Primal schemes like Catmull-Clark subdivision [4] map
vertices in the coarse mesh to vertices in the subdivided mesh
(called “vertex-vertices”). Edges and faces are split by the
introduction of new edge- and face-vertices.

The initial subdivision employed for our primal schemes,
denoted by IP , generalizes linear subdivision and is identical
to the face split employed by Catmull & Clark (see Figure 1b).
Edge-vertices are introduced at the midpoint of each mesh

edge, and face-vertices are introduced at the centroid of each
mesh face. Formally,

VV = {v | v ∈ V }︸ ︷︷ ︸
vertex-vertices

,

EV = { 12v0 + 1
2v1 | e = (v0, v1) ∈ E}︸ ︷︷ ︸

edge-vertices

,

FV = { 1n
n−1∑
i=0

vi | f = (v0, v1, · · · , vn−1) ∈ F}︸ ︷︷ ︸
face-vertices

,

IP (V ) =VV ∪ EV ∪ FV .

This initial subdivision1 is followed by m ≥ 0 averaging
steps Λk (0 ≤ k < m) that map old vertex positions to new
vertex positions (see Figure 1c and 1d). In order to guarantee
an inverse that operates on direct neighbours, Λk fixes an
alternating set of vertices in each iteration.

Each averaging step Λk is controlled by a smoothing weight
0 < sk < 1 that determines how strongly a vertex is moved to
a combination of its neighbours. We denote the set of weights
as S = {s0, s1, · · · , sm−1}. Given a set of weights S, our
primal subdivision scheme, PPrimal, is given by

PPrimal(V,E, F ) = Λm−1 ◦ · · · ◦ Λ1 ◦ Λ0 ◦ IP (V,E, F ).

To define the action of Λk, we will use the superscript [k]
to indicate vertex positions or sets of vertex positions after k
averaging steps have been applied2. For example,

v[0] ∈V [0] = IP (V ),

v[k] ∈V [k] = Λk−1 ◦ · · · ◦ Λ1 ◦ Λ0 ◦ IP (V ).

Given a vertex v[k], we will also let v[k
′]

avg(v[k]), e[k
′]

avg(v[k]),
and f

[k′]
avg(v[k]) respectively denote the average of the vertex-

vertices, edge-vertices, and face-vertices in the one-ring
around v[k

′]. That is,

v[k
′]

avg(v[k]) =
〈{
p[k
′] | p[k] ∈ VV [k] ∩N(v[k])

}〉
,

e[k
′]

avg(v[k]) =
〈{
p[k
′] | p[k] ∈ EV [k] ∩N(v[k])

}〉
,

f [k
′]

avg(v[k]) =
〈{
p[k
′] | p[k] ∈ FV [k] ∩N(v[k])

}〉
,

where 〈·〉 denotes the average of a set. (The distinction
between [k] and [k′] is relevant to the definition of Λ−1k , where
we must refer to the original vertex positions.)

Now, when we apply Λk and k is even, we fix the face-
vertex positions f [k+1] ∈ Λk(FV [k]) and compute new edge-

1As with Catmull-Clark, the faces of the resulting mesh are all quads and
the edge-vertices are all valence 4. The reverse can be applied to quad meshes
whose vertices can be partitioned into VV , EV , and FV .

2It is important to note that, unlike many works on subdivision, the
[k] superscript does not represent the number of subdivisions applied. An
application of subdivision is completed when [k] = [m].
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(a) (b) (c) (d)

Fig. 1: Primal subdivision applied to a mesh. (a) A hand of the coarse Teddy mesh (see Figure 8). (b) An initial face split
is applied to the mesh. (c) Λ0 moves the vertex- and edge-vertices while fixing the face-vertices. (d) Λ1 moves the face- and
edge-vertices while fixing the vertex-vertices.

v

e0

e1

e2

e3

f0

f1 f2

f3
(a)

eavg(v)

(b)

favg(v)

(c)

favg(v)

eavg(v)

vΛk(v)

sk

(d)

Λk(v)

(e)

Fig. 2: Illustration of Λk (with even k) acting on a vertex-vertex. (a) A vertex-vertex v with edge-vertices (labelled e0 through
e3) and face-vertices (labelled f0 through f3) in its one-ring. (b) The average of the edge-vertices, eavg(v), is found. (c) The
average of the face-vertices, favg(v), is found. (d) The new position of v, Λk(v), lies on a quadratic Bezier curve between v,
eavg(v), and favg(v). (e) The vertex-vertex v is moved to Λk(v).

vertex positions e[k+1] ∈ Λk(EV [k]) and new vertex-vertex
positions v[k+1] ∈ Λk(VV [k]). These are given by

f [k+1] =f [k],

e[k+1] =(1− sk) · e[k] + sk · f [k]avg(e[k]), (1)

v[k+1] =(1− sk)2 · v[k] + 2sk(1− sk) · e[k]avg(v[k])

+ s2k · f [k]avg(v[k]). (2)

See Figure 2 for an illustration. When k is odd, we instead
fix the vertex-vertex positions and compute new edge- and
face-vertex positions. These are given by

v[k+1] =v[k],

e[k+1] =(1− sk) · e[k] + sk · v[k]avg(e[k]),

f [k+1] =(1− sk)2 · f [k] + 2sk(1− sk) · e[k]avg(f [k])

+ s2k · v[k]avg(f [k]).

Note that the edge-vertices are moved in each iteration,
whereas the vertex- and face- vertices are moved in only half,
and that only two vertex- or face-vertices are ever in the one-
ring around an edge-vertex. In order to avoid caching the
original edge-vertex positions e[k], the e[k+1] are calculated
after the v[k+1] and f [k+1].

The inverse of Λk follows from formula rearrangement. If k
is even, then Λ−1k fixes the face-vertices f [k] ∈ Λ−1k (FV [k+1])
and computes the original edge-vertex positions e[k] ∈
Λ−1k (EV [k+1]) and original vertex-vertex positions v[k] ∈
Λ−1k (VV [k+1]):

f [k] =f [k+1],

e[k] = 1
1−sk · e

[k+1] − sk
1−sk · f

[k]
avg(e[k+1]), (3)

v[k] =
(

1
1−sk

)2
· v[k+1] − 2sk

1−sk · e
[k]
avg(v[k+1])

−
(

sk
1−sk

)2
· f [k]avg(v[k+1]). (4)

If k is odd, we have

v[k] =v[k+1],

e[k] = 1
1−sk · e

[k+1] − sk
1−sk · v

[k]
avg(e[k+1]),

f [k] =
(

1
1−sk

)2
· f [k+1] − 2sk

1−sk · e
[k]
avg(f [k+1])

−
(

sk
1−sk

)2
· v[k]avg(f [k+1]).

When applying Λ−1k , we calculate the e[k] before the v[k] and
f [k].

Given a reverse subdivision operator ÎP that reverses the
initial subdivision IP , our primal subdivision scheme PPrimal

can now be reversed using a reverse primal scheme P̂Primal

P̂Primal(V,E, F ) = ÎP ◦ Λ−10 ◦ Λ−11 ◦ · · · ◦ Λ−1m−1(V,E, F ).

While ÎP is not unique, one option is to combine the faces
that were split by deleting the edge- and face-vertices. In
order to reconstruct the mesh, we can map these vertices to
multiresolution detail vectors. In this case, edge-vertices e[0]

are mapped to details ~de,

e[0] → ~de = e[0] − v[0]avg(e[0]),

and face-vertices f [0] are mapped to details ~df ,

f [0] → ~df = f [0] − v[0]avg(f [0]).

Details are then restored during subdivision by adding them
to the edge- and face-vertex positions immediately following
the initial subdivision IP .

An alternative choice for ÎP that produces coarse meshes
with fewer artifacts can be found by taking inspiration from the
local least squares method of [22] (as applied to linear curve
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subdivision). The resulting reverse subdivision operation can
be interpreted as translating the fine vertex positions by scaled
detail vectors to produce the new coarse vertex positions.
Similarly, we can map edge-vertices e[0] and face-vertices
f [0] to details de and df as above, with the coarse vertices
v′ calculated by translating each vertex-vertex v[0] by scaled
versions of the details in its one-ring neighbourhood:

v[0] → v′ = v[0] +
1

3

∑
~de +

1

9

∑
~df .

During reconstruction, these scaled detail vectors are sub-
tracted from the coarse positions v′ before the initial subdivi-
sion IP is applied.

Pseudocode for our primal multiresolution schemes can be
found in supplementary material.

D. Dual Schemes

Dual schemes like Doo-Sabin subdivision [5] map faces in
the coarse mesh to faces in the subdivided mesh (called “faces-
faces”). Edges and vertices are replaced with new edge- and
vertex-faces.

The initial subdivision ID employed for our dual schemes
is a vertex split method that generalizes Haar subdivision [24]
to surfaces. The connectivity is identical to a mesh subdivided
with Doo-Sabin subdivision, but the vertex positions are
unchanged from vertices in the coarse mesh (see Figure 3b).
Formally,

VF = {

n copies︷ ︸︸ ︷
(v, v, · · · , v) | v ∈ V of valence n}︸ ︷︷ ︸

vertex-faces

,

EF = {(v0, v0, v1, v1) | e = (v0, v1) ∈ E}︸ ︷︷ ︸
edge-faces

,

FF = {f | f = (v0, v1, · · · , vn−1) ∈ F}︸ ︷︷ ︸
face-faces

,

ID(F ) =VF ∪ EF ∪ FF .

This initial subdivision3 is followed by m ≥ 0 face-
shrinking operations Φk (0 ≤ k < m) that map old vertex
positions to new vertex positions (see Figure 3c and 3d). In
order to ensure the inverse is local, we shrink an alternating set
of faces in each iteration, such that each face and its shrunken
version share the same centroid (i.e. the centroids are fixed
points). Our inverse operators Φ−1k can hence expand faces
out from these fixed centroids, similarly to the method used
in [20] to reverse Doo-Sabin subdivision.

As in our primal schemes, each Φk is controlled by a
smoothing weight in S = {s0, s1, · · · , sm−1}. Given these
weights S, our dual subdivision scheme, PDual, is given by

PDual(V,E, F ) = Φm−1 ◦ · · · ◦ Φ1 ◦ Φ0 ◦ ID(V,E, F ).

Again we use the superscript [k] to indicate vertex positions
after k averaging steps have been applied.

3As with Doo-Sabin, the vertices of the resulting mesh are all valence 4
and the edge-faces are all quads. The reverse can be applied to meshes whose
faces can be partitioned into VF , EF , and FF .

Each Φk is defined as follows. If k is even, then we
shrink the face-faces f [k] ∈ FF [k]; otherwise, we shrink
the vertex-faces f [k] ∈ VF [k]. For each shrinking face
f [k] = (v

[k]
0 , v

[k]
1 , · · · , v[k]n−1), we find the centroid of the face

c[k] =
1

n

n−1∑
i=0

v
[k]
i (5)

and an intermediate point mi for each vertex v[k]i :

m
[k]
i =

n−1∑
j=0

αi,j · v[k]j , (6)

where the αi,j are coefficients inspired by Doo-Sabin subdi-
vision:

αi,j =
1 + cos(2π(j − i)/n)

n
.

Each vertex is then moved to a new position v[k+1]
i ∈ Φk(V [k])

(see Figure 4) given by

v
[k+1]
i = (1− sk)2 · v[k]i + 2sk(1− sk) ·m[k]

i + s2k · c[k]. (7)

The inverse of Φk is a face expansion operator that expands
the face-faces f [k+1] ∈ FF [k+1] when k is even; otherwise it
expands the vertex-faces f [k+1] ∈ VF [k+1]. In order to apply
Φ−1k , we must first determine the original set of intermediate
points m[k]

i from the new vertex positions v[k+1]
i (the centroid

is the same for both the original and the shrunken face, i.e.
c[k] = c[k+1]):

m
[k]
i =

1

1− sk
·
n−1∑
j=0

αi,j · v[k+1]
j − sk

1− sk
· c[k]. (8)

Afterwards, the vertices v[k+1]
i may be returned to their coarse

positions

v
[k]
i =

(
1

1−sk

)2
· v[k+1]

i − 2sk
1−sk ·m

[k]
i −

(
sk

1−sk

)2
· c[k]. (9)

Now, given a reverse scheme ÎD that reverses ID, we
can define a reverse subdivision scheme P̂Dual that reverses
PDual:

P̂Dual(V,E, F ) = ÎD ◦ Φ−10 ◦ Φ−11 ◦ · · · ◦ Φ−1m−1(V,E, F ).

Since ID creates new faces by splitting vertices and edges,
ÎD should eliminate the vertex- and edge- faces by collapsing
them down to vertices and edges. This involves deleting each
vertex-face f [0] = (v

[0]
0 , v

[0]
1 , · · · v[0]n−1) ∈ VF [0] and all but

one of its vertices, say v[0]0 . This vertex is placed at a collapsed
position v′0, for instance the face’s centroid, i.e.

v
[0]
0 → v′0 =

1

n

n−1∑
i=0

v
[0]
i ,

while the other n−1 vertices (v[0]i for 1 ≤ i < n) are mapped
to detail vectors

v
[0]
i → ~dvi = v

[0]
i − v

′
0.

Any vertex-faces that were incident to f [0] become incident
to v′0, and any edge-faces that were incident to f [0] become
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(a) (b) (c) (d)

Fig. 3: Dual subdivision applied to a mesh. (a) A hand of the coarse Teddy mesh (see Figure 8). (b) An initial vertex split
is applied to the mesh. The face-faces are slightly shrunken for illustrative purposes. (c) Φ0 shrinks the face-faces, retaining
their centroids. (d) Φ1 shrinks the vertex-faces, retaining their centroids.

v0

v4

v3

v2 v1

(a)

c

(b)

m0

(c)

c v0
Φk(v0)

m0

sk

(d)

Φk(v0)

(e)

Fig. 4: Illustration of Φk acting on a face. (a) A shrinking face with five vertices (labelled v0 through v4). (b) The centroid c
of the face is found. (c) An intermediate point mi is found for every vertex vi. (d) The new position of each vi, Φk(vi), lies
on a quadratic Bezier curve between vi, mi, and c. (e) The vertices vi are each moved to Φk(vi), shrinking the face.

edges incident to v′0. In order to reconstruct the mesh, during
ID every vertex v (of valence n) is split into a new vertex
face

v = (v −
n−1∑
i=1

~dvi , v + ~dv1 , · · · , v + ~dvn−1
) ∈ VF [0].

Pseudocode for our dual multiresolution schemes (as well
as a proof of the correctness of Equation 8) can be found in
supplementary material.

IV. RIAS VARIANTS

In addition to the main RIAS framework, we additionally
propose two easy-to-implement modifications that can be
used to achieve more complex behaviours. The first of these
incorporates smooth reverse subdivision into our multireso-
lution process by using the averaging operators Λk and Φk

to smooth reverse subdivided meshes. The second defines
non-uniform subdivision and reverse subdivision processes by
using different smoothing weights per vertex.

A. Smooth Reverse Subdivision

The reverse subdivision schemes P̂Primal and P̂Dual de-
fined above will return the original coarse mesh when applied
to a subdivided mesh. However, if the mesh is not the result
of a subdivision process or if it has been modified from a
subdivided mesh, then shape exaggerations will result (and are
particularly significant when using higher degree schemes).

Different solutions to this problem exist. For instance, it
is possible to customize ÎP or ÎD in order to obtain more
desirable behaviour, as in Section III-C. One may also scale
down the weights (e.g. by a factor of 1

2 ) in order to reduce
the impact of each inverse averaging step. A third approach
is to consider smooth reverse subdivision schemes that aim
to reduce exaggerations in the coarse shape. As noted in [7],

[8], smooth reverse frameworks apply smoothing operations
after each application of a given reverse subdivision operation.
These smoothing steps are then undone prior to reconstructing
the original mesh.

Our averaging operators Λk and Φk, by virtue of their
invertibility, are a natural choice for use in a smooth reverse
framework, and they possess properties that address limitations
with the schemes of [7], [8]. Firstly, Λk and Φk are perfectly
invertible and can be undone without additional information,
unlike the method of [7]. Secondly, while they require subdivi-
sion connectivity to be present in order to be applied (which is
guaranteed for all resolutions except the coarsest), Λk and Φk

support extraordinary vertices, unlike [8]. Furthermore, neither
[7] nor [8] provide smooth reverse dual schemes, which are
supported in our work via Φk.

A notable consequence of defining the subdivision, reverse
subdivision, and smooth reverse schemes in terms of Λk and
Φk is that the smooth reverse scheme can be used to cancel
out Λ−1k and Φ−1k in the reverse subdivisions. As a result, we
can convert a given reverse subdivision scheme into another.

Consider, for instance, a primal subdivision and reverse sub-
division scheme defined using two averaging steps: PPrimal =
Λ1 ◦Λ0 ◦ IP and P̂Primal = ÎP ◦Λ−10 ◦Λ−11 . If we apply the
smoothing operation ∆ = Λ1◦Λ0 after the reverse subdivision,
then consecutive reverse subdivision operations reduce to ÎP :

∆ ◦ P̂Primal ◦∆ ◦ P̂Primal = Λ1 ◦Λ0 ◦ ÎP ◦ ÎP ◦Λ−10 ◦Λ−11 .

The forward scheme, consequently, becomes

PPrimal◦∆−1◦PPrimal◦∆−1 = Λ1◦Λ0◦IP ◦IP ◦Λ−10 ◦Λ
−1
1 .

B. Non-Uniform and Adaptive Primal Subdivision

In the unmodified RIAS framework, when we apply the
averaging step Λk, a single smoothing weight sk is used across
the entire mesh M . However, this need not be the case, and we
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(px, py, pz)

Sp = { 3
20 , 0}

(qx, qy, qz)

Sq = { 23 ,
1
4}

(a) (b)

Fig. 5: Non-uniform subdivision. (a) A set of weights is
assigned to each vertex: the circled region receives weights
{ 3
20 , 0} while other vertices receive the weights { 23 ,

1
4}. (b)

The non-uniformly subdivided mesh.

can define a non-uniform subdivision quite simply by varying
the smoothing weight across the mesh. Using this approach,
different subdivision rules can be blended together by blending
different smoothing weights, without the need to explicitly
define new vertex masks.

In order to produce non-uniform primal subdivision, we
associate a set of smoothing weights Sv = {sv0, sv1, · · · , svm−1}
with each vertex v in M (see Figure 5). As we may not
wish to have all averaging steps act on a given vertex (m
is constant across the mesh), the weight corresponding to a
given averaging step can be set to zero in order to eliminate
its effect. For any operation that acts on the vertex v, rather
than using sk we instead use svk.

A simple way to implement this method is to define a weight
mesh W with topology identical to M but with smoothing
weights (sv0, s

v
1, s

v
2) in place of vertex coordinates (x, y, z). For

k = 0, 1, 2, the smoothing weight svk for a given vertex v can
be obtained by checking the coordinates of the corresponding
vertex in W . Weights for subdivided versions of M can be
obtained by subdividing W (note that the subdivision con-
nectivity must be identical across both meshes, but otherwise
any arbitrary subdivision method can be used on W — even
an unmodified RIAS). We use IP to subdivide W , which
interpolates the original weights svk.

Applications of this method include targeting smooth re-
verse subdivision to specific parts of the mesh and defining
transition regions between areas of different resolution, for
instance in a geometry clip-map [25] or in an adaptive sub-
division [26]. As an example, we can extract a patch from
the mesh, non-uniformly subdivide it such that the boundary
shape remains unchanged (Sv = {0, 0, · · · , 0} for v on the
boundary), and visualize the high-resolution patch in place
of the coarse version. Unlike other adaptive methods, the
subdivision connectivity of the mesh does not need to be al-
tered, and thereby does not lose the benefits of multiresolution.
Furthermore, by virtue of RIAS’s reversibility, the impacts of
the high-resolution edits can be reversed and incorporated back
into the coarse mesh.

V. SMOOTHING WEIGHTS

Given that our multiresolution schemes depend on sets of
smoothing weights S, an important question that arises is
that of which weight values to choose. The answer to this

question depends on several factors, such as whether or not
a B-Spline surface is desired or if the scheme should satisfy
some particular application requirement(s).

In this section, we examine the question of smoothing
weight selection in detail. First we present a weight recipe that
produces B-Spline multiresolution, and second we note how
smoothing weights can be tailored to different applications.

A. Weights for B-Spline Multiresolution

While [6] notes that the set of weights S = { 12} produces
degree 2 and 3 B-Spline multiresolution in the dual and primal
case, respectively, no other weights for B-Spline schemes
were presented in that work. Here, we outline a recipe for
the weights that allow both our methods and the methods
of [6] to produce B-Spline schemes of any degree. This
recipe was found by running a brute force Octave script
to find appropriate weights for different degrees, and then
generalizing from the observed pattern.

For a degree 2m or 2m+1 B-Spline scheme, the m weights
that produce that scheme can be found as the set of odd
numbers from 2m − 1 to 1 divided by the set of natural
numbers from 2m to m+ 1, i.e.

S =

{
2m− 1

2m
,

2m− 3

2m− 1
, · · · , 3

m+ 2
,

1

m+ 1

}
.

Hence, S = { 12} produces degree 2 and 3 B-Spline schemes
(Doo-Sabin and a variant of Catmull-Clark, respectively),
S = { 34 ,

1
3} produces degree 4 and 5 B-Spline schemes,

S = { 56 ,
3
5 ,

1
4} produces degree 6 and 7 B-Spline schemes,

etc...
The production of B-Spline schemes using this recipe can

be verified on a case-by-case basis by deriving the masks
for regular vertices (see supplemental material), and has been
verified for all degrees up to 20 using Octave. Though a
formal proof was attempted, the change of weights between
degrees renders induction ineffective and complicates attempts
to perform this verification in the general case. Approaches
based on generating functions are hampered by the non-
uniform behaviours of Λk and Φk, which prevents them
from being modeled as convolution operators and applied to
generating functions using polynomial multiplication.

B. Tailoring Smoothing Weights

Though B-Spline surfaces are well-known and widely used,
they and the smoothing weights that produce them are not
equally well-suited to every task. We have noted, for instance,
in Section IV-A that shape exaggerations in reverse subdivided
meshes can encourage the use of scaled down weights.

As different applications will have differing objectives with
regards to multiscale surface representations, it bears noting
that the smoothing weights of the RIAS framework can be
selected with an eye towards satisfying these objectives.

For example, we can attempt to select whichever weights
produce the best mesh compression, measured by either the
average length of detail vectors or the average error between
the coarsened and original mesh shapes. Table II shows a
sample ranking of weight sets ranked according to these
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(a) (b)

Fig. 6: (a) High resolution Muffin mesh. (b) Muffin mesh after
2 application of PPrimal with S = { 3

20}.

metrics. Results are for the high resolution Muffin mesh shown
in Figure 6a, tested using uniformly sampled weight sets of
the form S = {s0, s1} (s0 6= 0).

TABLE II: Top five weight sets ranked by performance on two
metrics: average detail length minimization and shape error
minimization.

Rank Detail Length Shape Error
Weights Length ×10−2 Weights Error ×10−2

1 { 1
5
} 1.377 { 1

20
} 2.583

2 { 1
4
} 1.383 { 1

10
} 2.603

3 { 3
20
} 1.390 { 3

20
} 2.640

4 { 1
10
} 1.413 { 1

5
} 2.701

5 { 3
10
} 1.419 { 1

20
, 1
20
} 2.747

For this mesh, the weight set S = { 3
20} appears to perform

admirably well, being in the top three rankings of both metrics.
This may not be the case for all meshes, however. Using RIAS,
we can obtain schemes that maximize metrics for different
applications and on different meshes.

VI. CONTINUITY AT EXTRAORDINARY VERTICES

Similarly to the works of [2], [3], the limit subdivision
surfaces resulting from our methods exhibit Cd continuity at
regular vertices (when using the bd2c weights as described in
Section V-A). This is because, in regular cases, the vertex
masks resulting from these weights reduce to the tensor
product generalization of the vertex masks from [6], which
produce B-Spline subdivision schemes (refer to supplemental
material).

However, analyzing the continuity at extraordinary vertices
is not quite so easy. For each extraordinary vertex or face, we
can consider an invariant local neighbourhood around the face
or vertex and a local subdivision matrix PL that transforms
that neighbourhood into a corresponding neighbourhood at
the next resolution (see [16, Chapter 8]). The eigenvalues
λ0, λ1, λ2, · · · and characteristic map ψ resulting from PL

determine the continuity of the subdivision scheme at those
extraordinary vertices or faces.

As per [16, Chapter 8], we order the eigenvalues by de-
creasing magnitude, i.e. λ0 = 1 > |λ1| = |λ2| ≥ |λi|, for all
i > 2. The subdominant eigenvectors e1 and e2 corresponding
to λ1 and λ2 can be used to determine the characteristic
map ψ = (ψ1, ψ2), which parametrizes the limit subdivision
surface and must be “regular” (one-to-one and onto). If ψ is

regular and |λ2| > |λi| for all i > 2, then the subdivision
scheme associated with PL converges to a C1 limit surface.

While we have not formally analyzed the characteristic
maps ψ for our schemes, the characteristic meshes (resulting
from forming the invariant local neighbourhood using entries
of e1 and e2) suggest that each ψ is regular (see Figure 7).
The planar spread of the meshes in addition to the lack of
self-intersections supports this claim. We have additionally
verified (for all B-Spline schemes from degree 2 to 15, up
to valence 20) that the correct eigenvalue structure holds for
C1 continuity, suggesting that our schemes have C1 continuity
at extraordinary vertices.

We have not analyzed the smoothness of the blended sub-
division schemes used to construct non-uniform and adaptive
subdivision, and suspect that (when using IP to combine
smoothing weights) the smoothness of the original/parent
schemes will not carry over to the blended scheme. How
to combine the smoothing weights such that smoothness is
preserved in the blending scheme remains an open question
for future work.

VII. RESULTS

We present in this section some results from applying our
multiresolution schemes on meshes.

Fig. 8: Coarse Teddy
mesh.

We have subdivided several
meshes using different B-Spline
subdivision schemes. Figures 9
through 12 illustrate our subdivision
and reverse subdivision schemes
(from degree 2 to degree 5) on
the coarse Teddy mesh shown in
Figure 8. In each case, we introduce
perturbations into the fine mesh
before reverse subdivision in order
to examine the effect of shape
exaggerations. We have found
that shape exaggerations are not
especially problematic for the lower

degree schemes (i.e., 2 and 3), and can be minimized using
smooth reverse approaches in the case of higher degree
schemes.

Figures 9 and 10 feature, respectively, our dual and primal
schemes (using weights S = { 12}), and correspond to Doo-
Sabin subdivision and our variant of Catmull-Clark subdivi-
sion. Figures 11 and 12 feature, respectively, our dual and
primal subdivision schemes (using weights S = { 34 ,

1
3}) and

reverse subdivision schemes (using scaled weights S = { 38 ,
1
6}

to reduce shape exaggerations). See Figure 13 for results
from a non B-Spline subdivision, which uses the weights
S = { 23 ,

1
4} reported in [6]. The RIAS framework allows us

to use simple operations in order to generate highly smooth
subdivision surfaces and, unlike the classical approach [2], [3],
to reverse the surfaces back to a coarser resolution.

Examples of multiresolution editing are shown in Figures 14
and 15c. While shape exaggerations typically cause high de-
gree multiresolution editing to be challenging to use (see, e.g.,
Figure 15a), our framework supports means by which a coarse
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Fig. 7: Characteristic meshes for our primal and dual schemes. Meshes shown are for extraordinary valences 3, 8, and 20 from
degree 2 to degree 5.

version of a high resolution mesh can be edited intuitively
and without loss of detail. Figure 14 uses scaled weights (i.e.
{ 38 ,

1
6}) in a degree 5 reverse scheme, while Figure 15c utilizes

a degree 3 smooth reverse framework (see Section IV-A).
As both approaches are constructed using the averaging steps
required by the base framework, no additional implementation
is required to achieve smooth reverse subdivision. The results
of our smooth reverse framework appear to be comparable
to those of [7] and [8], but our method does not suffer from
overrepresentation or from topological restrictions.

An example of non-uniform and adaptive subdivision can
be found in Figure 16. By using a linear shape-preserving
subdivision on the boundary of an extracted mesh patch, we
can create a high-resolution version of the patch that fits the
remaining coarse mesh. The framework’s reversibility allows
the patch to be reverse subdivided in case we wish to re-
integrate the patch with the rest of the mesh.

Figure 17 presents reflection lines on the Teddy mesh
after four applications of various types of subdivision. Images
were created using the Zebra line functionality in Rhino.
Our results appear comparable to the work of Stam [2],
with curvature divergence similarly worsening with degree at
valence 3 extraordinary vertices but improving with degree at
higher valence vertices. As expected, the smoothness at regular
vertices improves with degree. How to improve the behaviour
of valence 3 vertices as degree increases is an interesting future
direction for both RIAS and the classical approach.

In Table III, we present a runtime performance comparison
of RIAS subdivision with the classical approach (as described
in [2]). All tests were run on a 64-bit Windows 10 machine
with an Intel Core i7-6700k CPU and 16 GB of RAM. Both
methods were implemented as serial algorithms, and executed
1000 times each on a regular grid of 200× 200 points.

TABLE III: Average runtime performance of RIAS subdivision
and the classical approach, in milliseconds (ms).

Number of Dual Schemes Primal Schemes
Averaging Steps RIAS [2], [3] RIAS [2], [3]

1 39.741 67.743 36.324 86.364
2 74.741 126.776 66.015 147.681
3 111.063 187.493 82.323 205.576
4 145.267 245.178 104.168 262.788

Though we can expect RIAS and the classical approach
to produce the same types of B-Spline surfaces given the

same number of averaging steps (i.e. degree 2m or 2m + 1
with C2m−1 or C2m continuity at regular vertices and C1 at
extraordinary vertices), there are significant differences in the
approaches that make RIAS more amenable to performance
optimizations.

For instance, whenever a vertex is moved in the classical
approach, its original position must be cached for use in
calculating its neighbours’ positions. This temporarily doubles
the footprint of the mesh in shared memory, though the
runtime impact can be mitigated using a double-buffering
approach. Such caching is not required by RIAS’s primal step,
and in the dual case can be performed per shrinking face in
local memory. Furthermore, each averaging step in RIAS is
less expensive. In the primal case, 25% of the vertices are
fixed at a time and require no calculations, while calculations
for edge-vertices (which make up 50% of the vertices) require
only two vertex positions from the one-ring. In the dual case, a
vertex’s position is calculated using the vertices from a single
incident face, rather than all incident faces. As a result, RIAS
subdivision appears to perform 40% better in the dual case
and 60% better in the primal case (before parallelization).

VIII. CONCLUSIONS AND FUTURE WORK

We have presented two algorithms each for subdividing
and reverse subdividing a polygonal mesh based on repeated
applications of invertible averaging operators. Together, they
establish a multiresolution framework on general topology
surfaces that can achieve Cd continuity at regular vertices and
appear to have C1 continuity at extraordinary vertices.

Our construction unifies several existing concepts into a
single comprehensive framework for the manipulation of a sur-
face’s resolution, tying arbitrarily smooth subdivision surfaces
together with smooth reverse subdivision, non-uniform sub-
division, and multiresolution representations. All operations,
by design, can be implemented in terms of the one-ring of
individual vertices and can be configured to meet different
objectives. Furthermore, the averaging steps themselves are
amenable to parallelization with minimal overhead, and are
therefore capable of significant performance improvements
over existing methods that generate arbitrarily smooth sub-
division surfaces.

For future work, it would be interesting to investigate
the adjustment of averaging masks in extraordinary cases to
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(a) (b) (c) (d) (e)

Fig. 9: (a), (b) Dual subdivision applied on Teddy using weights S = { 12}. (c) High resolution Teddy with perturbations. (d),
(e) Reverse dual subdivision on the mesh in (c) using weights S = { 12}.

(a) (b) (c) (d) (e)

Fig. 10: (a), (b) Primal subdivision applied on Teddy using weights S = { 12}. (c) High resolution Teddy with perturbations.
(d), (e) Reverse primal subdivision on the mesh in (c) using weights S = { 12}.

(a) (b) (c) (d) (e)

Fig. 11: (a), (b) Dual subdivision applied on Teddy using weights S = { 34 ,
1
3}. (c) High resolution Teddy with perturbations.

(d), (e) Reverse dual subdivision on the mesh in (c) using weights S = { 38 ,
1
6}.

(a) (b) (c) (d) (e)

Fig. 12: (a), (b) Primal subdivision applied on Teddy using weights S = { 34 ,
1
3}. (c) High resolution Teddy with perturbations.

(d), (e) Reverse primal subdivision on the mesh in (c) using weights S = { 38 ,
1
6}.
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(a) (b) (c) (d) (e)

Fig. 13: Non B-Spline subdivision example. (a), (b) Primal subdivision applied on Teddy using weights S = { 23 ,
1
4}. (c) High

resolution Teddy with perturbations. (d), (e) Reverse primal subdivision on the mesh in (c) using weights S = { 26 ,
1
8}.

(a) (b) (c) (d)

Fig. 14: Multiresolution editing example. (a) High resolution Teddy mesh with perturbations. (b) Reverse subdivided coarse
mesh. (c) The coarse mesh is edited to resemble a fox. (d) High resolution “Fox” mesh with details preserved.

(a)

(b)

(c)

Fig. 15: (a) Standard reverse subdivision approaches, as in [10], cause shape exaggerations that make multiscale editing less
intuitive. (b) Smooth reverse subdivision, as in [7], reduces such exaggerations. (c) Result from our smooth reverse framework
after decomposing a high resolution dog mesh three times. We used a weight of 1

2 for the reverse scheme P̂Primal and a weight
of 1

4 for the smoothing step ∆. Results appear comparable to [7] but require no additional implementation effort, and unlike
[7], [8] do not suffer from overrepresentation or topological restrictions. Figures from [10] and [7] used with permission.
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(a) (b) (c) (d)

Fig. 16: Non-uniform/adaptive subdivision example. (a) Coarse Teddy mesh. (b) Teddy’s hand is extracted, subdivided (3
applications of PPrimal with S = { 12} on interior vertices, S = {0} on boundary vertices), and edited. (c) Coarse Teddy with
a high-resolution claw. (d) Reverse subdivision can be applied to the extracted mesh (2 applications of P̂Primal with S = { 14}
on interior vertices, S = {0} on boundary vertices).

(a) (b) (c) (d) (e)

Fig. 17: Reflection lines on Teddy after (a) Catmull-Clark subdivision; (b), (c) dual and primal subdivision, respectively,
with S = { 12}; (d), (e) dual and primal subdivision, respectively, with S = { 34 ,

1
3}. Extraordinary vertex neighbourhoods are

highlighted in (a) using red circles (valence 3) and blue circles (valence 5).

produce continuity beyond C1. Other work could explore
different approaches to blending smoothing weight sets, such
that a blended subdivision scheme is made at least as smooth
as one of its parent schemes.

Challenges remain in deriving closed-form formulae for our
vertex masks and in proving that our smoothing weight recipe
produces B-Spline schemes in general. Changes in weight sets
between degrees reduce the utility of induction approaches,
and the derivation of generating functions is complicated by
the fact that our averaging operators cannot be modeled as
convolutions. Addressing either of these issues could form the
basis for future work.
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