
Automated 3D Reconstruction of Moving Rigid
Specimen from RGB-D Video Input

Erika Harrison
Department of Computer Science

University of Calgary
Calgary, Canada

eharris@ucalgary.ca

Faramarz Samavati
Department of Computer Science

University of Calgary
Calgary, Canada

samavati@ucalgary.ca

Jeffrey Boyd
Department of Computer Science

University of Calgary
Calgary, Canada

boyd@ucalgary.ca

Abstract—
To assist morphometric and behavioural analysis of live

animals, we present an automatic process for generating a 3D
volumetric representation of a dynamic rigid specimen from
RGB-D video. This process uses multi-feature extraction and
automatic labelling through a novel distance matrix structure
and rigid transformation validation to reduce maximal clique
calculations. An adapted SiftFu implementation then incorpo-
rates the resulting rigid transformations to perform the final
volumetric reconstruction. Validation occurs using an RGB-D
sequence from a living leopard tortoise resulting in a smoothly
merged and textured volume from the original RGB-D frames.

Index Terms—3D reconstruction; rigid transformations; ani-
mal RGB-D video capture

I. INTRODUCTION

The biological sciences are tasked with studying animals in
laboratory and wildlife settings while constrained to minimize
impact and interaction of their specimen. Modern technology
is reaching sufficient advancement to assist in live acquisi-
tion and computational reconstruction of real-world specimen
models for tracking, analyzing and archiving. However, bio-
logical specimen vary in shape and form, and their precise
morphometric configuration is often unknown.

To assist with non-invasive, automated support for 3D analy-
sis of animals, we present a frame-to-model multi-step process
for general specimen reconstruction involving: initial RGB-D
frame capture; multi-feature identification through point-pair
distance tracking and feature point rigid object labelling; and
per-object volumetric representation. This is useful for visual
capture and analysis for biological studies where animals are
able to move at will, and input is often limited in the number
of cameras, and therefore viewing perspectives.

The main contributions of this work is presenting a cohe-
sive, automated process to convert RGB-D input into a final
volumetric representation; and its application to live specimen.

II. RELATED WORK

Increasingly sophisticated techniques are being developed
for 3D reconstruction using modern RGB-D camera input.
Its application to animals, however, is relatively limited. For
example, Winter [14] uses a laser scanner to reconstruct a
taxidermy owl, while Falkingham [3] explores the low-cost
RGB-D Kinect v1.0 to scan fossils. While these examples

are valuable at demonstrating post-construction measurement
accuracy, they are limited to stationary specimen.

For moving animal scenes, Fernandez et al. [4] explore
laboratory rodent segmentation from point cloud information.
Ross et al. [10], does not employ depth information, however
they are able to identify rigid motion articulations of giraffes
using their extraction system. Lastly, while the work of Duo
et al. [2] emphasize 3D reconstruction of highly detailed
motions from RGB-D video capture, it does demonstrate
potential application to animals with their real-time canine
reconstruction. However, it requires multiple cameras and
its full-surface reconstruction does not support separation of
motions, needed for any subsequent analysis.

To perform 3D reconstruction from RGB-D footage, a num-
ber of related works must be considered. For other examples
of range image registration, see the survey of Salvi et al. [12]
For the initial camera input, Khoshelham and Elberink [5]
provide technical descriptions and accuracy evaluations of
the Kinect 1.0. Registration between frames occurs using
different types of feature points, described by Krig [6]. To
identify rigid transformations, Perera and Barnes [9] describe
an approach using point-pair distances and max-clique finding.
Our work employs rigid transformation detection, inspired
by the efficient calculations of Sorkine [13], to speed up
the process and improve accuracy. Lastly, visualization using
a volumetric representation is computed using the truncated
signed distance function, as used in other works, such as
Newcombe et al. [8] and the SiftFu work of Xiao et al. [15].

Note, whereas Chiari et al. [1] use stereo RGB images as
input on stationary tortoise carapace, this work reconstructs a
freely moving tortoise using RGB-D sequences.

III. METHODOLOGY

Converting a sequence of RGB-D images to a volumetric
representation requires a number of stages. Firstly, we estab-
lish how frames relate by finding correspondences between
them (Figure 1). Secondly, we identify rigid motions by identi-
fying point correspondences residing on common rigid objects.
This involves a single matrix representation for tracking and
processing all correspondence points. Lastly, each rigid motion
transforms the RGB-D images into a common volume for a
final, textured volumetric representation.



Fig. 1. Example of feature points matched across frames.

A. Initial Capture

RGB-D information is gathered using the low-cost Kinect
1.0, modified to work on portable battery, facilitating mobile
capture. Each frame results in a 2D RGB image as well as a
16 bit 2D image which can be converted to depth.

To increase the quantity of points available for correspon-
dence between frames, the RGB images are processed using
seven (7) different feature-point extraction methods - SURF,
MSERF, MinEigen, Harris, FAST, BRISK and SIFT, spanning
the popular SIFT plus all feature types readily available in
Matlab. For the provided sequences, we work with feature
points visible in all frames. Feature points which disappear
from view are discarded from consideration. Notice in Figure 2
that after features from Figure 1 of invalid depth are removed,
the number of available features dramatically falls off to
maintain inter-frame correspondence. This motivates the use
of multiple types of features to improve correspondence and
resulting reconstruction quality.

Fig. 2. Reduction of total features from Figure 1 sequence, after discarding
invalid depth, and then matching across frames.

B. Feature Labelling

Labelling of features refers to the identification of fea-
ture points undergoing a common rigid transformation across
frames. Feature points with the same transformation are given
the common label. This is fundamental in identifying regions
of the RGB-D images which reside on the same rigid object.

For the resulting n features, their 3D coordinate is computed
by projecting using the depth map and camera specifications.
This results in an Euclidean coordinate in metres, (0, 0, 0)
centered at the camera, with the z-axis projecting out from
the camera, the y-axis projecting up from the camera, and x-
axis perpendicular to both and right of the camera’s view. The
resulting 3D feature coordinates are then used to populate an
n × n symmetric matrix D storing the point-pair distances.
The point-pair distances in the matrix are updated each frame,

as the feature points may have changed position relative to
each other as would be expected in a dynamic scene. Figure 3
illustrates an example of how the distance matrix is updated
between frames. Notice that the camera position may change,
as the point-pair distances are relative to the pairing, and
unrelated to absolute coordinates.

Fig. 3. Illustrative example of algorithm used for identifying rigid bodies.

Observe that for rigid bodies, distances of points on the
same rigid body remain constant. As the distances are updated
for each frame, if a distance significantly differs from a prior
frame, the values are flagged as invalid. This corresponds to
two points not residing on the same rigid body.

Whereas Perera and Barnes [9] identify trial-and-error
sequence-specific thresholds using standard deviation and av-
erages, an error threshold based on error metrics intrinsic to
the Kinect camera are used to identify signficant differences.
From Khoshelham and Elberink [5], the error function for a
point z metres from the camera on the z axis, is expressed as:

Ez(z) = (1.87z2 − 1.84z + 2.21)× 10−3. (1)

Notice this error changes with distance and position from
the camera. While Khoshelham and Elberink [5] describe how
to calculate the errors Ex, Ey for x and y respectively, exper-
imentation demonstrates that their contribution is negligible
and we use Ez to represent the error for a 3D coordinate. As
feature points may be at different z distances, and therefore



different errors, we use standard error propagation from the
point-pair distance calculation to produce:

E(z1, z2) = Ez(z1) + Ez(z2) (2)

for z1, z2 the z coordinates of the respective 3D feature points.
E is then used as our error threshold for identifying significant
differences between frames, and must be computed for each
frame and each point-pair. Figure 3 illustrates how point-pair
(v2, v4) becomes invalid in frame f1. Figure 4a-e illustrates
distance matrix updating of the Figure 1 sequence.

An adjacency matrix graph representation is computed by:

Ai,j =

{
1, if Di,j > E(zi, zj)

0, otherwise
(3)

from the n × n distance matrix D. Figure 4f illustrates an
example of such a resulting adjacency matrix. Edges represent
point-pairs likely belonging to the same rigid object, or not
yet observed to be on different objects. Whereas Perera and
Barnes [9] immediately apply the maximal cliques algorithm
to their adjacency graph, we speed up the process by:

• Identifying connected components, efficiently computing
rigid transformations [13], and computing residuals to
identify if all points are on a common rigid object

• For points not identified above, performing
transformation-residual checks on objects identified
in a prior frame

• For points not identified above, computing max cliques
from the adjacency graph, and using the transformation-
residual to confirm rigid transformations.

In performing transformation checks, the possibly exponen-
tial time for finding max cliques within the graph is reduced.

Fig. 4. a-e. Frames 1-5 visualizing distance matrix. Black indicates point-pair
distance exceeding error threshold. f. Visualization of resulting adjacency ma-
trix. g. Visualization of adjacency matrix after clique finding, rigid validation
is applied. Using the presentation format from SiftFu.

At this point, feature points from the original RGB-D
sequence have been automatically labelled for each calculated
object. Figure 5 illustrates the initial adjacency graph (a) which
is pruned using the distance matrix to the resulting labelled
graph (b), and with points labelled for each of the objects.
It is worth noting that this process does not require a priori
information on the number of rigid objects present.

Fig. 5. a. Initial adjacency graph; b. Updated adjacency graph with labels; c.
Labelled feature points in 3D space.

C. Conversion to Volumetric Representation

To construct a fully 3D representation of the resulting
objects an adaptation of the truncated-signed distance (TSDF)
SiftFu approach of Xiao et al. [15] is used. This results in a
textured volumetric representation of each object.

Note that SiftFu relies on SIFT features and RANSAC for
identifying a rigid transformation with which to transform the
depth information into the TSDF-calculated volume. Instead,
for each of the identified rigid objects a volume is created, and
the object’s corresponding per-frame rigid transformation is
used to transform the depth information in the volume. Readers
are directed to the SiftFu work of Xiao et al. [15] for further
details on converting RGB-D to TSDF-calculated volumes.

Fig. 6. Visualization of TSDF output across frames. Using presentation format
from SiftFu [15].

D. Validation

A leopard tortoise at the Calgary Zoo was filmed using
a Kinect 1.0 device. To maximize frame count and overlap-
ping feature points, five consecutive frames were manually
extracted to illustrate the reconstruction process. Computation
was performed on Matlab using a 64-bit Intel Core i7-3770
with 16 GB RAM. Matlab implementation for the following
were used: SIFT [7], SiftFu [15] - adapted for this work, and
Point Cloud Library [11] - for RGB-D to 3D projection.



IV. RESULTS

From Figure 6, observe how the holes on the surface
representation decrease as more frames of input are aligned.
Also notice how the posterior of the specimen initially is
not visible. As more surface is made visible to the camera,
the reconstruction is able to incorporate and amalgamate the
additional surface information. This results in a whole model
volume representation of the observed surface of the tortoise.

Figure 7 visualizes the final result of the five frame leopard
tortoise sequence. Note: The washed out texture is an artifact
of the 3D visualization used, as the bottom left corner of
Figure 6 illustrates strongly merged texture.

Fig. 7. Volumetric Representation. a. Visualization of weighting. Lighter
areas represent more overlapping frame volumes, darker areas represent fewer
overlapping frame volumes; b. Textured result.

Algorithm run time was not calculated, and the presented
work is not real-time. However, due to the efficient error
thresholding and resulting accuracy of the distance matrix,
clique finding is not required in this example and less than
2% of the time is spent labelling feature points. The dominant
portion of time is spent in the SiftFu implementation which
can be demonstrated to work in real-time speeds by using
comparable algorithms [2]. The remaining portion of the
system - RGB-D capture, feature extraction, feature point
labelling - has been designed to be readily parallelized.

V. CONCLUSION

The process presented successfully demonstrates an auto-
matic reconstruction approach from RGB-D frames to final
textured volumetric representation. The merging and adapta-
tion of existing techniques is instrumental in accomplishing
this reconstruction, including the use of camera-specific error
calculations for thresholds, and refactoring volumetric recon-
structions to work with per-object rigid transformations. The
resulting reconstruction demonstrates its ability to be applied
on real-world rigid specimen.

Future work includes parallelization of the system to im-
prove speed, and expanding the process to automatically
perform reconstruction on live data. Additionally, back-
calculating temporarily unavailable feature points can be ap-
plied to improve the quality of rigid motion estimations, and
increase the number of avaiable feature point data used in
a given frame. Finally, expanding this work to identify and
support hierarchical rigid motions and applying the work to
alternative specimen will also be explored.

This work provides a solid step in facilitating automated
reconstruction of dynamic objects, and demonstrates its appli-
cation to live specimen.

VI. ACKNOWLEDGEMENTS

Research supported by Alberta Innovates Technology Fu-
tures and the Computer Science department at the University
of Calgary. With permission from the Calgary Zoo. We wish
to thank Mark Sherlock for assisting with data collection and
Shannon Halbert for suggestions on figures.

REFERENCES

[1] Ylenia Chiari, Bing Wang, Holly Rushmeier, and Adalgisa Caccone.
Using Digital Images to Reconstruct Three-Dimensional Biological
Forms: A New Tool For Morphological Studies. Biological Journal
of the Linnean Society, 95(2):425–436, 2008.

[2] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson,
Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph
Rhemann, David Kim, Jonathan Taylor, Pushmeet Kohli, Vladimir
Tankovich, and Shahram Izadi. Fusion4d: Real-time performance
capture of challenging scenes. ACM Trans. Graph., 35(4):114:1–114:13,
July 2016.

[3] Peter L. Falkingham. Low Cost 3D Scanning Using off the Shelf Video
Gaming Peripherals. Journal of Paleontological Techniques, (11):1–9,
June 2013.

[4] Oscar Fernandez, Elsbeth van Dam, Lucas Noldus, and Remco
Veltkamp. Robust Point Cloud Segmentation of Rodents using Close
Range Depth Cameras in Controlled Environments. In Visual Obser-
vation and Analysis of Animal and Insect Behavior (VAIB’14), ICPR
Workshop, August 2014.

[5] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and Reso-
lution of Kinect Depth Data for Indoor Mapping Applications. Sensors,
12(2):1437–1454, 2012.

[6] Scott Krig. Interest Point Detector and Feature Descriptor Survey. In
Computer Vision Metrics: Survey, Taxonomy, and Analysis, pages 217–
282, Berkeley, CA, 2014. Apress.

[7] D.G. Lowe. Object Recognition from Local Scale-Invariant Features.
In Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, volume 2, pages 1150–1157, 1999.

[8] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, and Andrew Fitzgibbon. KinectFusion: Real-
time Dense Surface Mapping and Tracking. In Proceedings of the
2011 10th IEEE International Symposium on Mixed and Augmented
Reality, ISMAR ’11, pages 127–136, Washington, DC, USA, 2011.
IEEE Computer Society.

[9] Samunda Perera and Nick Barnes. Maximal Cliques Based Rigid Body
Motion Segmentation with a RGB-D Camera. In Proceedings of the
11th Asian Conference on Computer Vision - Volume Part II, ACCV’12,
pages 120–133, Berlin, Heidelberg, 2013. Springer-Verlag.

[10] David A. Ross, Daniel Tarlow, and Richard S. Zemel. Learning
Articulated Structure and Motion. Int. J. Comput. Vision, 88(2):214–
237, June 2010.

[11] Radu Bogdan Rusu and Steve Cousins. 3D is Here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 9-13 2011.

[12] Joaquim Salvi, Carles Matabosch, David Fofi, and Josep Forest. A
Review of Recent Range Image Registration Methods with Accuracy
Evaluation. Image and Vision Computing, 25(5):578 – 596, 2007.

[13] Olga Sorkine. Least-Squares Rigid Motion Using SVD, Feb 2009.
Technical Notes.

[14] Charlotte Winter. 3D Laser Scanning of Taxidermy Owls, Apr 2012.
Year End Exhibition - Shrewsburys College of Art & Technology.

[15] Jianxiong Xiao, A. Owens, and A. Torralba. SUN3D: A Database of
Big Spaces Reconstructed Using SfM and Object Labels. In Computer
Vision (ICCV), 2013 IEEE International Conference on, pages 1625–
1632, Dec 2013.


