
Adaptive Atlas of Connectivity Maps

Ali Mahdavi-Amiri? and Faramarz Samavati ??

University of Calgary

Abstract. The Atlas of Connectivity Maps (ACM) is a data structure
designed for semiregular meshes. These meshes can be divided into reg-
ular, grid-like patches, with vertex positions stored in a 2D array asso-
ciated with each patch. Although the patches start at the same resolu-
tion, modeling objects with a variable level of detail requires adapting
the patches to different resolutions and levels of detail. In this paper,
we describe how to extend the ACM to support this type of adaptive
subdivision. The new proposed structure for the ACM accepts patches
at different resolutions connected through one-to-many attachments at
the boundaries. These one-to-many attachments are handled by a linear
interpolation between the boundaries or by forming a transitional quad-
rangulation/triangulation, which we call a zipper. This new structure for
the ACM enables us to make the ACM more efficient by dividing the
initial mesh into larger patches.

Keywords: Atlas of Connectivity Maps, Adaptive Subdivision, Data
Structure

1 Introduction

Semiregular models are very common in computer graphics, appearing in sub-
division and multiresolution surfaces, Digital Earth representations and many
parametrization techniques. Semiregular models are made of a set of regular
patches that are attached to each other and the extraordinary vertices may only
be located at the corner of patches [28, 27]. These models result from applying
repetitive refinements on a model with arbitrary connectivity (see Figure 1). In
a semiregular model, most vertices and faces are regular, allowing one to design
an efficient data structure called the Atlas of Connectivity Maps (ACM) [1]. In
the ACM, the connectivity queries within each patch are handled by simple alge-
braic operations and, to transit from one patch to another, simple pre-calculated
transformations are used. In addition, there exists a hierarchy between the coarse
and refined faces of each patch that factors into the design of the ACM. Consider
Figure 1, which shows patches before and after refinement. The ACM also pro-
vides simple algebraic relations to support such a hierarchical correspondence
between faces and vertices, which proves to be advantageous in applications such
as mesh editing and multiresolution.
? amahdavi@ucalgary.ca

?? samavati@ucalgary.ca

2 Ali Mahdavi-Amiri and Faramarz Samavati

Although ACM is efficient for supporting semiregular models in which all the
patches have the same resolution (Figure 1 (b)), we wish to support adaptive
refinement, where different regions of the mesh can have different resolutions sat-
isfying a geometric or a user specified condition (e.g. smoothness). The original
description of the ACM considers a connectivity map for each patch of a given
semiregular model and it is useful for meshes that are uniformly refined. It is not
designed for adaptive scenarios. In this paper, we extend the ACM to support
adaptive refinement by modifying its structure to support patches at different
resolutions. To adaptively refine a connectivity map, it is split into an optimized
number of new connectivity maps. Necessary transformations for traversing be-
tween the connectivity maps are also calculated for each new connectivity map.
In the original description of ACM, each connectivity map is connected to four
other connectivity maps and transformations between them are pre-calculated
and encoded into four integer numbers. However in the adaptive case, connec-
tivity maps can be connected to an arbitrary number of other connectivity maps
and transformations are not restricted to only four forms. We extend the ACM
in such a way that it can support connections to multiple connectivity maps by
maintaining a list of each connectivity map’s neighbors. For each neighbor, we
also store additional adjacency information, from which transformations are cal-
culated using simple algebraic relationships. Gaps between different resolutions
are resolved either by a set of transitioning triangles called zippers (see Figure 1
(c)) or by placing the vertices of the higher resolution patch on the edges of the
lower resolution patch using a linear interpolation.

Fig. 1. (a) Coarse model. (b) A semiregular model obtained by uniformly subdividing
the coarse model in (a). (c) Adaptively subdividing regions of interest. Patches at
different resolutions are connected by zippers highlighted with orange faces.

With our proposed structure for the ACM, we can achieve a more compact
representation of a mesh by forming larger initial connectivity maps. To do so,
we provide an algorithm that can find regular quadrilateral patches. We also
show that this algorithm significantly improves the performance of the ACM.

Lecture Notes in Computer Science: Authors’ Instructions 3

The paper is organized as follows: Related work is presented in Section 2.
An overview of the ACM is described in Section 3. The extension of the ACM
for adaptive subdivision is discussed in Section 4, followed by algorithms and
discussions for improving the ACM by considering larger patches in Section 5.
In Section 6, results and discussion are presented and we finally conclude in
Section 7.

2 Related Work

Many data structures have been proposed to work with polygonal meshes [3].
Among the proposed data structures, edge-based data structures and their vari-
ations such as the half-edge structure are very common for applications that
make liberal use of connectivity queries (e.g. subdivision) [11, 12]. As a result,
the half-edge structure is professionally implemented in many libraries such as
CGAL with the ability to support many types of subdivision schemes [4]. They
are also used to support adaptive subdivision, as they can handle very local con-
nectivity queries. In addition to subdivision, half-edges have also been extended
in supporting multiresolution surfaces [13]. Although half-edges are very use-
ful to support meshes with arbitrary connectivity, they do not benefit from the
regularity of meshes and the hierarchy between faces that result after applying
subdivision.

To benefit from the regularity and hierarchy of patches obtained from subdi-
vision, some hierarchical data structures have been proposed. Quadtrees are one
of the most common data structures used to support subdivision, particularly
when the factor of refinement is four (e.g Loop and Catmull-Clark subdivi-
sion) [9, 10, 24, 25]. Variations on quadtrees, such as balanced quadtrees, have
been proposed for adaptive subdivision in order to establish smooth transitions
between patches [29]. A quadtree is balanced if any two neighboring nodes differ
at most one in depth. However, since quadtrees generally require many hierar-
chical connections to maintain the hierarchy of faces, other data structures have
been proposed that are specifically designed for subdivision. Some of these data
structures are based on indexing methods specific to the type of subdivision.
Shiue et al. use a 1D spiral indexing for subdividing quadrilateral and triangular
meshes in [6] and use the same indexing method to employ the GPU in subdi-
viding meshes with arbitrary topology [5]. Some patch-based methods have been
also proposed for subdivision schemes in which each patch is separately stored
in a 2D array [7, 8]. These data structures are very efficient when employing
subdivision. However, they often restrict the initial connectivity of the mesh or
specific type of subdivision.

The ACM is a data structure that supports connectivity queries on semireg-
ular models. Similar to a patch-based data structure, the ACM stores the geo-
metric information of each patch in a 2D array. A unique aspect of the ACM is
its ability to handle global and inter-patch connectivity queries using inter-patch
transformations. In addition, the ACM comprehensively handles all existing re-
finements used in subdivision surfaces [27, 1, 2]. However, adaptive subdivision

4 Ali Mahdavi-Amiri and Faramarz Samavati

is not supported by the ACM since the primary assumption in its design is that
all patches are at the same resolution.

Several adaptive subdivision methods have been proposed. In these methods,
the geometry and the connectivity of the original subdivision scheme are modi-
fied to maintain the adaptivity. Geometric modifications to vertices in a locally
subdivided region are handled differently [15, 23, 16, 14]. Moreover, since cracks
may be created in the transition from a coarse region to a smooth region, the
connectivity has to be modified. While directly connecting the newly inserted
vertices to existing vertices is a solution [15], more sophisticated approaches have
been taken, such as red-green and incremental adaptive subdivision. In red-green
algorithm, faces with one crack are bisected (green triangulation) while faces with
more than one crack per edge are split into four (red triangulation) [21]. Under
the incremental adaptive subdivision, a one ring neighborhood is introduced to
transition from a smooth region to a coarse region, and in the process avoids high
valence vertices and skinny triangles [18–20]. In addition, Pannozo and Puppo
designed a method for adaptive Catmull-Clark subdivision by limiting the tran-
sitional polygons to pentagons and triangles [22]. The main challenge to creating
an efficient data structure for adaptive subdivision is how to handle the change
in connectivity. We provide two solutions to handle connectivity modifications
by providing transitional domains (zippers) between coarse and fine connectiv-
ity maps, or linearly interpolating the boundary edge between a high and low
resolution connectivity map.

3 Overview of the ACM

In this section, we provide an overview of the ACM [1]. As mentioned earlier, the
ACM is designed for semiregular meshes, which are made of connected regular
patches resulting from a regular refinement (Figure 2). Each patch i is assigned to
a 2D domain for which a 2D coordinate system is considered. This 2D domain
along with its connectivity information is called a connectivity map (CM(i)).
In an ACM, an array of connectivity maps CM is stored for a semiregular
model with M patches in which CM(i) (0 ≤ i < M) refers to the ith patch
of the model. The coordinate system of CM(i) is used to index vertices within
a 2D location array that records the 3D positions of the vertices through the
resolutions. Connectivity queries for internal vertices of CM(i) are handled by
neighborhood vectors that are added to the index of a vertex (Figure 2 (c)).
As refinements are applied, the connectivity information of the model continues
to be maintained by the connectivity maps. Based on the type of refinement,
hierarchical relationships are defined for vertices and faces that are useful in
applications such as mesh editing and multiresolution.

The connectivity information between CM(i) and its neighboring connectiv-
ity maps, denoted by CM(Nj(i)), should be recorded as well in order to support
connectivity queries outside of each patch. As a result, the of neighbors of CM(i)
are stored in an array, say neighbors. Inter-patch queries between CM(i) and
CM(Nj(i)) are handled by a set of transformations that map the coordinate

Lecture Notes in Computer Science: Authors’ Instructions 5

T

(0,0)
2

(4,0)
2

(4,4)
2

(0,4)
2

(a)

(b) (c)

Fig. 2. (a) A semiregular mesh. (b) For each patch, a 2D domain (connectivity map)
with a coordinate system is assigned. To move from one patch to another, a trans-
formation between the coordinate systems of two adjacent connectivity maps can be
used. (c) To index vertices, the coordinate system defined for each patch is used. The
subscript of the index refers to the resolution of the refinement. Neighborhood vectors
are used to obtain neighbors of internal vertices.

system of CM(i) to the coordinate system of CM(Nj(i)). To simplify these
transformations, they are encoded as integer numbers (Figure 3 (b)). Conse-
quently, CM(i) has a 2D array of 3D points storing the locations of vertices,
a 1D array recording CM(Nj(i)) and an array storing the inter-patch trans-
formation codes (see Figure 3 (a)). Since the corner vertices of CM(i) may be
irregular/extraordinary, a separate structure is used to store corner neighbors
of CM(i). This structure - a list for each corner - stores the connectivity maps
that are attached to each corner of CM(i).

CM(i)

{

 Point vertices[][];

 Int neighbors [4];

 Int transformations[4];

 List<int> corner_neighbors[4] ;

}
(a)

0 1

23

(b) (c)
i

j i

j

i

j

j

i

Fig. 3. (a) The elements that are stored for each connectivity map. (b) Inter-patch
transformations are encoded as integer numbers. (c) A corner (red vertex) can be
extraordinary. Connectivity maps attached to corners (in this case, two of them) are
saved in corner_neighbors.

The ACM can support a variety of refinements for applications such as sub-
division surfaces, Digital Earth frameworks and multiresolution [1, 2].

6 Ali Mahdavi-Amiri and Faramarz Samavati

4 Adaptive ACM

Although the ACM is an efficient data structure for semiregular models, adaptive
subdivision cannot be supported within the original formulation for the ACM.
One simple approach to make the ACM usable for adaptive subdivision is to
consider the possibility of allowing patches to exist at different resolutions (see
Figure 4 (a)). To do so, we only need to add an integer value recording the
resolution of each patch. However, this does not support the adaptive refinement
of faces within a patch (see Figure 4 (b)).

CM(i) CM(i)

f

Fig. 4. (a) Adaptive subdivision with patches at different resolutions. (b) Adaptive
subdivision with faces in a patch at different resolutions.

To support such a case, we need to enable the possibility of breaking a given
connectivity map CM(i) into a set of smaller connectivity maps. Let f ∈ CM(i)
be the face selected for adaptive subdivision (see Figure 4 (b)). A new connectiv-
ity map with a new coordinate systems should be assigned to f (see Figure 5).
The question is what should happen to the other faces of CM(i). As illustrated
in Figure 5 (b), one simple solution is to generate individual connectivity maps
for every face in CM(i). However, it is more efficient to divide these faces be-
tween larger connectivity map blocks (see Figure 5 (c)). To benefit from the
regularity of CM(i), we can categorize all possible cases of this division based
on the position of f ∈ CM(i). As shown in Figure 6, three possible cases exist
when CM(i) is divided to blocks. When f is located at the corner of, the bound-
ary of, or internal to CM(i), we split CM(i) into three, four, or five connectivity
maps respectively. Notice that while the dividing patterns are not unique, the
number of blocks in each case is minimal. Coordinate systems aligned with that
of CM(i) are assigned to each new connectivity map (Figure 6).

Dividing a connectivity map into these blocks requires that we support one-
to-many attachments between connectivity maps (see Figure 7 (a)). These one-

Lecture Notes in Computer Science: Authors’ Instructions 7

(a) (b) (c)

f

Fig. 5. (a) Face f ∈ CM(i) is supposed to be subdivided, therefore CM(i) has to be
split. (b) Simple and inefficient solution for splitting CM(i) by assigning a connectivity
map to each face. (c) A more efficient split of CM(i) that benefits from the regularity
of CM(i).

(a) (b) (c)

Fig. 6. CM(i) is split into three, four, or five connectivity maps when f is located at
(a) a corner of, (b) a boundary of, or (c) internal to CM(i).

to-many attachments are not supported in the original ACM, as connectivity
maps are only connected to one neighbor along each boundary edge. Here, we
show how to extend the ACM to support such one-to-many attachments at
boundary edges.

To store the 3D locations of vertices, we still use a 2D array. A list recording
the connectivity information at the corners is also still sufficient. Hence, we only
need to change the neighbors array, which we accomplish by changing it to an
array of lists of neighbors (Figure 7). In the original ACM, all possible transfor-
mations are encoded in four integer numbers. However, due to the existence of
one-to-many attachments, it may be the case that more complex transformations
map a connectivity map to one of its side neighbors. As a result, a new method of
storing transformations has to be used that is flexible enough to include any type
of transformation. To do so, the range of vertices connected to CM(i) along a
boundary edge is stored. To capture this, we store the indices of each neighbor’s
first and last vertices along the shared boundary edge. For example, in Figure 7,
CM(i) is connected to its neighbor (N0) at indices (e, f)ŕ and (g, h)ŕ (Figure 7
(b)). These two indices are both stored for CM(i). Using these two indices and
the relative positions of these two connectivity maps, transformation T0 that
maps the coordinate system of CM(i) to N0 is calculated. Similarly, (s, t)r̃ and
(u, v)r̃ are used to calculate T1 (Figure 7 (c)). Consequently, we do not need to

8 Ali Mahdavi-Amiri and Faramarz Samavati

explicitly store transformations as they can be found from the indices. Therefore,
our adaptive ACM has five components, as listed in Figure 7 (d).

(a)

CM(i)

T0 T1

(b)

CM(i)

(a,b)r (c,d)r

(e,f)r’ (g,h)r’

T0

CM(i)

{

 Point vertices[][];

 List<int> corner_neighbors[4];

 List<int> neighbors [4];

 List<index> Index_neighbors[4];

 int resolution;

} (d)(c)

CM(i)

(w,x)r(c,d)r

(s,t)r
~T1 (u,v)r

~

N0 N1

Fig. 7. (a) CM(i) is connected to two connectivity maps N0 and N1. Transformations
T0 and T1 are necessary to traverse these neighbors. (b), (c) The transformations that
map a vertex in CM(i) to its neighbors are determined by storing necessary indices
from the neighboring connectivity maps. (d) The new structure of the ACM.

v0

(b) (c)

v1

(d)(a)

Fig. 8. (a) There exists ambiguity in determining the neighbors of a vertex when it
is shared between a coarse and fine connectivity map. (b) The geometry of the blue
vertices is obtained using regular refinement filters when two patches have the same
resolution. (c) Two connectivity maps at two different resolutions. The white vertices
at the boundary are linearly interpolated. (d) An example of refinement where vertices
along the boundary between two connectivity maps at different resolutions are linearly
interpolated.

When two neighboring patches have different resolutions, this creates an
ambiguity in the definition of a vertex’s neighborhood. For instance, the green
vertex in Figure 8 (a) has two different sets of neighbors depending on whether
we consider it from the high or low resolution patch. Hence, this ambiguity in
the neighborhood definition should be somehow addressed based on the needs
of the application. Using the adaptive ACM, connectivity information between
patches is accessible even when they are at two different resolutions. Therefore,
any adjacency queries or geometric modifications on the vertices needed to per-

Lecture Notes in Computer Science: Authors’ Instructions 9

form adaptive subdivision remain possible. For example, a possible method for
performing adaptive subdivision is to smoothly subdivide patches to a desired
resolution (Figure 8 (b)) and linearly interpolate the vertices on boundary edges
shared between high and low resolution patches to avoid cracks (Figure 8 (c)).
In this case, the geometry of the ith boundary vertex on the high resolution
patch is calculated by i

n (v1 − v0) + v0 where n is the number of vertices on the
high resolution patch and v0 and v1 are vertices on the low resolution patch.
Figure 8 (d) illustrates an example where a mesh is subdivided using Catmull-
Clark subdivision and the edges between two patches at two different resolutions
are linearly interpolated.

Fig. 9. (a) Linear subdivision along the boundaries of the faces does not smooth the
hand of the Teddy. (b) Faces can be smoothly subdivided. Faces at the coarse resolution
can be rendered as polygons. (c) Zippers can be used to connect smooth faces to coarse
faces.

Although linearly subdividing patches is useful to insert more vertices and
create low scale features (see Figure 15), in some cases it may produce unwanted
artifacts, as illustrated in Figure 9 (a). An example of such a scenario is in Dig-
ital Earth frameworks, in which patches might have different resolutions and
vertices are projected to the sphere. As a result, it would be desirable to be
able to smoothly subdivide or modify the geometry of all vertices in a patch. To
avoid artifacts, we can can render the low resolution faces as polygons rather
than quads, with the edges of the polygons aligned with the vertices of the high
resolution quads (see Figure 9 (b)). To obtain a mesh with higher quality, the
high resolution patches can be connected to low resolution patches using transi-
tional quadrangulations or triangulations called zippers (see Figure 9 (c)) [26].

These zippers are applicable for triangles and quads. Consider two connec-
tivity maps CM(i) and CM(j) with m and n faces (m > n), respectively, along
the common boundary. To connect CM(i) to CM(j), one simple solution is to
insert a vertex in the adjacent triangle (or quad) strip of the lower resolution
connectivity map or in the gap between these two connectivity maps. We can
then simply connect all vertices of CM(i) to CM(j) (Figure 10 (a)). However,

10 Ali Mahdavi-Amiri and Faramarz Samavati

this is not a good solution due to the existence of high valence vertices and
skinny triangles. A better solution is to insert m

n vertices that connect m
n num-

ber of faces in CM(i) to a face in CM(j) (Figure 10 (b)). We can achieve an
even better transition by inserting extra vertices and requadrangulating or re-
triangulating the zipper as shown in Figure 9 (c) and Figure 10 (c). Figure 11
illustrates an example of zippers on the surface of the Earth. Note that these zip-
pers can be formed on the fly using a simple algorithm, therefore an additional
data structure is not needed.

(a) (b) (c)

Fig. 10. (a) A zipper with one high valence vertex produces poor triangles (b) Adding
more vertices to the zippers produces better triangulations. (c) It is possible to add
vertices and retriangulate the zipper in (b) to achieve a better transition from a high
resolution connectivity map to a low resolution one.

(a)
(b)

Fig. 11. (a) Zipper between two triangular connectivity maps. (b) Connectivity maps
and zippers on a portion of the Earth.

Lecture Notes in Computer Science: Authors’ Instructions 11

5 Compact ACM

In the original ACM, a connectivity map is assigned to each quad at the coarsest
resolution (i.e. control mesh) where each connectivity map has four neighbors
(See Figure 12 (a)). The boundary vertices of each connectivity map are du-
plicated at each neighbor to obtain a separate, simple quadrilateral domain for
each connectivity map. By merging two connectivity maps into one, such rep-
etitions can be discarded and a more efficient ACM is obtained (See Figure 12
(c)). Using the adaptive ACM, connectivity maps of any size (m × n) are ac-
ceptable, and they can have multiple neighbors (See Figure 12 (b)). Therefore,
in an adaptive ACM, it is possible to combine several initial connectivity maps
into one connectivity map as long as they form a quadrilateral domain.

(a) (b)

(c)

Fig. 12. (a) The original ACM, where a connectivity map is assigned to each individual
quad at the first resolution. (b) Adaptive ACM supports larger initial connectivity
maps. (c) When two connectivity maps are combined, duplicated vertices are discarded.

We systematize our approach to this problem by proposing a simple algorithm
that has three main functions: Pair, Union, and CleanUp (see Algorithm 1).
Our algorithm takes a list of connectivity maps (CM) as input and outputs
a list of combined connectivity maps denoted by l. In the Pair function, two
neighboring connectivity maps CM(i), CM(j) ∈ CM are combined and added
to l and discarded from CM (see Figure 13 (a)). This process continues until
no connectivity map with a neighbor in CM exists, at which time the isolated
connectivity maps (connectivity maps that do not have any neighbor in Q) are
added to l. The Union function combines neighboring connectivity maps in l
that share the same number of vertices at their common boundaries (Figure 13
(b)). In CleanUp, connectivity maps with a small dimension (usually 2 × 2,
m × 1, or 1 ×m) are divided into a number of connectivity maps that can be
combined with their neighbors (Figure 13 (c)). Union and CleanUp will be called
interchangeably until no more modifications occur. Note that since connectivity

12 Ali Mahdavi-Amiri and Faramarz Samavati

maps each need a coordinate system, after combining two connectivity maps, a
coordinate system aligned with the coordinate system of one of the connectivity
maps is chosen for the new connectivity map.

Data: Mesh M given by a list of connectivity maps denoted by CM
Result: List l of combined Connectivity Maps.
Pair();
while There are modifications do

Union();
CleanUp();

end
Algorithm 1: An algorithm to create the ACM by combining patches into
connectivity map blocks.

(a) (c)

(b)

Fig. 13. (a) Pair, (b) Union, and (c) CleanUp.

Table 1 lists the number of connectivity maps for several models when the
algorithm is and is not applied. As apparent, this algorithm significantly reduces
the number of connectivity maps. As a result, there are fewer repetitive vertices
and less redundancy in the resulting ACM. For instance, after three applications
of Catmull-Clark subdivision on the Big Guy model, about 30000 redundant
vertices are removed if the connectivity maps are combined using the proposed
algorithm. Figure 14 illustrates the models that are used in Table 1. Conse-
quently, we can conclude that, using the adaptive ACM, the performance of the
ACM is significantly improved and adaptive subdivision is also supported.

Table 1. Number of connectivity maps in the original ACM and adaptive ACM. The
reduction in the number of connectivity maps is apparent.

Models ACM AACM
Cube 6 3
Teddy 272 45
Big Guy 1450 191

Monster Frog 1292 187

Lecture Notes in Computer Science: Authors’ Instructions 13

Fig. 14. (a) Teddy, (b) Monster Frog, (c) Big Guy stored in an adaptive ACM.

6 Comparisons and Results
Using the adaptive ACM, we no longer need to uniformly refine an entire model
to add further details, and can efficiently model a wider variety of objects. For
example, as illustrated in Figure 15, we can add local low scale details such
as engravings. Using the algorithm for compacting the connectivity maps, we
can also join together connectivity maps created from splitting the connectiv-
ity maps during adaptive refinement. For instance, as illustrated in Figure 15
(a), adaptively subdivided faces on the neck of the Big Guy from two different
connectivity maps (blue and purple) are joined into a single connectivity map
(red).

The ACM performs efficiently in comparison to other data structures em-
ployed for adaptive subdivision. Consider the case illustrated in Figure 5, in
which face f ∈ CM(i) is subdivided. CM(i) is an N ×N patch obtained from
subdividing a coarse face C at the first resolution. We compare the memory
consumption of the adaptive ACM with a half-edge structure and a quadtree;
two standard data structures used to support adaptive subdivision. We also dis-
cuss the efficiency of zippers in comparison to red-green rules and incremental
adaptive subdivision.

In the case illustrated in Figure 16, three connectivity maps are stored with
dimensions ((N + 1)×N), (2×N), and (3× 3). The connections between these
connectivity maps are also stored in an adaptive ACM through 12 additional
indices. By contrast, a half-edge data structure needs to store (≈ (5×N×N)+12)
for half-edge objects as well as ((N + 1)× (N + 1) + 5) vertices and (N ×N + 3)
faces. In adaptive ACM, (N + 2) more vertices are needed, though we avoid
(≈ (5 × N × N) + 12) pointers for edges and (N × N + 3) faces. Hence, by
respecting the regularity of the patches in an adaptive ACM, a large amount of
memory can be saved.

It is possible to use quadtrees when a 1-to-4 refinement is used. As a result,
a quadtree is often used to store N × N patch when N = 2M . In this case,

14 Ali Mahdavi-Amiri and Faramarz Samavati

Fig. 15. (a) The Big Guy is adaptively subdivided on its belly and neck. Fine faces
resulting from adaptively subdividing two different connectivity maps on its neck (pur-
ple and blue) are merged into a single connectivity map (red). (b) The hands and legs
of Teddy are adaptively smoothed and some low scale details are added to the lips and
the eyes of using adaptive refinement and local vertex manipulation. (c) The caliber of
the Bullet is engraved on its back using adaptive refinement.

4
(

1−4M

1−4

)
pointers are needed to identify the resolutions of the patches. For

instance, for the patch illustrated in Figure 16, 24 pointers are needed. How-
ever, such pointers are unnecessary in adaptive ACM and the resolution of each
patch is directly accessible. In addition, a more compact adaptive ACM can be
formed by grouping first resolution faces with regular connectivity into a single
connectivity map, removing some redundant boundary vertices. Quadtrees, by
contrast, require a unique node be assigned to each face of the first resolution.

To connect a high resolution patch to a lower resolution patch, we use zippers.
Zippers are the quadrangulation or triangulation of the lower resolution patch (or
the gap between them) to avoid cracks. Red-green rules and incremental adap-
tive subdivision are two other methods that may be used to connect high resolu-
tion patches to lower ones and establish a progressive resolution change among

Lecture Notes in Computer Science: Authors’ Instructions 15

(a) (b) (d)(c)

Fig. 16. (a) f ∈ CM(i) is subdivided. (b) Half-edge pointers needed for edges of the
patch in (a). (c) Pointers needed to store the patch in (a). (d) Adaptive ACM and its
essential connectivity information.

faces. Although we can connect the connectivity maps using red-green rules or
incremental adaptive subdivision, we use zippers to avoid producing irregulari-
ties. Consider a coarse quadrilateral face subdivided two times. Both red-green
rules and incremental adaptive subdivision propagate the face splits through the
neighboring faces by creating irregular vertices and non-quadrilateral (triangu-
lar) faces, which are undesirable in a quadrilateral mesh. Using zippers, only
four extraordinary vertices and four triangles are formed, in comparison to the
40 extraordinary vertices and 36 triangles of red-green rules and incremental
adaptive subdivision. As a result, the adaptive ACM preserves the regularity
better than red-green rules and incremental adaptive subdivision. Figure 17 il-
lustrates this comparison. The zipper used in this example is the same zipper
shown in Figure 9 (c).

(a) (b) (c)

Fig. 17. (a) Red-green rule. (b) Incremental adaptive subdivision. (c) Zippers in the
adaptive ACM. Images (a) and (b) are taken from [20, 19].

Consequently, the adaptive ACM performs well when adaptively subdividing
models in which the patches are mostly regular. However, if the subdivision
is very local and the object exhibits irregular behaviors in the connectivity,
the ACM does not provide a significant advantage over data structures that
efficiently support arbitrary local modifications, such as the half-edge structure.

16 Ali Mahdavi-Amiri and Faramarz Samavati

As a result, we do not claim that adaptive ACM is the best data structure for
adaptive subdivision in all cases, but that it is advantageous for applications in
which there exists a relatively strong notion of regularity in the connectivity of
the object.

7 Conclusion and Future Work

By extending the ACM, adaptive subdivision is supported and a more efficient
ACM is achieved. We provide two solutions to support adaptive subdivision: one
that linearly interpolates the edges at the boundary and one that uses transi-
tional patches (zippers) to connect connectivity maps at two different resolutions.
An algorithm is also proposed to obtain a compact set of regular patches from
a given mesh. This algorithm performs fairly well and can discard redundant
vertices found on the boundaries of adjacent patches. Although the algorithm
provided in this paper significantly improves the ACM, future work may look
into discovering a more optimized algorithm as our proposed algorithm does not
guarantee the best possible set of regular patches in a given mesh. The adaptive
ACM can be extended and improved in several other possible directions. For
example, one possible problem is to determine the optimal zippers for a specific
type of face, refinement, or application.

References
1. Mahdavi-Amiri, A., Samavati, F.: Atlas of Connectivity Maps. J. Computers &

Graphics. 1–11 (2014).
2. Mahdavi-Amiri, A., Harrison, E., Samavati, F.: Hexagonal connectivity maps for

Digital Earth. International Journal of Digital Earth. 1–11 (2014).
3. De Floriani, L., Magillo, P.: Multiresolution Mesh Representation: Models and Data

Structures. Tutorials on Multiresolution in Geometric Modelling. 363–418 (2002).
4. Kettner, L.: Halfedge Data Structures : CGAL User and Reference Manual. (2013).
5. Shiue, L., Jones, I., Peters, J.: A pattern-based data structure for manipulating

meshes with regular regions. ACM Trans. Graph. 363–418 (2005).
6. Shiue, L., Peters, J.: A realtime GPU subdivision kernel. Graphics Interfaces 2005.

153–160 (2005).
7. Peters, J.: Patching Catmull-Clark meshes. SIGGRAPH 00: Proceedings of the 27th

annual conference on Computer graphics and interactive techniques. 255–258 (2000).
8. Bunnell, M.: Adaptive tessellation of subdivision surfaces with displacement map-

ping: GPU Gems 2.(2005).
9. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann Publishers Inc. (2005).
10. Zorin, D., Schröder, P., Sweldens, W.: Interactive multiresolution mesh editing.

SIGGRAPH 97: Proceedings of the 24th annual conference on Computer graphics
and interactive techniques. 259–268 (1997).

11. Weiler, K.: Edge-Based Data Structures for Solid Modeling in Curved-Surface En-
vironments. Computer Graphics and Applications, IEEE. 21–40 (1985).

12. Kettner, L.: Designing a data structure for polyhedral surfaces. SCG ’98: Pro-
ceedings of the fourteenth annual symposium on Computational geometry. 146–154
(1998).

Lecture Notes in Computer Science: Authors’ Instructions 17

13. Kraemer, P., Cazier, D., Bechmann, D.: Extension of half-edges for the representa-
tion of multiresolution subdivision surfaces. The Visual Computer. 149–163 (2009).

14. Nießner, M., Loop, C., Meyer, M., Derose, T.:Feature-adaptive GPU Rendering of
Catmull-Clark Subdivision Surfaces. ACM Trans. Graph. 6:1–6:11 (2012).

15. Müller, H., Jaeschke, R.: Adaptive Subdivision Curves and Surfaces. In Proceedings
of the Computer Graphics International 1998 (CGI ’98). 6:1–6:11 (1998).

16. Kobbelt, L.:
√

3 Subdivision. Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques. 103–112 (2000).

17. Guiqing, L., Weiyin, M., Hujun, B.:
√

2 Subdivision for quadrilateral meshes. 180–
198 (2004).

18. Pakdel, H., Samavati, F.: Incremental subdivision for triangle meshes: International
Journal of Computational Science and Engineering. 80–92 (2007).

19. Pakdel, H., Samavati, F.: Incremental Catmull-Clark subdivision: Fifth Interna-
tional Conference on 3-D Digital Imaging and Modeling 2005 (3DIM 2005). 95–102
(2005).

20. Pakdel, H., Samavati, F.: Incremental Adaptive Loop Subdivision: Computational
Science and Its Applications - ICCSA 2004. 237–246 (2004).

21. Andrew, R.B., Sherman, A.H, Weiser, A.: Some Refinement Algorithms And Data
Structures For Regular Local Mesh Refinement: Scientific Computing. 3–17 (1983).

22. Panozzo, D., Puppo, E.: Implicit Hierarchical Quad-Dominant Meshes: Comput.
Graph. Forum. 1617–1629 (2011).

23. Li, G., Ma, W., Bao, H.:
√

2 subdivision for quadrilateral meshes: Vis. Comput.
180–198 (2004).

24. Loop, C.: Smooth Subdivision Surfaces Based on Triangles: Masters Thesis, Uni-
versity of Utah, Department of Mathematics. (1987)

25. Catmull. E, Clark. J: Recursively generated B-spline surfaces on arbitrary topo-
logical meshes: Computer-Aided Design. 350–355 (1978)

26. Heredia, V. M, Urrutia. J: On Convex Quadrangulations of Point Sets on the Plane.
Lecture Notes in Computer Science, Springer. 38–46 (2005)

27. Mahdavi-Amiri, Ali: ACM: Atlas of Connectivity Maps : PhD Thesis, University
of Calgary, Department of Computer Science. (2015)

28. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., Zorin, D.:
State of the Art in Quad Meshing: Eurographics STARS. (2012)

29. Har-Peled, S.: Geometric approximation algorithms (Vol 173): Providence: Amer-
ican mathematical society. (2011)

