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Abstract

Semiregular models are now ubiquitous in computer graphics. These models are constructed by refining a model
with an arbitrary initial connectivity. Due to the regularity enforced by the refinement, the vertices of semiregular
models are mostly regular. To benefit from this regularity, it is desirable to have a data structure specifically designed
for such models. We discuss how to design such a data structure, which we call the atlas of connectivity maps (ACM)
for semiregular models. In an ACM, semiregular models are divided into regular patches. The connectivity between
is captured at the coarsest resolution. In this paper, we discuss how to find these patches in a given semiregular model
and how to set up the ACM. We also show some of the benefits of this data structure in applications such as the
multiresolution framework. ACM can support a variety of different multiresolution frameworks including compact
and smooth reverse subdivision methods. The efficiency of ACM is also compared with a standard implementation of
half-edge.

1. Introduction

Semiregular models are very common in computer
graphics [1]. These models are obtained by applying
repetitive refinement on an arbitrary initial mesh or they
may be constructed by a parametrization method (Fig-
ure 1). Applying refinement on a mesh produces a large
large number of vertices. However, these vertices are
mostly regular, with irregular vertices corresponding to
extra-ordinary vertices of the initial unrefined model.
This regular structure should be taken into considera-
tion in order to efficiently capture the connectivity in-
formation of the model. Additionally, the geometry of
the vertices (coming from sources such as subdivision
schemes, projections, parametrization) should also be
recorded.

Figure 1: A semiregular mesh with mostly regular vertices.

In [2], we introduce ACM: Atlas of Connectivity
Maps to efficiently capture the connectivity between the
regular patches of a semiregular model. These patches,

which can be obtained from an arbitrary refinement, are
mapped onto a set of quadrilateral 2D domains. The
connections between vertices and faces are captured by
these 2D domains (connectivity maps) and their inter-
connections. The ACM can be used as an efficient data
structure for semiregular meshes to handle connectivity
queries.

In ACM, a coordinate system is assigned to each con-
nectivity map such that each vertex has integer coordi-
nates. These integer coordinates are used to index the
faces and vertices and handle neighborhood queries. A
hierarchical relationship exist between connectivity of
vertices and faces at various resolutions. To establish
this hierarchical relationship, we apply rotation, transla-
tion, and/or scaling to transform the coordinate system
of one resolution to another. The vertices’ 3D coordi-
nates are stored in 2D arrays associated with each con-
nectivity map and indexed by the vertices’ connectivity
map coordinates.

We also categorize regular refinements for quad
meshes, and for each category, we propose methods
to handle adjacency and hierarchical queries using our
data structure. We then describe how to support trian-
gle meshes and discuss applications such as subdivision
and multiresolution.

In this paper, we extend our previous work [2] in sev-
eral different ways. In [2], we describe how to set up an
ACM for an initial coarse mesh with arbitrary connec-
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tivity. We then make the semiregular model by applying
regular refinements on the initial coarse mesh. Here, we
present how to set up an ACM for a given semiregular
mesh and associate a connectivity map with each regu-
lar patch of the mesh. We also describe how to handle
sharp features such as creases and corners.

One of the immediate applications of the ACM is
the support of meshes resulting from different subdi-
vision methods. In [2], we note that ACM is efficient
both in terms of space and time at supporting connec-
tivity queries of subdivision surfaces. A multiresolu-
tion framework, which allows one to transition between
the high and low resolution versions of a model with-
out losing details, can be developed by pairing subdi-
vision with its reverse subdivision scheme. The ACM
can also be efficiently used to support multiresolution
frameworks.

In [2], we describe how to support Catmull-Clark,
Loop, and

√
3 reverse subdivision. Here, we extend it

to support
√

2 reverse subdivision. In addition, support-
ing the recently developed ”smooth reverse subdivision”
multiresolution framework is also presented. We also
provide the filters for reverse

√
2 and

√
3 reverse and

smooth reverse subdivision.

We have compared the time and space efficiency of
our data structure with alternatives in [2]. The half-edge
data structure used for our comparison in [2] was imple-
mented by ourselves and was not based on a standard
implementation. Here, we report the speed of the half-
edge data structure implemented in CGAL to make a
comparison with a standard implementation of the half-
edge data structure [3].

We organize the paper as follows: in Section 2 some
related work is presented. We provide an overview and a
detailed description of the ACM in Section 3. A method
is provided in Section 4 to adapt the ACM to a given
high resolution semiregular model. A representation for
sharp features in the ACM is described in Section 5.
In Section 6, an efficient technique for multiresolution
representations for Catmull-Clark, Loop,

√
2, and

√
3

is proposed. We also describe how to handle smooth
reverse subdivision using the ACM. We compare our
work with CGAL as an efficient implementation of half-
edge in Section 7. Future work and limitations are pre-
sented in Section 8 and we conclude in Section 9. We
also provide the filters of

√
2, and

√
3 compact reverse

subdivision in Appendix A, and Appendix B and the
filters of smooth reverse

√
2 and

√
3 subdivision in Ap-

pendix C.

2. Related Work

Data structures for semiregular models can be found
primarily in literature related to subdivision and mul-
tiresolution. We present work related to our proposed
method, divided into two categories: subdivision and
multiresolution.

Subdivision: Subdivision is a well-studied subject
in computer graphics. There are many subdivision
schemes, such as Loop, Catmull-Clark, Doo-Sabin,

√
2

and
√

3 subdivision [4, 5, 6, 7, 8]. Subdivision is typ-
ically a two-step process: one step of refinement fol-
lowed by an averaging step. The relationship between
lattices at different resolutions resulting from different
types of refinement has been previously classified in
[9, 10]. Our categorization of refinements is similar to
their work. However, we have classified subdivision to
assist in designing an efficient data structure to address
connectivity queries on an arbitrary connectivity model.

The half-edge data structure and its variations are
commonly used to model subdivision surfaces [11].
These data structures are designed for general topolog-
ical objects’ adjacency queries. However, the half-edge
data structure cannot be directly used for hierarchical
access. Furthermore, it does not benefit from the reg-
ularity of subdivision and, therefore, for objects with a
large number of vertices it becomes inefficient.

An alternative data structure that supports hierarchi-
cal operations is the quadtree [12]. Quadtrees are com-
monly used for hierarchical meshes, particularly for hi-
erarchical editing applications [13]. Although quadtrees
are quite effective at supporting hierarchy between res-
olutions, they need to store many pointers to maintain
their nodes’ conductivities and hierarchical dependen-
cies. To overcome this inefficiency, indexing methods
exist which assign a unique index to every node and
discard the tree structure. [12]. However, these in-
dexing methods are primarily designed to support hi-
erarchy and ignore adjacency relationships. Moreover,
since quadtrees are designed to support 1-to-4 refine-
ment, they cannot be directly used to support other re-
finements.

Patch-based refinement methods rely on data struc-
tures that are specifically designed for subdivision meth-
ods [14, 15, 16, 17, 18]. Here, meshes are divided into
patches and subdivision is separately applied to each
patch. Each patch is stored in an array and the con-
nectivity between the patches’ boundaries is handled
using repetitive points at the boundary edges or a first
resolution edge based data structure. These methods
are mostly designed for a specific type of refinement or
primitive shapes [15, 18]. Some of these data structures
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use spiral 1D indexing for vertices [16, 17]. Spiral in-
dexing complicates neighborhood access, especially for
non-immediate neighbors that are essential for applica-
tions like multiresolution. We instead use simple 2D do-
mains to maintain connectivity information and extend
patch-based methods to support all types of refinement.

Multiresolution: While subdivision generates high
resolution objects, multiresolution provides a means to
transition from high to low resolution and vice versa
[19]. Some multiresolution frameworks, though not all,
maintain the semiregularity of objects. This can be
achieved by reversing the process of subdivision (i.e.
via a reverse subdivision process) [20, 21, 22] or by
considering a property of the coarse vertices, such as
smoothness (computed via the Laplacian) [13]. Since
both the Laplacian and reverse subdivision use local op-
erators to coarsely sample the fine model, our proposed
method can handle these operations.

Olsen et al. [20, 21] provide a compact multireso-
lution framework using the concept of even/odd ver-
tices. At different resolutions, the even/odd labeling dis-
tinguishes multiresolution details from coarse vertices.
They use an edge based data structure to handle connec-
tivity queries and a hashing method to map vertices to
details or coarse vertices [23]. To show that our ACM
can efficiently support multiresolution frameworks, we
describe how to support the compact multiresolution
proposed in [20, 21] and compare the speed of our data
structure with [23].

To adapt the half-edge structure to multiresolution
frameworks, Kraemer et al. [24] modify this data struc-
ture by defining sequences of half-edges. Using this
multiresolution half-edge structure, it is possible to sup-
port primal and dual schemes. However, this data struc-
ture requires a large amount of memory for high res-
olution models due to the storing of all edges and an
extensive amount of time is needed to update the struc-
ture after each refinement. By comparison, our method,
saves a significant amount of memory and time.

3. ACM Description

In this section, we first provide an overview of ACM
and describe the basic ideas behind this method. After-
wards, we give a detailed description of ACM as well as
the essential elements of each connectivity map. In the
detailed description, a formal mathematical notation is
used to describe the method.

3.1. Overview of ACM
A semiregular model is made of a number of regu-

lar patches connected to each other. The connectivity of

each patch can be captured easily by a simple 2D do-
main with a 2D indexing method and then the geometry
of vertices can be recorded in a 2D array. The indices
of the vertices can be based on a simple Cartesian coor-
dinate system assigned to each 2D domain. While con-
nectivity queries between the vertices internal to each
patch are handled by simple neighborhood vectors, a
transformation is used to traverse from one patch to an-
other. These simple 2D domains and their interconnec-
tions can be maintained through the resolutions (for all
types of refinements) by applying a transformation (im-
posed by the refinement) to the coordinate system of
each 2D domain. In the following section, we formally
describe how to set up these 2D domains and the essen-
tial transformations for a variety of refinements.

3.2. Detailed Description

As mentioned earlier, semiregular meshes consist
of/are made of connected regular patches (Figure 2).
Each regular patch in an ACM is assigned a simple 2D
domain, this 2D domain and its connectivity informa-
tion in a mesh is called connectivity map (CM(i)). For
CM(i), a 2D coordinate system is used to index vertices.
An index (i, j)r refers to a 2D location array that stores
the 3D positions of vertices at resolution r. Connectivity
queries for vertices falling in CM(i) are handled using
vectors called neighborhood vectors. By adding simple
vectors to the index of a vertex, its neighbors are found.
Figure 2 (c) illustrates the indexing method for ver-
tices and the use of neighborhood vectors (1, 0), (−1, 0),
(0, 1), and (0,−1) to connect a vertex to its neighbors.

T

(0,0)
2

(4,0)
2

(4,4)
2

(0,4)
2

(a)

(b) (c)

Figure 2: (a) A semiregular mesh. (b) For each patch a 2D domain
(connectivity map) with a coordinate system is assigned. It is possible
to move from one patch to another by mapping the coordinate systems
of two adjacent connectivity maps. (c) The coordinate system of each
connectivity map is used to index vertices. Neighbors of vertices are
found using neighborhood vectors.

To record the connectivity of the entire model, CM(i)
records the adjacency information of its neighboring
connectivity maps CM(N(i)). To access CM(N(i)) from
CM(i), we use a transformation mapping the coordinate
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Table 1: Tre f and Tint for different refinements and subdivision methods. S , T , and R denote scaling, translation, and rotation. Subscripts e → o
and e→ o denote transitions from even to odd and odd to even resolutions.

Refinement Subdivision Tre f Tint

1-to-4 Catmull-Clark S ( 1
2 ) S (2)

1-to-4 Doo-Sabin S ( 1
2 )T ( 1

2 ,
1
2 ) S (2)T (−1

2 ,
−1
2 )

1-to-2
√

2e→o S ( 1
√

2
)R( π4 ) S (2)

√
2o→e S ( 1

√
2
)R(−π4 ) I

1-to-2 Simplesto→e S ( 1
√

2
)R( π4 )T ( 1

2 , 0) S (2)
Simplesto→e S ( 1

√
2
)R(−π4 )T (−1

2 ,
1
2 ) T (−1

2 ,
−1
2 )

system of CM(i) to the coordinate system of its neigh-
bor. These transformations are encoded as integer num-
bers, as shown in Figure 3 (b), to make the implemen-
tation and storage easier. As a result, each connectivity
map CM(i) has a 2D array of 3D points storing all ver-
tices’ locations, two 1D arrays recording the neighbors
CM(N(i)) of a connectivity map CM(i) and a transfor-
mation mapping the coordinate system of CM(i) to its
neighbors CM(N(i)). For a semiregular mesh with N
patches, an array of connectivity maps CM is stored.
Therefore, CM(i) in which 0 ≤ i < N refers to ith patch
of the model. Since the corners of CM(i) may be irregu-
lar, we also store a list of integers for each corner to cap-
ture its connectivity information (Figure 3 (c)). This list
stores the index of connectivity maps in CM attached to
each corner of CM(i). Figure 3 (a) illustrates the essen-
tial elements of each connectivity map.

CM(i)

{  

   Point        array [][] vertices; 

   Int        neighbors [4]; 

   Int        transformations[4];  

   List<int> array [4] corner_neighbors; 

}
(a)

0 1

23

(b) (c)
i

j i

j

i

j

j

i

Figure 3: (a) The elements of each connectivity map. (b) Transfor-
mations mapping the coordinate system of one connectivity map to
another are encoded as integer numbers. (c) The red vertex is a cor-
ner. Quads attached to corners are saved as well. Corners can be
extraordinary.

Each patch of a semiregular model can be treated as a
bounded lattice. As studied in [10], when a refinement
is applied on a lattice, the resulting lattice is transformed
by the refinement.

For example, the 1-to-4 refinement used in Catmull-
Clark subdivision imposes a scaling by 1

2 on the lattice
at the next resolution (Figure 4) . We call this trans-
formation Tre f (Figure 5 (b)). To convert these scaled
coordinates to integer coordinates, which are necessary
to refer to the 2D location array, we apply another trans-
formation called Tint (Figure 5(c)).

Figure 4: Applying Catmull-Clark subdivision on a refined cube.

(0,0)0 (1,0)0

(1,1)0(0,1)0

(0,0)1 (1,0)1

(0,1)1 (1,1)1

(0.5,0)1

(0.5,0.5)1

(0,0)1 (2,0)1

(0,2)1 (2,2)1

(1,0)1

(1,1)1

(a) (b) (c)

Re�ne Scale

(d)

Tref Tint

Figure 5: (a) a quad before refinement. (b) 1-to-4 refinement imposes
a scaling by 1

2 called Tre f . (c) Tint which is an scaling by two is
applied to get integer coordinates. (d) Red and black lattices are the
connectivity lattices before and after 1-to-4 refinement, respectively.

As we discussed earlier, the neighbors of a vertex
in a connectivity map CM(i) are found using vectors
called neighborhood vectors defined in the coordinate
system of CM(i). Since, after refinement, the connectiv-
ity of the vertices are affected by both transformations
Tre f and Tint, the neighborhood vectors are changed by
Tre f ◦ Tint in a transition from one resolution to another.
For example, Tre f ◦ Tint = I in 1-to-4 refinement. As a
result, the neighborhood vectors are the same after ap-
plying 1-to-4 refinement (Figure 6).

I

(1,0)r

(0,-1)r

(-1,0)r

(0,1)r (0,1)r+1

(0,-1)r+1

(1,0)r+1(-1,0)r+1

Figure 6: Neighborhood vectors at two successive resolutions of 1-to-
4 refinement. Neighborhood vectors are the same due to the identity
transformation.

In [2], we use the transformation imposed by each
refinement and provide a categorization of refinements.
For each category, we discuss how to maintain the struc-
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Figure 7: Top: 1-to-refinement of
√

2 subdivision [7]. Middle: 1-to-
4 refinement of Doo-Sabin subdivision [6]. Orange faces are shared
with other connectivity maps. Bottom: 1-to-2 refinement in Simplest
subdivision [25].

ture of the ACM. As illustrated in Figure 5(d), since
the lattice is only scaled by the refinement, 1-to-4 re-
finement falls in the category of ”Scaling, No Rota-
tion, No Translation”. In [2], we have discussed three
more categories: ”Scaling, Rotation, No Translation”,
”Scaling, No Rotation, Translation”, and ”Scaling, Ro-
tation, Translation”. For each category, we first find Tre f

by looking at the lattices at two successive resolutions
and then define Tint to obtain integer indices. Table 1
presents the transformations Tre f and Tint for different
subdivision schemes. The 1-to-2 refinements used for√

2 and simplest subdivision and the 1-to-4 refinement
used by Doo-Sabin subdivision are presented in Figure
7. The result of these subdivision schemes on a refined
cube and lattices of their refinements at two successive
resolutions are also illustrated in Figure 8. Further dis-
cussion of each category is presented in [2].

The ACM can be easily extended to triangular meshes
by pairing connected triangles. We can assign a connec-
tivity map to each triangle pair and treat it as a quad,
allowing us to continue using quadrilateral connectivity
map domains (Figure 9 (a)).

In order to create such a domain, we can pair ad-
jacent triangles to form a quad, creating a single con-
nectivity map. Suppose that we have a set of faces
F = { f1, f2, ..., fM}, we can pair fi with f j if fi and f j

are adjacent. Afterwards, both fi and f j are removed
from F and the process repeats until no adjacent faces
exist in F.

A complete pairing of triangles is possible and is

(a)

(b)

(c)

Figure 8: The lattices of different refinements and subdivision meth-
ods. (a) Scaling, rotation, no translation appearing in

√
2 subdivision

[7]. (b) Scaling, translation, no rotation appearing in Doo-Sabin sub-
division [6]. (c) Scaling, translation, rotation appearing in simplest
subdivision [25].

(0,0)
0 (1,0)

0

(1,1)
0

(0,1)
0

i

j

(a) (b)

(1,0)r

(0,-1)r

(-1,0)r

(0,1)r (1,1)r

(-1,-1)r

(c)
(0,0)

2
(4,0)

2

(4,4)
2

(0,4)
2

Figure 9: (a) A connectivity map assigned to a triangle pair. (b) Neigh-
borhood vectors of vertices in triangular meshes. (c) Applying 1-to-4
refinement twice on a triangular connectivity map.

computable in O(Mlog4M), where M is the number of
triangles [26, 27]. Triangles in F that remain unassigned
to a pair (isolated triangles) may each be assigned to a
half-empty connectivity map. As a result, isolated tri-
angles can be handled without compromising the data
structure (Figure 10). However, for the purposes of effi-
ciency, it is better to reduce the number of isolated trian-
gles by using methods that can make a pure quad mesh
from a given triangular one [27, 28].

Similar to quad meshes, various refinement methods
can be supported by ACM for triangular meshes. For
example, Figure 11 illustrates the result of Loop sub-
division, which uses a 1-to-4 refinement, on Venus and
Figure 10 illustrates the result of

√
3 subdivision with

1-to-3 refinement on a pawn . Each connectivity map is
colored differently.

4. Connectivity Maps Identification

In [2], we describe how to build an atlas of connectiv-
ity maps by assigning a connectivity map to each quad
or triangle pair at the coarse resolution, from which finer
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Figure 10: Applying
√

3 subdivision on the pawn model. Bottom:
zoomed screen shots of the head of the pawn. The isolated triangle
is shown in orange. The pink portion indicates the region formed
by subdividing the isolated triangle. Triangle pairs are shown with
different colors in (a) and (e).

Figure 11: Applying Loop subdivision on Venus. Each connectivity
map is in a different color.

resolutions may be found. However, there are many ap-
plications in which the semiregular model is at a high
resolution and we wish to assign an ACM structure to it.
For example, the models resulting from the parametriza-
tion methods proposed in [29, 30, 31] are semiregu-
lar. This means that the mesh can be considered as the
result of repetitive refinement on a coarse mesh. The
ACM may be a good data structure to handle adjacency
queries for these resulting models. As a result, it is
desirable to assign an ACM to a given high resolution
semiregular model.

For a given semiregular mesh M, we want to find
patches that cover all faces and vertices of M and as-
sign a connectivity map to each patch. The basic idea of
this method is to start from an irregular vertex and move
along two edges incident to this vertex and find a patch
connecting two irregular vertices. M can be the result
of any type of refinement. Here, we describe 1-to-4 re-
finement. Other cases are fairly similar.

Let v0 be an extraordinary vertex. v0 is considered be
the corner of a connectivity map. Given a face f , two

directions i and j are defined based on the two edges
incident to v0 in f . We consider two pointers moving
along i and j called counti and count j, illustrated with
green and pink arrows in Figure 12. counti and count j

start from v0 and move along both directions simulta-
neously until another irregular vertex v1 is met. The
quadrilateral patch along i and j including v0 and v1 is
stored as a connectivity map and removed from M. The
process is repeated until no face remains in M.

i

j

(a) (b) (c)

V0
V0 V1

Figure 12: (a) v0 is an irregular vertex. counti and count j , colored in
green and pink respectively, starting at v0. (b) counti and count j move
along i and j simultaneously. (c) counti and count j move until they
reach to an extraordinary vertex.

Consider face f including vertices w0, w1, w2, and
w3 in which w0 is extraordinary (Figure 13 (a)). In f ,
e0 connects w0 to w1 and e1 connects w1 to w2. We
consider the direction of e0 to be direction i in f and
counti needs to move along i starting at w0. Let tra-
verse ( f ,w1, e1) = ( fi, ei) where fi shares e1 with f and
ei , e1 is an edge in fi incident to v1. We determine tra-
verse ( f ,w1, e1) = ( fi, ei) and take the direction of ei to
be direction i in face fi. The process repeats for counti
starting at w1 and face fi in the direction of ei.

e0

e1 e1

ei

fif

f

fi

fj

w0 w1 w0 w1

w0 w1

w2 w2w2

e0

e1
ei

ej

(a) (b) (c)

f

Figure 13: (a) Face f , its edges, and vertices. v0 is extraordinary. (b)
To move along e0, face fi sharing e1 with f is found. (c) To move
along e0, in a triangular face f , first, fi sharing e1 with f is found and
then f j sharing ei with f j is found.

Given a triangular mesh, we should slightly modify
the algorithm. Consider w0 to be an extraordinary vertex
in face f including vertices {w0,w1,w2}. The edges e0
and e1 incident to w0 in f are found. Then, we determine
traverse ( f ,w1, e1) = ( fi, ei) and traverse ( fi,w1, ei) =

( f j, e j). The direction of e j is taken to be direction i in
f j, counti is assigned to w1 in f j, and the process repeats.

counti and count j simultaneously move k steps un-
til another extraordinary vertex wk is met. The k × k
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quadrilateral section including w0 and wk along counti
and count j is considered to be a patch. After finding a
patch and assigning a connectivity map to it, the i and j
directions together define the coordinate system of the
connectivity map. The vertex locations, the transforma-
tions mapping the coordinate system of a connectivity
map to its neighbors and the connectivity maps neigh-
boring each corner are stored in separate arrays.

It is possible for a patch to be identified that includes
more than one connectivity map. To be consistent with
the structure of the ACM, we find the smallest connec-
tivity map and split the bigger connectivity maps into
connectivity maps with equal dimensions. For instance,
if there exists a 16 × 16 connectivity map but mesh M
has a 4 × 4 connectivity map, the 16 × 16 connectivity
map is split into four 4 × 4 connectivity maps.

This algorithm, as described, is for the 1-to-4 refine-
ment used in Catmull-Clark or Loop subdivision. Other
refinements such as the 1-to-2 and 1-to-3 refinements
used in

√
2 and

√
3 subdivision, respectively, are han-

dled exactly the same. For some other refinements, we
may slightly modify the process. For example, for the 1-
to-4 refinement used in Doo-Sabin subdivision, we start
from the vertices of a non-quad face and move along
the quad faces until another non-quad face is met. As
a result, we need to know which refinement method the
given mesh has had applied.

The proposed algorithm is not only very simple but
it is also very efficient in terms of speed. Table 2 re-
ports the time needed to set up an ACM for high res-
olution semiregular models with different numbers of
faces. These models are also illustrated in Figure 14.
We have only used face-list vertex-list of a model to
adapt ACM to a given semiregular mesh since we only
need to traverse from one face to another and find ex-
traordinary vertices.

Table 2: Time (in seconds) required to set up an ACM for different
models.

Model #of Faces Time
Teddy 1028 1.81
Bullet 1536 0.45
Dog 2592 3.43
Seat 1152 0.32
Pawn 912 0.26

5. Sharp Features

Many realistic objects have sharp features such as
creases and corners. Subdivision methods handle sharp

Figure 14: Patches of semiregular models are found in the time re-
ported in Table 2. A connectivity map with a distinct color is assigned
to each patch.

features by treating some vertices and edges differently
along the creases or corners [32, 33].

To support creases, some edges are initially tagged
as sharp edges. Then, at each subdivision iteration, the
edges resulting from the initial sharp edges are tagged as
sharp and they are subdivided using curve subdivision
masks [33].

Here, the main task is to find the edges resulting from
iterative subdivision on a sharp edge. This hierarchi-
cal task can be addressed efficiently in the ACM. The
main questions are how to represent an edge and how to
find the resulting edges after subdivision. In the ACM,
an edge can be represented by a pair of vertices. Since
these two vertices have indices in the ACM, they can
be used to handle the task of hierarchically determining
all edges produced by the refinement of a sharp edge.
For example, if an edge connecting vertices vr = (a, b)r

and wr = (a + 1, b)r is considered to be sharp, all ver-
tices with index (c, 2nb)r+n,a ≤ c ≤ a + 2n, are con-
sidered to be sharp at the n the resolution after 1-to-4
refinement. As a result, iteratively tagging sharp edges
at intermediate resolutions is unnecessary and a tagging
at the coarsest resolution is enough. We can also use
this method to apply semi-smooth masks on boundary
edges. A semi-smooth mask (boundary mask) must be
applied on the boundary edge of any connectivity map
with a null neighbor.

This is also extendible to other types of refinement.
For example, the boundary and sharp edges are station-
ary at odd resolutions of

√
3 subdivision, hence we ap-

ply a curve subdivision scheme to the corresponding
vertices at every other resolution. That is, vertices with
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index (c, 3nb)r+2n, a ≤ c ≤ a + 3n are modified when an
edge connecting vertices vr = (a, b)r and wr = (a+1, b)r

is considered to be sharp. Figure 15 illustrates some re-
sults with sharp features and boundary edges.

Figure 15: Sharp features on the nose and ears of Teddy are notable in
comparison to the one which is subdivided smoothly. The edges at the
bottom of the cube are also sharp. The dog’s head also has boundary
edges that are subdivided using boundary masks.

6. Multiresolution

The multiresolution representation of a mesh con-
sists of a simple base mesh and a sequence of wavelet
coefficients called detail vectors at various resolutions
[34]. This representation provides a framework in
which it is possible to traverse between the levels of de-
tail/resolutions of a mesh. While subdivision methods
are used to create high resolution objects, reverse sub-
division can be used to decompose the high resolution
model to a low resolution version along with the details
lost in the process (wavelet coefficients) [35, 36]. In
this multiresolution framework, it is possible to define
a compact representation in which the storage require-
ments for the details and coarse vertices together equal
the storage requirement of the fine vertices. As noted
earlier, Olsen et al. [20] provides such a compact mul-
tiresolution. They categorize vertices into even and odd

vertices, with even vertices storing coarse vertex loca-
tions and odd vertices storing multiresolution details af-
ter reverse subdivision. For example, the vertex-vertices
and edge-vertices of Loop reverse subdivision are re-
spectively labeled as even and odd (see Figure 16). The
details of an even vertex, therefore, are found using a
linear combination of odd details in its neighborhood.

f0

f1

f2

f3
f4

fn

c0

c1

c2

c3c4

cn

d1

d2

d3
d4

dn

Loop RS

Figure 16: Vertex and face-vertices ( , and ) are replaced by
coarse vertices and details ( , and ).

Taking advantage of of this even/odd partitioning of
vertices could potentially help in creating a data struc-
ture. One possibility is to use an edge-based data struc-
ture with an additional structure such as a hash table to
encode even and odd vertices [23]. However, the ACM
can be used as an efficient data structure for this type
of multiresolution. In ACM, since each vertex has a
2D index, this index can be used to distinguish between
vertices and support a partitioning of the vertices. There
exists a variety of multiresolution frameworks that im-
pose a similar partitioning of vertices with different ge-
ometrical properties [37, 38]. Due to the possibility of
categorization of vertices using their indices, it is also
possible to efficiently support these methods.

In this section, we first describe our proposed data
structure for compact multiresolution frameworks based
on Catmull-Clark, Loop,

√
3, and

√
2 reverse subdi-

vision. We then describe smooth reverse subdivision
in this section, which has been proposed to reduce the
coarsening effects of compact multiresolution frame-
works. Each of these multiresolution frameworks are
expressed by geometric masks indicating the contribu-
tions of neighboring vertices to the final position of the
coarse vertices or details. The masks of smooth reverse
subdivision for Loop and Catmull-Clark have been pro-
vided in [37]. We also provide masks for

√
3 and

√
2

smooth reverse subdivision in Appendix C.
Catmull-Clark: The reverse schemes of Catmull-

Clark and Loop subdivision are respectively introduced
in [21] and [20]. Here, we discuss how to access the
neighbors of a coarse vertex and its corresponding de-
tails, which are essential operations in the reconstruc-

8



tion process.
When Catmull-Clark reverse subdivision is applied

on a semiregular mesh, vertex-vertices are replaced
by coarse approximations and face-vertices and edge-
vertices are replaced by details. In the even/odd cate-
gorization, vertex-vertices are tagged as even and face-
vertices and edge-vertices are tagged as odd. This cat-
egorization can be easily supported in ACM. A vertex
with index (a, b)r is replaced by a coarse approximation
at resolution r − 1 if a and b are both even, otherwise it
is replaced by a detail.

This representation of vertices can be extended to
several levels of reverse subdivision by using the men-
tioned hierarchical relationships. As a result, vertices
with indices (a, b)r after n levels of reverse subdivision
are coarse vertices if

⌊
a
2n

⌋
= a

2n and their corresponding

details are located at (c, d)r if
⌊

c
2n−1

⌋
= d

2n−1 . Figure 17
illustrates the application of Catmull-Clark reverse sub-
division to a connectivity map. To access the neighbors
of a coarse vertex and its corresponding details, scaled
neighborhood vectors are used. The structure of the
neighborhood vectors remains the same as in Figure 2
but they are scaled by 2n (after n levels of reverse sub-
division) to access the neighbors of a coarse vertex and
2n−1 to access the corresponding details (Figure 17).

RS RS

(a) (b) (c)

(1,0)

(0,1)

(0,-1)

(-1,0) (2,0)

(0,2)

(0,-2)

(-2,0) (1,0)

(0,1)

(0,-1)

(-1,0)no details (4,0)

(0,4)

(0,-4)

(-4,0) (2,0)

(0,2)

(0,-2)

(-2,0)

*2 *2*2

Figure 17: A subdivided connectivity map after two levels of reverse
subdivision. : coarse vertices. and : details after one and two

levels of RS. and : access to coarse vertices and details.

Loop: In Loop reverse subdivision, edge-vertices are
replaced by details and vertex-vertices are replaced by
coarse approximations [20]. Since Loop subdivision
uses a 1-to-4 refinement similar to Catmull-Clark sub-
division, the categorization of vertices is very similar
to Catmull-Clark reverse subdivision. However, differ-
ent neighborhood vectors, as illustrated in Figure 9, are
used. Figure 18 illustrates the application of Loop re-
verse subdivision to a connectivity map and Figure 19
illustrates a semiregular Venus and its reverse subdivi-
sion at three resolutions.
√

3 subdivision: In
√

3 subdivision, the connectiv-
ity of the vertices is affected by the 1-to-3 refinement.
At each step, a face-vertex is inserted in each face and

RS RS

(a) (b) (c)

(1,0)

(0,1)

(0,-1)

(-1,0) (2,0)

(0,2)

(0,-2)

(-2,0) (1,0)

(0,1)

(0,-1)

(-1,0)no details (4,0)

(0,4)

(0,-4)

(-4,0) (2,0)

(0,2)

(0,-2)

(-2,0)

*2 *2*2

Figure 18: A subdivided connectivity map after two levels of reverse
subdivision. : coarse vertices. and : details after one and two

levels of RS. and : access to coarse vertices and details.

Figure 19: A semiregular venus after three applications of Loop re-
verse subdivision.

edges are flipped (see Figure 20).

(a) (b) (c) (d) (e)

Figure 20: (a) A triangular patch. (b) Face-vertices are inserted. (c)
Vertex-vertices are drawn in red. (d) Face-vertices are connected to
vertex-vertices. (e) Edges are flipped.

√
3 reverse subdivision can be also determined using

a similar method to that proposed in [20]. In this case,
face-vertices are replaced by details and vertex-vertices
by coarse approximations (see Figure 21). More discus-
sion and the masks of

√
3 reverse subdivision in a com-

pact multiresolution framework have been provided in
Appendix A.

Handling adjacency queries in
√

3 reverse subdivi-
sion is again very straightforward using neighborhood
vectors with a scaling factor of three. To access details
and coarse vertices, the transformations Te→o and To→e

discussed in [2] are used to change the neighborhood
vectors as illustrated in Figure 22.√

2 subdivision: In the 1-to-2 refinement of
√

2 sub-
division, face-vertices are inserted in each face and con-
nected to vertex-vertices and the previous edges are re-
moved (see Figure 7). In

√
2 reverse subdivision, face-

vertices are replaced by details and vertex-vertices are

9
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Figure 21: Vertex and face-vertices ( , and ) are replaced by
coarse vertices and details ( , and )

.

no details(1,0)

(0,1)

(0,-1)

(-1,0)

RS

(1,1)

(-1,-1)

(a)

(0,1)

(0,-1)

(-1,0)

(1,1)

(-1,-1)

(2,1)(1,2)

(-1,1)

(-2,-1)

(-1,-2)
(1,-1)

(b)

(3,0)

(0,3)

(0,-1)

(-3,0)

(3,3)

(-3,-3)

(2,1)(1,2)

(-1,1)

(-2,-1)

(-1,-2)
(1,-1)

(c)

Te->o 3*To->e

(1,0)

Te->o

RS

Figure 22: (a) and are face and vertex vertices that are replaced by
details and coarse vertices. (b) and : coarse vertices and details.

(c) :details after two levels of RS. and : access to coarse
vertices and details. Transformations of essential neighborhood vec-
tors are shown.

replaced by coarse approximations. We have discussed√
2 reverse subdivision and its masks in Appendix B.

Adjacency queries are again handled by neighborhood
vectors that may be scaled by a factor of two. To ac-
cess details and coarse vertices, transformations Te→o

and To→e (discussed in [2]) for
√

2 subdivision are used
to change the neighborhood vectors as illustrated in Fig-
ure 23.

RS RS

(1,0)
(-1,0)

(0,-1)

(0,1)

no details

(1,-1)

(-1,1)

(-1,-1)

(1,1)

(1,0)
(-1,0)

(0,-1)

(0,1)

(1,0)
(-1,0)

(0,-1)

(0,1)

(1,-1)

(-1,1)

(-1,-1)

(1,1)

Te->o 2*To->e
2*Te->o

Figure 23: (a) and are face and vertex vertices that are replaced by
details and coarse vertices. (b) and : coarse vertices and details.

(c) :details after two levels of RS. and : access to coarse
vertices and details. Transformations of essential neighborhood vec-
tors are shown.

Smooth Reverse Subdivision: Note that in compact
reverse subdivision, in which a local refinement is ap-
plied on the resulting coarse approximations, unwanted
exaggerations of the mesh often appear, which we wish

to reduce (see Figure 24). Sadeghi and Samavati have
proposed a method in which they consider the smooth-
ness of the coarse mesh by perturbing coarse vertices us-
ing a Laplacian constraint [37]. Using a modified Lapla-
cian [38], a compact representation can be found for
the multiresolution framework presented in [37]. How-
ever, here, we would like to explore how to handle mul-
tiresolution frameworks with over-representation such
as those found in [37] or [13].

Figure 24: A fish is reverse subdivided by (a) compact reverse Loop
subdivision (b) smooth reverse Loop subdivision.

For example, to support the method in [37] us-
ing the ACM, in addition to a connectivity map that
stores the coarse approximations and details for odd ver-
tices we also store a connectivity map called the over-
representation connectivity map which stores an addi-
tional detail for each coarse approximation (Figure 25).
The reconstruction process is very similar to compact
multiresolution, except the indices of the details con-
nectivity maps are also scaled and added to the coarse
approximations. Although Sadeghi and Samavati pro-
posed the method only for the Catmull-Clark and Loop
subdivision methods, it is also extendible to

√
2, and√

3 subdivision methods. We have provided the masks
in Appendix C.

RS

Over-representation

Connectivity Maps

RS

Figure 25: A connectivity map which is reverse subdivided using the
Catmull-Clark method. A details connectivity map with dimensions
equal to the number of coarse approximations is also needed to com-
pletely reconstruct the model.

This method is also usable to support the multires-
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olution framework proposed in [13]. The connectivity
structure of this framework is the same as [37]. The
only difference is that in [13], coarse approximations
are found by down-sampling the fine points instead of
applying reverse subdivision masks.

Sadeghi and Samavati recently modified the smooth
reverse subdivision framework by introducing a fairing
technique with banded inverse [38]. They replaced the
discrete Laplacian operator in the smooth reverse subdi-
vision framework with this new fairing technique. This
technique has two steps. First, to smooth vertex v, it is
perturbed along its Laplacian vector towards the aver-
age M of its neighbor vertices. To do so, vertices in the
neighborhood of v are fixed and v alone is moved to w
in which w = αv + (1 − α)M (see Figure 26(a)). In the
next step, all vertices connected to v are moved simi-
larly. As a result, the vertices of a mesh faired in this
manner must be partitioned into two disjoint sets, red
and green, in which no vertex in either the red or green
set has a neighbor in its own set.

v

M

w

N0 N1

N2N3

(a) (b)

Figure 26: (a) v is moved along the vector connecting v to M. M is
the average of vertices Ni in the neighborhood of v. (b) Green and red
vertices in a connectivity map.

As mentioned in [38], the meshes resulting from
Catmull-Clark subdivision have this property since the
vertices can be partitioned into edge-vertices (red) and
face- and vertex-vertices (green) (see Figure 26). The
ACM can provide a simple distinction for the red and
green sets in meshes resulting from Catmull-Clark sub-
division. Any vertex with index (a, b)r in which either a
or b is even (not both simultaneously) is an edge vertex
and falls in the red set and all other vertices are in the
green set. Figure 26(b) shows the coloring of a connec-
tivity map and Figure 27 illustrates the result of fairing
on a mesh resulting from Catmull-Clark subdivision. As
a result, using the ACM, we can partition Catmull-Clark
meshes into two disjoint sets without any additional tag-
ging and apply the fairing method proposed in [38].

Figure 27: (a) A bullet resulting from Catmull-Clark subdivision. (b)
Bullet after fairing red vertices. (c) Bullet after fairing green vertices.
(d) bullet after fairing vertices several times. Reduction of the details
is apparent.

7. Comparison with CGAL

We have compared the ACM with our lab implemen-
tation of half-edge data structure in [2]. Here, for im-
plementing subdivision surfaces, we compare the per-
formance of ACM with CGAL [3]. We report the CPU
time usage of half-edge in comparison with the ACM.
The ACM remains far more efficient than half-edge for
subdividing meshes even against the CGAL implemen-
tation, which is one of the most efficient half-edge im-
plementations available. In Table 3, it is apparent that
the ACM CPU time usage is much more efficient than
CGAL. Tests were run on an intel i7 quad core proces-
sor under Windows 7.

Table 3:
√

3 subdivision time (in seconds) required by the ACM and
CGAL for a tetrahedron to reach resolution i from resolution i − 1.

Resolution #of Faces ACM CGAL
7 8748 0.009 0.092
8 26244 0.015 0.181
9 78732 0.063 0.701

10 236196 0.109 2.20
11 708588 0.975 6.810

In Table 4, we again compare the ACM with CGAL to
subdivide a cube using Doo-Sabin subdivision to show
the efficiency of the ACM for quadrilateral meshes. To
reach resolution seven, the ACM needs only 0.024 sec-
onds while CGAL needs about two minutes. The reason
for this difference is that the half-edge structure needs
to maintain many pointers to capture the connectivity
information of vertices. However, in the ACM, the con-
nectivity of faces, vertices and edges is implicit in each
connectivity map and handled using simple algebraic
operations.

8. Future work and limitations

The ACM provides an efficient data structure for
semiregular models. However, there exist meshes
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Table 4: Doo-Sabin subdivision time (in seconds) required by the
ACM and CGAL for a cube to reach resolution i from resolution i−1.

Resolution #of Faces ACM CGAL
3 116 0.011 0.015
4 404 0.015 0.109
5 1556 0.016 0.656
6 6164 0.016 8.128
7 24576 0.024 117.899

whose vertices are mostly regular but do not have subdi-
vision connectivity, such as meshes resulting from adap-
tive subdivision [39, 40]. Although it is possible to sub-
divide one connectivity map more than others, irregu-
lar usage of adaptive subdivision makes meshes which
are not compatible with ACM. As potential future work,
it would be interesting to consider modifications to the
ACM to support such meshes. We have described how
to handle connectivity queries for triangular and quadri-
lateral meshes. Hexagonal meshes and their refinements
may also be supported by the ACM [41]. Supporting
hexagonal meshes presents another direction for future
work for our proposed method.

9. Conclusion

We have described the ACM (Atlas of Connectivity
Maps) and have shown that it can be efficiently used for
a variety of semiregular meshes and adjacency queries
on them, including quadrilateral or triangular models re-
fined with different methods. Establishing the ACM at
a coarse resolution is described as well as a method to
adapt the ACM for a given high resolution semiregu-
lar model. Supporting sharp features (creases and cor-
ners) in subdivision surfaces is also described. We have
emphasized the applications of the ACM to multireso-
lution frameworks by discussing how to support vari-
ous multiresolution frameworks. We also compared our
proposed ACM with half-edge implemented in CGAL
to show the speed efficiency of the ACM in handling
connectivity queries in subdivision surfaces.
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Appendix A.
√

3 Reverse Subdivision

Using the method proposed in [20], the following
equations are obtained for

√
3 reverse subdivision. In

this method, the details of vertex-vertices (d0) are de-
termined by a linear combination of the details of face
vertices (di) in their neighborhood (Figure 21). Equa-
tion A.1 demonstrates this relationship. Equation A.2
also indicates how the coarse vertex of a face vertex can
be obtained using the vertices in its neighborhood. To
avoid magnifying the results from reverse subdivision,
coarse vertices are refined by vector δ0, which is ob-
tained by an optimization to reduce the magnitude of the

details di [20]. Note that α =
4−2cos( 2π

n )
9 is the parameter

to find the position of vertex-vertices in
√

3 subdivision
[8].

d0 =
3
2n
α

n∑
i=1

di (A.1)

c0 =
1

1 − 3
2α

f0 −
α

n( 2
3 − α)

n∑
i=1

fi (A.2)

δ0 =

3
2n (1 − α) + 1

3

(1 − α)2 + n
9

n∑
i=1

di (A.3)

Appendix B.
√

2 Reverse Subdivision
√

2 subdivision is a scheme designed for quadrilateral
meshes [7]. Similar to the

√
3 subdivision scheme, there

are two types of masks for face-vertices and vertex-
vertices. Face-vertices are simply found by averaging
the four vertices making a face, and vertex-vertices are
obtained by moving a vertex towards the average of the
vertices in its neighborhood. Equations B.1 and B.2
provide the masks for face and vertex vertices respec-
tively. Figure B.28 illustrates the vertices involved in
Equations B.1 and B.2. α and β can receive different
values. For example, in [7], α = 1

2 (1 − cos( 2π
n )) and

β = 0. Figure B.29 illustrates the result of this subdivi-
sion on Teddy.

v f =
1
4

(v0 + v1 + v2 + v3) (B.1)

vv = (1 − α − β)v +
1
n

n−1∑
i=0

αv2i + βv2i+1 (B.2)

Using the method proposed in [20], we can define a
compact multiresolution for a class of

√
2 subdivision

in which α = 2β. In this method, the details of vertex
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Figure B.28: (a) The vertices (orange) involved in determining the
position of face-vertices (blue vertex). (b) The vertices involved in
determining the position of blue vertex-vertices. v2i is red and v2i+1 is
orange.

Figure B.29:
√

2 subdivision on Teddy.
.

vertices (d0) are again found by a linear combination
of the details of face vertices (di) in their neighborhood
(Figure 21). Equation B.3 demonstrates this relation-
ship. Equation B.4 also indicates how coarse vertices
are determined. We also give δ0 to reduce the magnifi-
cation effect of reverse subdivision for

√
2 subdivision

in Equation B.5.

d0 =
4α
n

n∑
i=1

di (B.3)

c0 =
1

1 − 4α
f0 −

4α
n − 4αn

n∑
i=1

fi (B.4)

δ0 =

4α
n (2 − 3α) + 1

2

2(1 − 3α
2 )2 + n

16

n∑
i=1

di (B.5)

Appendix C.
√

3 and
√

2 Smooth Reverse Subdivi-
sion

The basic idea of smooth reverse subdivision is to
perturb coarse approximations by vector δ to mini-
mize an energy function Etotal(∆) = ωEsub(∆) + (1 −
ω)Esmooth(∆) in which Esub is the euclidean distance be-
tween fine points and subdivided coarse approximations
and Esmooth is the energy of coarse approximations in

the local neighborhood. Using the method proposed in
[37], we can solve this weighted optimization problem
for
√

3 and
√

2 subdivision methods and find perturba-
tion vector δ. After finding the coarse approximations
using compact reverse subdivision methods, we can per-
turb the coarse approximations using δ. Equations C.1
and C.2 provide δ for the

√
3 and

√
2 smooth reverse

subdivision respectively.

δ√3 =
(ω(1 − α) 3α

2n + 1
3ω)
∑n

i=1 di

ω( n
9 + (1 − α)2) + (1 − ω)

+ (C.1)

1−ω
n
∑n

i=1 ci − (1 − ω)c0

ω( n
9 + (1 − α)2) + (1 − ω)

δ√2 =
(ω(1 − α) 2α

n + ω
4 )
∑n

i=1 di

ω( n
16 + (1 − α)2) + (1 − ω)

+ (C.2)

1−ω
n
∑n

i=1 ci − (1 − ω)c0

ω( n
16 + (1 − α)2) + (1 − ω)
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