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Abstract

Given a set of symmetric/antisymmetric filter vectors containing only regular multiresolution filters, the method we present in this
article can establish a balanced multiresolution scheme for images, allowing their balanced decomposition and subsequent per-
fect reconstruction without the use of any extraordinary boundary filters. We define balanced multiresolution such that it allows
balanced decomposition i.e. decomposition of a high-resolution image into a low-resolution image and corresponding details of
equal size. Such a balanced decomposition makes on-demand reconstruction of regions of interest efficient in both computational
load and implementation aspects. We find this balanced decomposition and perfect reconstruction based on an appropriate com-
bination of symmetric/antisymmetric extensions near the image and detail boundaries. In our method, exploiting such extensions
correlates to performing sample (pixel/voxel) split operations. Our general approach is demonstrated for some commonly used
symmetric/antisymmetric multiresolution filters. We also show the application of such a balanced multiresolution scheme in real-
time focus+context visualization.

Keywords: multiresolution, reverse subdivision, balanced decomposition, perfect reconstruction, lossless reconstruction,
symmetric extension, antisymmetric extension, focus+context visualization, contextual close-up

1. Introduction

Context. Applications that facilitate multiscale 2D and
3D image visualization and exploration (see [LHJ99, WS05,
SBO07], for example) benefit from multiresolution schemes
that decompose high-resolution images into low-resolution ap-
proximations and corresponding details (usually, wavelet co-
efficients). Several subsequent applications of such a decom-
position constructs the corresponding wavelet transform. This
wavelet transform can then be used to derive low-resolution ap-
proximations of the entire image, as well as high-resolution ap-
proximations of a region of interest (ROI), on demand. Recon-
structing the high-resolution approximation of a ROI involves
locating the corresponding details from a hierarchy of details
within the wavelet transform. One such hierarchy of details
resulting from only two levels of decomposition of an Earth
image (data source: Visible Earth, NASA) is shown in Figure 1.

For the purpose of demonstration, we created the wavelet
transform in Figure 1 using the short filters of quadratic B-
spline presented by Samavati et al. [SB04, SBO07]. In practice,
images that require multiscale visualization are larger in size
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Figure 1: Hierarchy of details in a wavelet transform resulting from
two levels of decomposition of a 1024×512 Earth image. The coarse
image (at the top left corner) contains a rectangular ROI and the details
corresponding to that ROI are enclosed by rectangles within all levels
of details.

and may require more levels of decomposition. For each level
of decomposition in this particular example, the image was first
decomposed heightwise and then widthwise.

Problem. Sequences of samples along each image dimension
can be treated as finite-length signals. It is well-known that de-
composition and reconstruction of finite-length signals require
special treatments at the boundaries [AW03], which often in-
volves the use of extraordinary boundary filters. The use of
extraordinary boundary filters (as opposed to regular filters) for
handling image and detail boundaries lead to computationally
untidy reconstruction near image boundaries.
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Figure 2: A ROI in a balanced wavelet transform after two levels of
balanced decompositions of a 1024x512 Earth image is shown. The
location of the coarse sample highlighted with a red circle at top-left
corner of the ROI rectangle in the coarse image is denoted (x, y). Due
to balanced decompositions, the detail rectangles (four here) corres-
ponding to the ROI can be found with simple dyadic operations. For
example, the location of the detail sample highlighted with a yellow
circle at top-left corner of the detail rectangle corresponding to the
ROI is

(
2l x, 2l−1(h/4 + y)

)
, where the level of resolution l = 2.

From a hierarchy of details, such as the one in Figure 1, if we
need to reconstruct the high-resolution approximation of a ROI
located in the low-resolution (coarse) image shown in the top-
left rectangle in Figure 1, we have to locate the corresponding
details in some or all of the rectangles that contain details de-
pending on the expected level of resolution. Locating these de-
tails will be straightforward if each of the heightwise and width-
wise decomposition steps decomposes an image into two halves
of equal size – one half corresponding to the coarse image and
the other half corresponding to the details. Among B-spline
wavelets, only the filters obtained from Haar wavelets provide
such a balanced decomposition [Haa10, SDS96]. However, be-
cause Haar wavelets and the associated scaling functions are
not continuous, it would be beneficial to achieve such a bal-
anced decomposition for the filters obtained from higher order
scaling functions and their wavelets.

Existing multiresolution schemes for the local filters of sec-
ond or higher order scaling functions and their wavelets (see
[SBO07, CDF92, Dau92, Mey90], for example) result in un-
equal numbers of coarse and detail samples after decomposi-
tion (i.e. w1 ,w2,w11 ,w12, h1 , h2, and h11 , h12 in Figure 1).
Such inequalities resulting from decomposition make locating
the details corresponding to a ROI for reconstruction a cum-
bersome task (which involves keeping track of level-wise off-
sets from boundaries), specially when an interactive multilevel
visualization hierarchy (see Figure 13(a), for example) is con-
cerned. Creation of a such an interactive visualization hierarchy
requires efficient on-demand access to details.

In contrast, balanced decompositions can construct balanced
wavelet transforms, such as the one shown in Figure 2 (data
source: Visible Earth, NASA). In Figure 2, the rectangles con-
taining different levels of details for the entire image are num-
bered with (l, 1) tuples for widthwise and (l, 2) tuples for height-

wise decompositions, where l represents the level of resolution.
Locating the details corresponding to a ROI on demand in a
balanced wavelet transform includes a number of simple dyadic
operations, which are known to perform significantly faster than
non-dyadic operations in both hardware and software imple-
mentations. Such efficient access to details is demonstrated
by means of an example in Figure 2. In general, if cx,y is the
coarse sample at the top-left corner of a ROI rectangle, then
d(l,1)

2l−1(wc+x),2l−1y and d(l,2)
2l x,2l−1(hc+y) are the detail samples at the top-

left corners of the detail rectangles corresponding to the ROI
for widthwise and heightwise balanced decompositions, respec-
tively. Here, wc × hc ( w

4 ×
h
4 in Figure 2) is the resolution of the

coarse image containing the ROI.

Proposed approach. In order to address the issues dis-
cussed above, in this article, we introduce a technique for
devising balanced multiresolution schemes for the local fil-
ters of second or higher order scaling functions and their
wavelets. Our technique uses an appropriate combination of
symmetric/antisymmetric extensions near the image and de-
tail boundaries, which correlate to sample split operations.
To guarantee a perfect (lossless) reconstruction without the
use of any extraordinary boundary filters, our method re-
quires each of the given decomposition and reconstruction fil-
ter vectors (kernels) to be either symmetric or antisymmetric
about their centers. Many existing sets of local regular
multiresolution filters, such as those associated with the B-
spline wavelets [SBO07], biorthogonal and reverse biorthog-
onal wavelets [CDF92, Dau92], and Meyer wavelets [Mey90,
Dau92], exhibit such symmetric/antisymmetric structures.

Contributions. We present a novel method to devise
a balanced multiresolution scheme for a given set of
symmetric/antisymmetric multiresolution filter vectors contain-
ing regular filters. Devised balanced multiresolution schemes
allow balanced decomposition and perfect reconstruction with-
out the use of extraordinary boundary filters. A balanced
wavelet transform representation of an image resulting from
balanced decompositions provides straightforward and efficient
access to previously extracted details corresponding to a ROI
on demand. We also provide ready-to-use balanced multireso-
lution schemes devised using our proposed method for eleven
commonly used sets of symmetric/antisymmetric multiresolu-
tion filter vectors (see Table A.2). Additionally, we show the
application of a devised balanced multiresolution scheme in
real-time multilevel focus+context visualization of large-scale
2D and 3D images. As opposed to in-place magnification of
ROIs, the presented mode of focus+context visualization uses
contextual close-ups to display spatially separate magnification
of ROIs constructed through perfect reconstructions.

Article roadmap. This article is organized as follows. In sec-
tion 2, we present the notations used throughout the article.
Next, we formulate the problem definition in section 3, which
is followed by a brief survey of the existing related work in
section 4. Section 5 presents our method for devising a bal-
anced multiresolution scheme accompanied by two examples
– one for odd-length and the other for even-length decompo-
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sition filter vectors. We demonstrate the application of a bal-
anced multiresolution scheme devised by our method in real-
time focus+context visualization with experimental results in
section 6. In section 7, we discuss with examples what may
lead to unwanted extraordinary boundary reconstruction filters
and highlight some characteristics of our method with possible
directions for future work. Finally, section 8 concludes the arti-
cle. We also provide two appendices with additional examples
of balanced multiresolution schemes devised by our method.

2. Notation

Multiresolution. In this article, we adopted the notations for
representing multiresolution operations used by Samavati et al.
in [SBO07]. The superscripts k and l used in this section rep-
resent the levels of resolution. Multiresolution operations are
specified in terms of analysis filter matrices Ak and Bk and syn-
thesis filter matrices Pk and Qk. Given a column vector of sam-
ples Ck, a lower-resolution sample vector Ck−1 is obtained by
the application of a downsampling filter on Ck. This can be
expressed by the matrix equation

Ck−1 = AkCk.

The details Dk−1, lost after downsampling, are captured using
Bk as follows:

Dk−1 = BkCk.

This process of obtaining the low-resolution sample vector Ck−1

and the corresponding details Dk−1 from a given high-resolution
sample vector Ck is known as decomposition. Note that the
sequences of samples along each dimension of an image can
be treated independently during decomposition. Therefore, any
such sequence of samples can form the column vector of sam-
ples Ck for decomposition.

The process of recovering the original high-resolution sam-
ple vector Ck from the previously obtained low-resolution sam-
ple vector Ck−1 and the corresponding details Dk−1 is known as
reconstruction. The reconstruction process requires the refine-
ment of the low-resolution sample vector Ck−1 and the corres-
ponding details Dk−1 by the application of synthesis filters Pk

and Qk as follows:

Ck = PkCk−1 + QkDk−1.

This equation reverses the prior application of Ak and Bk on the
given high-resolution sample vector Ck. Therefore, decompo-
sition and reconstruction are inverse processes satisfying

[
Ak

Bk

] [
Pk Qk

]
=

[
I 0
0 I

]
.

If we recursively decompose a high-resolution sample vector
Ck into its coarser approximations Cl,Cl+1, . . . ,Ck−1 and details
Dl,Dl+1, . . . , Dk−1, then the sequence Cl,Dl,Dl+1, . . . ,Dk−1

is known as a wavelet transform. Here, l < k and Cl

is the very coarse approximation of the dataset. Each of

Cl+1, . . . ,Ck−1,Ck can be reconstructed from the wavelet trans-
form Cl,Dl, Dl+1, . . . ,Dk−1.

To simplify the notations for the rest of this article, we may
omit the superscript k for the kth level of resolution assuming
F = Ck, C = Ck−1, D = Dk−1, A = Ak, and B = Bk, P = Pk, and
Q = Qk. We further assume that the matrices are of appropriate
size to satisfy the following equations:

C = AF, (1)
D = BF, (2)
F = PC + QD. (3)

For use in the rest of the article, let a and b denote the filter
vectors containing the nonzero entries in a representative row
of A and B, respectively. Similarly, let p and q stand for the
filter vectors containing the nonzero entries in a representative
column of P and Q, respectively. Furthermore, let sizeo f (V)
represent the number of elements in vector V and the widths of
filter vectors a and b be represented by wa and wb, respectively,
i.e. sizeo f (a) = wa and sizeo f (b) = wb.

Symmetric and antisymmetric extensions. Figure 3 shows
three types of extensions as defined in [KNI94]. Consider a
sequence of n samples ( f1, f2, . . . , fn), corresponding to a col-
umn vector of samples

[
f1 f2 . . . fn

]T
, where n ∈ N

and n ≥ 3. Figure 3(a), 3(b), and 3(c) show the extended
sequences obtained through half-sample symmetric, whole-
sample symmetric, and half-sample antisymmetric extensions,
respectively, at both ends of ( f1, f2, . . . , fn). Whole-sample an-
tisymmetry, not shown in Figure 3, can be obtained by negating
the samples in the extensions of Figure 3(b). Note that the types
of extensions at both ends of a sequence do not necessarily have
to be the same (as used in Figure 12, for example).

f2 f1 f1 f2 fn fn  fn-1

(a) Half-sample symmetry.

f3 f2 f1 f2 fn  fn-1  fn-2

(b) Whole-sample symmetry.

-f2 -f1 f1 f2 fn -fn -fn-1

(c) Half-sample antisymmetry.

Figure 3: Symmetric and antisymmetric extensions.

To be consistent with the coloring used in Figure 3, from
this point forward in this article, notations and figures may use
red, purple, and green to denote the samples introduced by half-
sample symmetric, whole-sample symmetric, and half-sample
antisymmetric extensions, respectively.

3. Problem Definition

Given a set of regular multiresolution filters in the form
of symmetric/antisymmetric filter vectors a, b, p, and q, de-
vise a balanced multiresolution scheme applicable to a high-
resolution column vector of samples F that satisfies:
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(i) C = AF′ and D = BF′, analogous to equations (1) and
(2), where F → F′ through symmetric extensions at its
boundaries and the nonzero entries in each row of A and B
correspond to the regular filters in the given filter vectors
a and b, respectively;

(ii) sizeo f (C) = sizeo f (D) i.e. a balanced decomposition;
(iii) sizeo f (C) + sizeo f (D) = sizeo f (F) i.e. a compact re-

presentation of the resulting balanced wavelet transform;
and

(iv) F = PC′ + QD′, analogous to equation (3), where C→C′

and D→D′ through symmetric/antisymmetric extensions
at their boundaries and the nonzero entries in each column
of P and Q correspond to the regular filters in the given
filter vectors p and q, respectively.

4. Related Work

In the next three subsections, we review the existing related
work within the following three categories: multiresolution,
symmetric and antisymmetric extensions, and focus+context
visualization.

4.1. Multiresolution
Regular meshes. Here we review the multiresolution methods
applicable to curves and tensor-product meshes (surfaces and
volumes) given their applicability to multidimensional images
due to their regular structure.

Hierarchical representation of multiresolution tensor-product
surfaces was made possible due to the pioneering work of
Forsey and Bartels [FB88]. They localized the editing effect
in a desired manner on tensor-product surfaces through hierar-
chically controlled subdivisions. This was done by adding finer
sets of B-splines onto existing coarse sets. However, it resulted
in an over-representation because the union of the sets of basis
functions from different resolutions did not form a set of basis
functions. Adding complementary basis functions to the coarse
set of basis functions is a possible way to resolve the problem of
over-representation. This means of supporting multiresolution
is closely aligned to the wavelet theory approach to multireso-
lution [SDS96]. Wavelet representations of details may, how-
ever, introduce undesired undulations, as pointed out by Gortler
and Cohen [GC95]. Furthermore, under this approach, optimiz-
ing the behaviour of the analysis (decomposition) using least
squares is difficult due to the need to support interactive mesh
manipulations [ZSS97].

Samavati and Bartels pioneered in their work on a mathemat-
ically clean and efficient approach to multiresolution based on
reverse subdivision [SB99, BS00, BGS06, BS11]. Under this
approach, during the analysis, each coarse vertex is obtained by
efficiently solving a local least squares optimization problem.
The use of least squares optimization reduces the undesired un-
dulations. Additionally, the resulting wavelets provide a much
more compact support compared to the conventional wavelets
for curves and regular surfaces. Some of the examples demon-
strating the application of our proposed method use multireso-
lution filters resulting from this approach (see the examples in
section 5, for instance).

Images. Notable existing approaches obtaining a multireso-
lution representation supporting context-aware visualization of
3D images include the wavelet tree [WS05], segmentation of
texture-space into an octree [LHJ99, PTCF02, PHF07], octree-
based tensor approximation hierarchy [SGM∗11], and trilinear
resampling on the Graphics Processing Unit (GPU) coupled
with the deformation of regularly partitioned image regions
[WWLM11]. For 4D images, the wavelet-based time-space
partitioning (WTSP) tree was used in [WS05]. In [WS05], Haar
[Haa10, SDS96] and Daubechies’s D4 [Dau88] wavelets were
used to construct the wavelet transforms in each node of the
wavelet and WTSP trees.

4.2. Symmetric and Antisymmetric Extensions
As mentioned earlier, we achieve balanced decomposition

and subsequent perfect reconstruction based on the use of an
appropriate combination of symmetric and antisymmetric ex-
tensions near the image and detail boundaries. In the litera-
ture, symmetric and antisymmetric extensions were used in the
context of various types of wavelet transforms [LL00, KZT02,
AW03, LS08]. In contrast, our proposed method allows the
construction of a balanced wavelet transform.

For end point and boundary interpolations, extraordinary fil-
ters (as opposed to regular filters) are used in multiresolution
methods for curves and regular meshes, respectively. How-
ever, the use of extraordinary filters at image boundaries for
boundary interpolation assigns incongruous importance to the
image boundaries. So for 2D or 3D image decomposition,
the general practice is to use symmetric extensions near the
image boundaries to avoid boundary case evaluations using
extraordinary filters [SBO07]. However, an arbitrary choice
of symmetric extension for decomposition while using a given
set of multiresolution filters may eventually lead to the use of
extraordinary boundary filters for a perfect reconstruction (see
section 7, for example). This can also make on-demand re-
construction of image parts corresponding to a ROI computa-
tionally untidy near the image boundaries. Therefore, a careful
setup of symmetric/antisymmetric extensions for both decom-
position and reconstruction is required, which can be obtained
by our presented method.

4.3. Focus+Context Visualization
Because we chose to demonstrate the use of a balanced mul-

tiresolution scheme resulting from our method in a real-time
focus+context visualization application, here we review some
of the notable related work.

In many visualization tasks, it is useful to simultaneously vi-
sualize both the local and global views of the data, possibly
at different scales, which is known as focus+context visuali-
zation. One approach to implement focus+context is to use
the metaphor of lenses [TSS∗06, WWLM11, HMC11]. This
metaphor is inspired by techniques used in traditional medical
(see Figure 4), technical, and scientific illustrations [Hod03].

Our implemented approach to focus+context visualization of
multidimensional images is closest to the technique presented
by Taerum et al. for the visualization of small-scale clinical vol-
umetric datasets [TSS∗06]. In their approach, the resolution of
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(a) A circular ROI. (b) A rectangular ROI.

Figure 4: Traditional focus+context visualization in medical illustrations. (a) Thrombosis in human brain. Copyright Fairman Studios, LLC.
Used with permission. (b) An embolic stroke, showing a blockage lodged in a blood vessel. Blausen Medical Communications, Inc. Used under
the Creative Commons Attribution 3.0 Unported license.

a given 3D image is reduced by one level using reverse subdivi-
sion [SB99, BS00], which is rendered during user interactions
to achieve interactive frame rates. The 3D image is rendered in
the original resolution while there is no user-interaction. The
ROI identified by a query window is enlarged by the applica-
tion of B-spline subdivision to allow different levels of smooth-
ness. Therefore, the authors used only three different levels of
resolution. In contrast, our implementation for multiresolution
visualization of images provides a true multiresolution frame-
work, where the resolutions of both the coarse image (providing
context information) and the enlarged ROI (providing focus in-
formation) can be controlled by the user.

5. Methodology: Balanced Multiresolution

In this section, we explain and demonstrate by examples how
our method achieves balanced decomposition and subsequent
perfect reconstruction by choosing an appropriate combination
of symmetric and antisymmetric extensions near the image and
detail boundaries.

5.1. Balanced Decomposition

We defined balanced decomposition as the task of decom-
posing a high-resolution image into a low-resolution image and
corresponding details of equal size. Balanced decomposition of
a 3D image of dimensions 2w×2h×2s results in an image of
dimensions w×h × s after one level of widthwise, heightwise,
and depthwise decomposition. To allow l levels of balanced
decomposition, we need the following conditions to be satis-
fied: 2w = 2lm, 2h = 2ln, and 2s = 2lz, where m, n, z ∈ Z+.
Disregarding the third dimension infers the same idea for a

2D image. Once the ideal dimensions are known, the high-
resolution image should be uniformly resampled to those di-
mensions before the application of our balanced decomposition
procedure.

Given the decomposition filter vectors a and b, to achieve
a balanced decomposition of a column vector containing an
even number of fine samples F, we first decide on the type
of symmetric extension to use for decomposition based on the
parity of wa and wb. Then an extended column vector of fine
samples F′ is obtained from F, through the chosen type of
symmetric extension, such that sizeo f (F′) ensures the genera-
tion of sizeo f (F)/2 coarse samples and sizeo f (F)/2 detail sam-
ples by a subsequent application of filter vectors a and b on F′,
respectively.

Demonstration by example. Before we outline the general
construction for the balanced decomposition process, here we
demonstrate how it works for a given set of decomposition filter
vectors. In this example, we consider the decomposition filter
vectors a and b from following set of local regular multiresolu-
tion filters [SB04, SBO07]:

a =
[
− 1

4
3
4

3
4 −

1
4

]
,

b =
[

1
4 −

3
4

3
4 −

1
4

]
,

p =
[

1
4

3
4

3
4

1
4

]
,

q =
[
− 1

4 −
3
4

3
4

1
4

]
.

(4)

The filter vectors in equation (4) are known as the short filters of
quadratic (third order) B-spline [SBO07] and were constructed
by reversing Chaikin subdivision [Cha74]. Recall from sec-
tion 2 that filter vectors a and b contain the nonzero entries in
a representative row of analysis filter matrices A and B, respec-
tively.
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4
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4

−
3
4

1
4

−
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1
4

−
3
4

3
4

1
4

−

1
4

3
4

−
3
4

1
4

−
c3

d3
1
4

−
3
4

3
4

1
4

−

1
4

3
4

−
3
4

1
4

−
c4

d4

Figure 5: Balanced decomposition of 8 fine samples using the decom-
position filter vectors a and b from equation (4).

For the purpose of demonstration, assume that we are given
a fine column vector of 8 samples F =

[
f1 f2 . . . f8

]T
, on

which we have to perform a balanced decomposition. Provided
sizeo f (F) = 8, a balanced decomposition should result in col-
umn vectors of coarse samples C =

[
c1 c2 c3 c4

]T
and detail

samples D =
[

d1 d2 d3 d4

]T
.

In Figure 5, we present one possible setup to obtain such a
balanced decomposition. It shows the application of equations
C = AF′ and D = BF′, analogous to equations (1) and (2),
where F′ =

[
f1 f1 f2 . . . f8 f8

]T
. First, note that F′ was

obtained by extending the given sample vector F by 2 extra
samples. In general, when the dilation factor is 2, a given col-
umn vector of fine samples F, with sizeo f (F) = 2n for n ∈ Z+,
does not have enough samples to accommodate n shifts of both
a and b for generating n coarse and n detail samples, respec-
tively. The number of extra samples x, required for a balanced
decomposition can be obtained by the general formula:

x = max(wa,wb) + 2(n − 1) − 2n (5)
⇒ x = max(wa,wb) − 2. (6)

Here we explain how equation 5 evaluates x. We need at least
max(wa,wb) fine samples to obtain both c1 and d1, which ex-
plains the first term on the right-hand side of equation 5. Next,
because the dilation factor is 2, every 2 additional samples will
guarantee the generation of an additional pair of ci and di. Here,
i ∈ {2, . . . , n} because we want to generate |{2, . . . , n}| = n − 1
more coarse samples and n − 1 more detail samples to achieve
a balanced decomposition. This indicates the need for an addi-
tional 2(n−1) fine samples, justifying the addition of the second
term on the right-hand side of equation 5. Therefore, subtract-
ing 2n i.e. the sizeo f (F) in the third term gives us the required
number of extra samples.

For the families of multiresolution filters we consider in this
article, wa and wb are either both even or both odd. For ex-
ample, see the decomposition filter vectors obtained from B-
spline wavelets [SBO07], biorthogonal and reverse biorthog-
onal wavelets [CDF92, Dau92], and Meyer wavelets [Mey90,

Dau92]. The multiresolution filter vectors obtained from most
such wavelets and their scaling functions are available in com-
monly used mathematical software packages such as MATLAB
[MAT14]. For the given filter vectors a and b in equation (4),
because both wa and wb are even, observe that the extension of
F by 2 extra samples to obtain F′ was achieved by half-sample
symmetric extension at both ends of F. Here we would have
used whole-sample symmetric extension instead if both wa and
wb were odd. Use of an appropriate type of symmetric exten-
sion is required to avoid the use of any extraordinary bound-
ary filters for a perfect reconstruction. We justify our choice
of symmetric extension for a balanced decomposition later in
subsection 5.3.

Finally, as shown in Figure 5, the filter vectors a and b in
equation (4) are applied to the samples in F′ to obtain C and D
in order to complete the balanced decomposition process. For
instance, the coarse sample c1 and the detail sample d1 are com-
puted from the first 4 samples in F′ as follows: c1 = − 1

4 f1 + 3
4 f1 + 3

4 f2 − 1
4 f3,

d1 = 1
4 f1 − 3

4 f1 + 3
4 f2 − 1

4 f3.
(7)

Note that the total contribution of f1 in the construction of c1 is
1
2 f1, written as − 1

4 f1 + 3
4 f1 in equation (7) through an implicit

sample split operation. A similar sample split is observed in
the construction of d1, as shown in equation (7). Therefore,
the symmetric extensions at both ends of F implicitly lead to a
number of sample split operations during decomposition.

Therefore, for n ∈ Z+, a balanced multiresolution scheme
based on the short filters of quadratic B-spline given in equation
(4) can make use of the matrix equations


c1
c2
...

cn

 =


− 1

4
3
4

3
4 − 1

4 0 0 0 · · ·

0 0 − 1
4

3
4

3
4 −

1
4 0 · · ·

...
...

...
...

...
...

...
. . .





f1
f1
f2
...

f2n−1
f2n

f2n


and


d1
d2
...

dn

 =


1
4 −

3
4

3
4 −

1
4 0 0 0 · · ·

0 0 1
4 −

3
4

3
4 −

1
4 0 · · ·

...
...

...
...

...
...

...
. . .





f1
f1
f2
...

f2n−1
f2n

f2n


for the decomposition process, analogous to equations (1) and
(2).

General construction. Now we present our general ap-
proach for achieving a balanced decomposition. Given the
symmetric/antisymmetric decomposition filter vectors a and b
containing only regular filters, carry out the following steps to
achieve a balanced decomposition of a fine column vector of
samples F, where sizeo f (F) = 2n for a suitably large n ∈ Z+.
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1. Determine x, the number of extra samples required for a
balanced decomposition using equation (6).

2. If both wa and wa are even, extend F with x extra samples
using half-sample symmetric extension to obtain F′. Use
whole-sample symmetric extension instead if both wa and
wa are odd. Justification of our choice of symmetric ex-
tension can be found in subsection 5.3. To avoid giving
inconsistent importance to any end (boundary) of F:

(a) If x is even, introduce x/2 samples at each end of F.
(b) If x is odd, introduce bx/2c samples at one end and
bx/2c + 1 samples at the other end of F. Let us refer
to the end at which bx/2c + 1 samples are introduced
as the odd end. Alternate between the ends of F as
the choice of the odd end during multiple levels of
decomposition.

3. To obtain C and D such that sizeo f (C) = sizeo f (D), use
equations C = AF′ and D = BF′, analogous to equa-
tions (1) and (2).

5.2. Perfect Reconstruction

Given the reconstruction filter vectors p and q that can re-
verse the application of the decomposition filter vectors a and
b, to achieve a perfect reconstruction of the column vector of
fine samples F from its prior balanced decomposition into C
and D, we first reconstruct as many interior samples of F as
possible by the application of p and q on C and D, using equa-
tion (3). To evaluate the samples near each boundary (end) of
F, we form a square system of linear equations based on the
prior construction of corresponding boundary samples in C and
D, where the unknowns constitute the boundary samples of F
yet to be reconstructed. Symbolically solving two such square
systems for the two boundaries of F reveals the extended ver-
sions of C and D (denoted by C′ and D′, respectively) required
for a perfect reconstruction by the application of p and q using
equation F = PC′ + QD′, analogous to equation (3).

Demonstration by example. Here we demonstrate how we
perform a perfect reconstruction of F following its balanced de-
composition to C and D by means of an example, before giving
the general construction for our perfect reconstruction process.
In this example, we consider the reconstruction filter vectors p
and q given in equation (4). Recall from section 2 that filter
vectors p and q contain the nonzero entries in a representative
column of synthesis filter matrices P and Q, respectively.

This example to demonstrate our perfect reconstruction pro-
cess is an extension of the example shown in Figure 5.
So, from the resulting column vectors coarse samples C =[

c1 c2 c3 c4

]T
and detail samples D =

[
d1 d2 d3 d4

]T
in

subsection 5.1, we now want to reconstruct the corresponding
column vector of fine samples F =

[
f1 f2 . . . f8

]T
.

In Figure 6, we show the application of the filter vectors p
and q to the samples in C and D, respectively. For instance, the
fine sample f2 is reconstructed from the first two coarse samples
and the first two detail samples as follows:

f2 =
3
4

c1 +
1
4

c2 +
3
4

d1 −
1
4

d2.

3

4

1

4

3

4

1

4
−

3

4

1

4

3

4
−

1

4

3

4

1

4

3

4

1

4
−

3

4

1

4

3

4
−

1

4

3

4

1

4

3

4

1

4
−

3

4

1

4

3

4
−

1

4

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

Figure 6: Perfect reconstruction of 6 of the 8 fine samples using the
reconstruction filter vectors p and q from equation (4).

Note that the application of the filter vectors p and q to the
samples in C and D in Figure 6 left two samples, f1 and f8,
near the two ends of F not reconstructed. Note that having two
samples near the boundaries of F yet to reconstruct is specific to
this example. The example in subsection 5.4 receives 5 samples
yet to reconstruct at this stage. Now, to reconstruct f1, we form
the following 1×1 system of linear equations based on the prior
construction of c1 (as shown in Figure 5) to which f1 made
some contribution during decomposition:

c1 = −
1
4

f1 +
3
4

f1 +
3
4

f2 −
1
4

f3 (8)

⇒ f1 = 2c1 −
3
2

f2 +
1
2

f3

⇒ f1 = 2c1 −
3
2

(
3
4

c1 +
1
4

c2 +
3
4

d1 −
1
4

d2

)
+

1
2

(
1
4

c1 +
3
4

c2 +
1
4

d1 −
3
4

d2

)
⇒ f1 = c1 − d1. (9)

c1 c2 c3 c4 −d1 d2 d3 d4

3

4

1

4

3

4

1

4
−

c1 c4 d1 −d4

3

4

1

4

3

4
−

1

4

f1

3

4

1

4

3

4
−

1

4

3

4

1

4

3

4

1

4
−

3

4

1

4

3

4
−

1

4

3

4

1

4

3

4

1

4
−

3

4

1

4

3

4
−

1

4

3

4

1

4

3

4

1

4
−

�������������������������

f2
�������������������������

f3
�������������������������

f4
�������������������������

f5
�������������������������

f6
�������������������������

f7
�������������������������

f8
�������������������������

Figure 7: Perfect reconstruction of 8 fine samples using the recon-
struction filter vectors p and q from equation (4).
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Although it appears from equation (9) that f1 is not recon-
structed using regular filters, our prior appropriate choice of
symmetric extension to obtain F′ from F (justified later in sub-
section 5.3) guarantees that we can rewrite f1 using the regular
filter values from p and q in equation (4). This is achieved by
a rearrangement of the right-hand side of equation (9), which is
implicitly equivalent to performing two sample split operations:

f1 = 1
4 c1 + 3

4 c1 + 1
4 (−d1) − 3

4 d1. (10)

This rewriting step is important because it allows the recon-
struction of fine samples near the boundaries of F without
the use of any extraordinary boundary filters. Equation (10)
now yields the introduction of one extra coarse sample through
half-sample symmetric extension and one extra detail sample
through half-sample antisymmetric extension for the recon-
struction of f1, as shown in Figure 7. We use a similar approach
to determine how to reconstruct the boundary sample f8, result-
ing in

f8 = 3
4 c4 + 1

4 c4 + 3
4 d1 −

1
4 (−d4), (11)

as reflected in Figure 7. This concludes the perfect reconstruc-
tion process.

Therefore, based on our findings from equations (10) and
(11), for a given column vector of 2n fine samples for a suit-
ably large n ∈ Z+, we get f1 = 1

4 c1 + 3
4 c1 + 1

4 (−d1) − 3
4 d1,

f2n = 3
4 cn + 1

4 cn + 3
4 dn −

1
4 (−dn).

So a balanced multiresolution scheme based on the short filters
of quadratic B-spline given in equation (4) will make use of the
matrix equation


f1
f2
...

f2n

 =



1
4

3
4 0 0 · · · 0 0 0

0 3
4

1
4 0 · · · 0 0 0

0 1
4

3
4 0 · · · 0 0 0

0 0 3
4

1
4 · · · 0 0 0

0 0 1
4

3
4 · · · 0 0 0

...
...
...
...
. . .

...
...
...

0 0 0 0 · · · 3
4

1
4 0

0 0 0 0 · · · 1
4

3
4 0

0 0 0 0 · · · 0 3
4

1
4





c1
c1
c2
...

cn

cn



+



1
4 −

3
4 0 0 · · · 0 0 0

0 3
4 − 1

4 0 · · · 0 0 0

0 1
4 − 3

4 0 · · · 0 0 0

0 0 3
4 − 1

4 · · · 0 0 0

0 0 1
4 − 3

4 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 3
4 −

1
4 0

0 0 0 0 · · · 1
4 −

3
4 0

0 0 0 0 · · · 0 3
4 − 1

4





−d1
d1
d2
...

dn

−dn



for the reconstruction process, analogous to equation (3).

General construction. Now we describe our general
approach to achieve perfect reconstruction. Given the
symmetric/antisymmetric reconstruction filter vectors p and q
containing only regular filters that can reverse the application of
the decomposition filter vectors a and b, carry out the following
steps to perfectly reconstruct the column vector of fine samples
F from its prior balanced decomposition into C and D.

1. Assume that F =
[

Fl
T Fm

T Fr
T

]T
, where Fl and Fr

respectively contain some samples at the left and right
boundaries of F, and Fm contains the remaining interior
samples of F. To reconstruct the samples in Fm, use the
equation Fm = PC + QD, analogous to equation (3). The
samples in Fl and Fr are yet to be reconstructed.
(In the example above, we had Fl =

[
f1
]
, Fm =[

f2 f3 . . . f7
]T

, and Fr =
[
f8
]
. Note that Fl and Fr may

contain more samples; for instance, the Fl and Fr encoun-
tered in 5.4 have 2 and 3 samples, respectively.)

2. To reconstruct the samples in Fl:
(a) Form a system of linear equations based on the prior

construction of some coarse and detail boundary
samples, to which the fine samples in Fl made some
contributions during the decomposition process. It
should be a q×q system, where q = sizeo f (Fl) and
the unknowns are the samples of Fl.
(For example, see the 1×1 system formed by equa-
tion (8) and the 2×2 system formed by the two equa-
tions in (19).)

(b) Solving the system formed in step 2(a) symbolically
will evaluate the samples in Fl as a linear combina-
tion of some samples from C and D.
(For example, see equation (9) and the two equations
in (20).)

(c) Rewrite the linear combination(s) of coarse and de-
tail samples on the right-hand side(s) of the equa-
tion(s) obtained in step 2(b) using the regular filter
values from the filter vectors p and q as coefficients.
Such rewriting of fine samples here correlates to per-
forming sample split operations. This will reveal the
following two pieces of information applicable to the
left boundaries of C and D for a perfect reconstruc-
tion: (i) the type of symmetric/antisymmetric exten-
sion that must be used and (ii) the number of extra
samples that must be to introduced.
(For example, see equation (10) and the equations in
(21).)

3. Use an approach similar to that in step 2 to reconstruct the
samples in Fr.

Note that steps 2-3 above allow the generation of C′ and D′

respectively from C and D, such that condition (iv) of the prob-
lem definition given in section 3 is satisfied.

5.3. Choice of Symmetric Extension for Decomposition
Claim. For a given set of symmetric/antisymmetric multires-
olution filter vectors a, b, p, and q, even values of wa and wb
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imply the use of half-sample symmetric extensions at the image
boundaries during a balanced decomposition to ensure a perfect
reconstruction only using the regular reconstruction filters from
p and q. On the other hand, odd values of wa and wb imply the
use of whole-sample symmetric extensions instead.

Proof outline. We outline the proof by means of an example
that makes use of the filter vectors containing only regular fil-
ters, 

a =
[

a−2 a−1 a1 a2

]
,

b =
[

b−2 b−1 b1 b2

]
,

p =
[

p−2 p−1 p1 p2

]
,

q =
[

q−2 q−1 q1 q2

]
.

(12)

The widths of the filter vectors a, b, p, and q in equation
(12) are assumed to be 4 as in the case of the filter vectors
containing the short filters of quadratic B-spline in equation
(4). So, here wa and wb are even. Next, two possible bal-
anced decompositions of a fine column vector of 8 samples
F =

[
f1 f2 . . . f8

]T
are shown by the use of half-sample

and whole-sample symmetric extensions at its boundaries in
Figures 8(a) and 8(b), respectively.

Now, our goal is to perfectly reconstruct F from the column
vectors of coarse samples C =

[
c1 c2 c3 c4

]T
and detail

samples D =
[

d1 d2 d3 d4

]T
using only the regular re-

construction filters vectors p and q from equation (12) as shown
in Figure 9.
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Figure 9: Perfect reconstruction of 8 fine samples using the recon-
struction filter vectors p and q from equation (12).

We intend to evaluate the unknowns in Figure 9, which
are αci ∈ {−c1, c1,−c2, c2}, βc j ∈ {−c3, c3,−c4, c4}, γdk ∈

{−d1, d1,−d2, d2}, and δdl ∈ {−d3, d3,−d4, d4} near the bound-
aries of C and D. Once evaluated, these will reveal the type of
symmetric/antisymmetric extensions to be used at the bound-
aries of C and D to ensure a perfect reconstruction using only
the regular reconstruction filters. Here α, β, γ, δ ∈ {+,−} repre-
sent the signs of ci, c j, dk and dl, respectively. When negative,
they allow the representation of antisymmetric extensions.

Now, let us try to evaluate αci. As shown in Figure 9, αci
contributes to the reconstruction of f1. If we consider the bal-

anced decomposition shown in Figure 8(a) and try to evaluate
f1 following our general approach from subsection 5.2, we get

c1 = a−2 f1 + a−1 f1 + a1 f2 + a2 f3

⇒ f1 =
1

a−2 + a−1
c1 −

a1

a−2 + a−1
f2 −

a2

a−2 + a−1
f3

⇒ f1 =
1

a−2 + a−1
c1

−
a1

a−2 + a−1
(p1c1 + p−2c2 + q1d1 + q−2d2)

−
a2

a−2 + a−1
(p2c1 + p−1c2 + q2d1 + q−1d2)

⇒ f1 =

(
1 − a1 p1 − a2 p2

a−2 + a−1

)
c1 +

(
−a1 p−2 − a2 p−1

a−2 + a−1

)
c2

+

(
−a1q1 − a2q2

a−2 + a−1

)
d1 +

(
−a1q−2 − a2q−1

a−2 + a−1

)
d2. (13)

Next, if we consider the balanced decomposition shown in
Figure 8(b) and try to evaluate f1 following our general ap-
proach from subsection 5.2, we get

c1 = a−2 f2 + a−1 f1 + a1 f2 + a2 f3

⇒ f1 =
1

a−1
c1 −

a−2 + a1

a−1
f2 −

a2

a−1
f3

⇒ f1 =
1

a−1
c1 −

a−2 + a1

a−1
(p1c1 + p−2c2 + q1d1 + q−2d2)

+
a2

a−1
(p2c1 + p−1c2 + q2d1 + q−1d2)

⇒ f1 =

(
1 − a−2 p1 − a1 p1 − a2 p2

a−1

)
c1

+

(
−a−2 p2 − a1 p2 − a2 p−1

a−1

)
c2

+

(
−a−2q1 − a1q1 − a2q2

a−1

)
d1

+

(
−a−2q2 − a1q2 − a2q−1

a−1

)
d2. (14)

Let the filter values multiplied to c1 and c2 in the reconstruc-
tion of f1 be denoted by w(c1) and w(c2), respectively. In equa-
tion (13),  w(c1) =

1−a1 p1−a2 p2
a−2+a−1

,

w(c2) =
−a1 p−2−a2 p−1

a−2+a−1
,

(15)

which result from using half-sample symmetric extension at the
left boundary F for a balanced decomposition. On the other
hand, in equation (14), w(c1) =

1−a−2 p1−a1 p1−a2 p2
a−1

,

w(c2) =
−a−2 p2−a1 p2−a2 p−1

a−1
,

(16)

which result from using whole-sample symmetric extension in-
stead. Now, according to Figure 9, f1 is reconstructed as fol-
lows:

f1 = p2(αci) + p−1c1 + q2(αdk) − q−1d1. (17)

If we consider αci = −c1 in equation (17) for example, then
w(c1) = −p2 + p−1 and w(c2) = 0. If −c1 is substituted in

9
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(a) Balanced decomposition using half-sample symmetric extension.
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(b) Balanced decomposition using whole-sample symmetric exten-
sion.

Figure 8: Balanced decomposition of 8 fine samples using the decomposition filter vectors a and b from equation (12).

Figure 9 in place of αci, it would then reveal the need for half-
sample antisymmetric extension for the left boundary of C to
be used during reconstruction. In this manner, Table 1 lists the
sufficient conditions for all possible values of αci. Note that
each possible value of αci yields a particular type of extension
(listed in Table 1) for the left boundary of C.

Table 1: Sufficient conditions for symmetric and antisymmetric exten-
sions.

Case Sufficient Conditions αci Type of Extension

I

w(c1) = p2 + p−1

w(c2) = 0
c1

Half-sample
symmetry

II

w(c1) = −p2 + p−1

w(c2) = 0
−c1

Half-sample
antisymmetry

III

w(c1) = p−1

w(c2) = p2
c2

Whole-sample
symmetry

IV

w(c1) = p−1

w(c2) = −p2
−c2

Whole-sample
antisymmetry

Now, if we substitute the actual values of the corresponding
regular filters of quadratic B-spline from equation (4) in equa-
tions (15) and (16), we find that equation (15) only satisfies
the sufficient conditions under case I (i.e. αci = c1) in Table 1
and equation (16) does not satisfy the sufficient conditions un-
der any of the cases. Recall that equation (15) was obtained by
the use of half-sample symmetric extension on the left bound-
ary of F for a balanced decomposition. This implies that the
use of half-sample symmetric extension at the left boundary
of F for a balanced decomposition will ensure the perfect re-
construction of that boundary only using regular reconstruction
filters. Similarly, for the regular filters of quadratic B-spline
from equation (4), we can show that βc j = c4, γdk = −d1,
and δdl = −d4; and they all require the use of half-sample
symmetric extension at the boundaries of F for a balanced de-
composition.

In the above manner, we can show that for any set of

symmetric/antisymmetric filter vectors a, b, p, and q, where
wa and wb are even, half-sample symmetric extension can be
used at the boundaries of a column vector of fine samples for a
balanced decomposition to ensure a perfect reconstruction only
using the regular reconstruction filters from p and q. A simi-
lar proof can be outlined to show that odd values of wa and wb
imply the use of whole-sample symmetric extension instead.

5.4. Further Demonstration by Example

The example in this subsection illustrates the use of decom-
position filter vectors of odd width for a balanced decomposi-
tion as opposed to the even width of decomposition filter vec-
tors in the previous example (subsections 5.1 and 5.2). Further
examples are provided in Appendix A.

Balanced decomposition. Here we demonstrate our general
approach described in subsection 5.1 using the decomposition
filter vectors a and b from following set of local regular mul-
tiresolution filters [BS00, SBO07]:

a =
[

1
8 − 1

2
3
8 1 3

8 − 1
2

1
8

]
,

b =
[
− 1

8
1
2 − 3

4
1
2 − 1

8

]
,

p =
[

1
8

1
2

3
4

1
2

1
8

]
,

q =
[

1
8

1
2

3
8 −1 3

8
1
2

1
8

]
.

(18)

The filter vectors in equation (18) are known as the inverse
powers of two filters of cubic (fourth order) B-spline [SBO07].
We explain the balanced decomposition process using the de-
composition filter vectors in equation (18) through the example
shown in Figure 10. Similar to the previous example shown
in Figure 5, here we have a column vector of 8 fine samples
F =

[
f1 f2 . . . f8

]T
that we want to decompose into the

column vectors of coarse samples C =
[

c1 c2 c3 c4

]T

and detail samples D =
[

d1 d2 d3 d4

]T
.
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Figure 10: Balanced decomposition of 8 fine samples using the de-
composition filter vectors a and b from equation (18).

Figure 10 shows one possible balanced decomposition us-
ing our general approach presented in subsection 5.1. Step
1 of our general construction given in subsection 5.1 reveals
that 5 extra samples are required to ensure a balanced de-
composition. As noted earlier, wa and wb for the filter vec-
tors in equation (18) are odd. So according to step 2, whole-
sample symmetric extension is used to introduce 2 extra sam-
ples at one end and 3 extra samples at the other end of F
to obtain the extended column vector of fine samples F′ =[

f3 f2 f1 f2 . . . f8 f7 f6 f5
]T

. Finally, accord-
ing to step 3, the filter vectors a and b from equation (18) are
applied to F′ to obtain C and D by means of the equations
C = AF′ and D = BF′, analogous to equations (1) and (2).

Therefore, for n ∈ Z+, a balanced multiresolution scheme
based on the inverse powers of two filters of cubic B-spline
given in equation (18) can make use of the matrix equations


c1
c2
...

cn

 =


1
8 − 1

2
3
8 1 3

8 − 1
2

1
8 0 0 0 · · ·

0 0 1
8 − 1

2
3
8 1 3

8 − 1
2

1
8 0 · · ·

...
...

...
...

...
...

...
...

...
...

. . .





f3
f2
f1
f2
...

f2n−1
f2n

f2n−1
f2n−2
f2n−3


and


d1
d2
...

dn

 =


− 1

8
1
2 − 3

4
1
2 − 1

8 0 0 0 · · ·

0 0 − 1
8

1
2 − 3

4
1
2 − 1

8 0 · · ·

...
...

...
...

...
...

...
...

. . .





f3
f2
f1
f2
...

f2n−1
f2n

f2n−1



for the decomposition process, analogous to equations (1) and
(2).

Perfect reconstruction. Here we demonstrate our general ap-
proach described in subsection 5.2 using the reconstruction
filter vectors p and q given in equation (18). They can re-
verse the application of the decomposition filters vectors a and
b from equation (18). Given the column vectors of coarse
samples C =

[
c1 c2 c3 c4

]T
and detail samples D =[

d1 d2 d3 d4

]T
(obtained as shown in Figure 10), we

now want to perfectly reconstruct the column vector fine sam-
ples F =

[
f1 f2 . . . f8

]T
.
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2
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���������������������

1

2

Figure 11: Perfect reconstruction of 3 of the 8 fine samples using the
reconstruction filter vectors p and q from equation (18).

Figure 11 shows the reconstruction of Fm =
[

f3 f4 f5
]T

according to step 1 of our general construction given in subsec-
tion 5.2. Fl =

[
f1 f2

]T
and Fr =

[
f6 f7 f8

]T
are yet

to be reconstructed.
Next, following step 2(a) of our given general construction,

we form the following system of 2 linear equations in 2 un-
knowns ( f1 and f2 in Fl): c1 = 1

8 f3 − 1
2 f2 + 3

8 f1 + f2 + 3
8 f3 − 1

2 f4 + 1
8 f5,

d1 = − 1
8 f3 + 1

2 f2 − 3
4 f1 + 1

2 f2 − 1
8 f3.

(19)
The equations in (19) were obtained from Figure 10, which
shows how c1 and d1 were computed during decomposition.
Note that in (19), we can replace f3, f4, and f5 with the corres-
ponding linear combinations of coarse and detail samples from
Figure 11. Then following step 2(b), solving the 2×2 system
formed by the equations in (19) gives f1 = c1 − d1 + d2,

f2 = 7
8 c1 + 1

8 c2 + 3
8 d1 + 1

2 d2 + 1
8 d3.

(20)

Now, according to step 2(c), the equations in (20) can be rewrit-
ten as follows such that the coefficients of the coarse and detail
samples are all regular filters from equation (18): f1 = 1

2 c1 + 1
2 c1 + 1

2 d2 + (−1)d1 + 1
2 d2,

f2 = 1
8 c1 + 3

4 c1 + 1
8 c2 + 1

8 d2 + 3
8 d1 + 3

8 d2 + 1
8 d3.

(21)
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This rewriting required two implicit sample split operations on
the right-hand side of each equation in (21).

Finally, following step 3 of our general construction to re-
construct Fr, we form the following system of 3 linear equa-
tions in 3 unknowns ( f6, f7, and f8 in Fr):

c3 = 1
8 f3 − 1

2 f4 + 3
8 f5 + f6 + 3

8 f7 − 1
2 f8 + 1

8 f7,

c4 = 1
8 f5 − 1

2 f6 + 3
8 f7 + f8 + 3

8 f7 − 1
2 f6 + 1

8 f5,

d4 = − 1
8 f5 + 1

2 f6 − 3
4 f7 + 1

2 f8 − 1
8 f7.

(22)
The equations in (22) were obtained from Figure 10, which
shows how c3, c4, and d4 were evaluated during decomposi-
tion. Observe that in (22), we can replace f3, f4, and f5 with the
corresponding linear combinations of coarse and detail samples
from Figure 11. Then solving the 3×3 system formed by the
equations in (22) gives

f6 = 1
8 c2 + 3

4 c3 + 1
8 c4 + 1

8 d2 + 3
8 d3 + 1

2 d4,

f7 = 1
2 c3 + 1

2 c4 + 1
2 d3 −

1
2 d4,

f8 = 1
4 c3 + 3

4 c4 + 1
4 d3 + 3

4 d4.

(23)

Now, the equations in (23) can be rewritten as follows such that
the coefficients of the coarse and detail samples are all regular
filters from equation (18):

f6 = 1
8 c2 + 3

4 c3 + 1
8 c4 + 1

8 d2 + 3
8 d3 + 3

8 d4 + 1
8 d4,

f7 = 1
2 c3 + 1

2 c4 + 1
2 d3 + (−1)d4 + 1

2 d4,

f8 = 1
8 c3 + 3

4 c4 + 1
8 c3 + 1

8 d3 + 3
8 d4 + 3

8 d4 + 1
8 d3.

(24)
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Figure 12: Perfect reconstruction of 8 fine samples using the decom-
position filter vectors a and b from equation (18).

As we mentioned in the general construction given in subsec-
tion 5.2, note that the equations in (21) and (24) yield a specific
type of symmetric extension for each boundary of C and D as

shown in Figure 12. Therefore, based on (21) and (24), for a
given column vector of 2n fine samples (n ∈ Z+), we get

f1 = 1
2 c1 + 1

2 c1 + 1
2 d2 + (−1)d1 + 1

2 d2,

f2 = 1
8 c1 + 3

4 c1 + 1
8 c2 + 1

8 d2 + 3
8 d1 + 3

8 d2 + 1
8 d3,

f2n−2 = 1
8 cn−2 + 3

4 cn−1 + 1
8 cn + 1

8 dn−2 + 3
8 dn−1 + 3

8 dn + 1
8 dn,

f2n−1 = 1
2 cn−1 + 1

2 cn + 1
2 dn−1 + (−1)dn + 1

2 dn,

f2n = 1
8 cn−1 + 3

4 cn + 1
8 cn−1 + 1

8 dn−1 + 3
8 dn + 3

8 dn + 1
8 dn−1.

So a balanced multiresolution scheme based on the inverse
powers of two filters of cubic B-spline given in equation (18)
can make use of the matrix equation


f1
f2
...

f2n

 =



1
2

1
2 0 · · · 0 0 0 0 0

1
8

3
4

1
8 · · · 0 0 0 0 0

...
...

...
. . .

...
...

...
...

...

0 0 0 · · · 0 1
8

3
4

1
8 0

0 0 0 · · · 0 0 1
2

1
2 0

0 0 0 · · · 0 0 1
8

3
4

1
8





c1
c1
c2
...

cn−1
cn

cn−1



+



1
2 −1 1

2 0 · · · 0 0 0 0 0
1
8

3
8

3
8

1
8 · · · 0 0 0 0 0

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 · · · 1
8

3
8

3
8

1
8 0

0 0 0 0 · · · 0 1
2 −1 1

2 0

0 0 0 0 · · · 0 1
8

3
8

3
8

1
8





d2
d1
d2
...

dn−1
dn

dn

dn−1


(25)

for the reconstruction process, analogous to equation (3).

6. Application in Focus+Context Visualization

Multiscale 2D and 3D image visualization applications often
exploit query window-based focus+context visualization for
image exploration and navigation purposes. A low-resolution
approximation is rendered to provide the context and a se-
lected portion of that low-resolution approximation defining the
focus, also known as the ROI, is rendered as a close-up in high-
resolution. While such visualization is supported by an under-
lying wavelet transform, it is necessary to reconstruct the high-
resolution approximation of the ROI on demand from the low-
resolution approximation and corresponding details. Here the
use of a balanced wavelet transform constructed by our pro-
posed method makes locating the details straightforward. For
instance, observe the reconstruction of interior samples in Fig-
ures 6 and 11. If the first coarse sample for the reconstruc-
tion of a fine sample is ci, then first detail sample to use in
the reconstruction of that fine sample is di. This may not have
been the case if we had an unequal number of coarse and detail
samples from decomposition. Also, the only additional step re-
quired to reconstruct the fine samples near the boundaries is the
use of specific symmetric/antisymmetric extensions, because
our method completely eliminates the need for extraordinary
boundary filters.
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(a) Topographic and bathymetric shading of northwestern North America:
(4672×12800,C6, F4, F5, F5, F2, F2).

(c) Frangipani rust: (10496×3328,C6, F6, F3, F1).

(b) Topographic shading of Long Island: (18944×4224,C5, F4, F2, F3).

(d) Male abdomen: (1728×832,C3, F3).

(e) Male abdomen: (1728×832,C2, F2).

(f) Comparison of Parma (on the left) and Melor (on the right):
(10240×7680,C6, F3, F3).

(g) Comparison of ice near the coasts of Greenland and Alexander Island:
(15360×7680,C6, F3, F3, F3, F3).

Figure 13: Focus+context visualization of 2D images at various resolutions.



6.1. Overview of Visualization Tool

We have implemented a visualization tool prototype named
Focus+Context Studio to test our presented balanced multireso-
lution framework for images. It robustly allows real-time mul-
tilevel focus+context visualization of large-scale 2D and 3D
images, supported by multiple movable query windows defin-
ing ROIs at different resolutions. It currently uses the balanced
multiresolution scheme we devised using the short filters of
quadratic B-spline in equation (4), as described in the exam-
ples shown in subsections 5.1 and 5.2. Therefore, it uses half-
sample symmetric extensions for the sequences of fine samples
during decomposition in the fashion shown in Figure 5. On
the other hand, for a perfect reconstruction, it uses half-sample
symmetric extensions for the sequences of coarse samples and
half-sample antisymmetric extensions for the sequences of de-
tail samples in the manner shown in Figure 7. The used bal-
anced multiresolution scheme in its general form can be found
in the second row of Table A.2. At the moment, all the query
windows are 32×32 samples in dimension.

To facilitate focus+context visualization and exploration of
a 3D image, our prototype currently allows the query windows
identifying the ROIs to move back and forth through sequential
slices interactively by the use of mouse scroll wheel and alter-
natively, the up and down arrow keys on the keyboard. When
the query windows move from one slice to another, the low-
resolution approximation of the context and the high-resolution
approximations of the ROIs are updated on the fly in real-
time. For 3D images, currently it only performs widthwise
and heightwise decompositions, which keeps the number of 2D
slices intact for depthwise volume exploration.

6.2. Experimental Results

Here we present the experimental results produced by our
Focus+Context Studio prototype. The n-tuples (n ≥ 3) used in
the captions of Figures 13, 14, and 15 are defined as follows:
(image dimensions, Cd, Fr1 , Fr2 , . . . , Frm ), where d is the num-
ber of levels of (widthwise and heightwise) decomposition for
the context and ri (1 ≤ i ≤ m) is the number of levels of re-
construction for deriving the high-resolution approximation of
the ith ROI. Fri appears in the n-tuple in a position determined
by the left-to-right and top-to-bottom ordering of placement for
the high-resolutions approximations of the ROIs.

Figure 13 shows various scenarios for focus+context visuali-
zation of 2D images using our prototype. Figures 13(a) and
13(b) show multilevel focus+context visualization of large-
scale 2D images showing the topographic and bathymetric
shading of northwestern North America (data source: D.
Sandwell et al., University of California San Diago, USA) and
the topographic shading of Long Island (data source: G. Han-
son, Stony Brook University, USA), respectively. Similar mul-
tilevel focus+context visualization is shown for a diseased leaf
(data source: S. Fraser-Smith, Wikipedia) in Figure 13(c). Such
multilevel focus+context visualization is motivated by the need
for more manageable utilization of screen space and visuali-
zation of the context at a higher resolution while maintaining
interactive frame rates.

Next, for a 2D image, Figures 13(d) and 13(e) show differ-
ent levels of decomposition for the context and different levels
of reconstruction for the high-resolution approximation of the
ROI using our developed tool. The 2D image used in this ex-
ample is an abdomen slice from a male (data source: Male Ab-
domen, The Visible Human Project, U.S. National Library of
Medicine). One advantage of allowing multiple query windows
corresponding to multiple ROIs is the ability to draw compar-
isons between similar ROIs when required. Figure 13(f) shows
such a comparison scenario between the tropical storm Parma
on the left and typhoon Melor on the right (data source: MODIS
Rapid Response Team, NASA). Another such scenario compar-
ing the ice near the coasts of Greenland and Alexander Island
(data source: Visible Earth, NASA) is shown in Figure 13(g).

January

February

March

April

May

June July

August

September

October

November

December

Figure 14: Focus+context visualization of time-lapse imagery –
monthly global images: (5440×2752×12,C4, F4).

Our developed prototype is also suitable for the visualization
and exploration of time-lapse imagery. For instance, Figure 14
shows 12 unique frames from the interactive transition through
the 12 slices of monthly global images (data source: R. Stöckli,
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Monthly Global Images, NASA). The order of frames is shown
by directions marked on the curved-arrow in the middle. The
ROI covers most of northwestern North America and shows the
transition from one winter to the following winter.

Figure 15 shows an example of visualization and exploration
of a 3D image in our prototype. For the purpose of demonstra-
tion, the transition through 10 of the 150 slices that the query
windows were constrained to move back and forth through are
shown in Figure 15 (data source: Female head, The Visible Hu-
man Project, U.S. National Library of Medicine). This head
dataset contains a total of 1477 2D slices, each of dimensions
1056×1528, among which 150 sequential slices were loaded
into our prototype for this example.

Slice 365

Slice 366

Slice 371

Slice 374

Figure 15: Focus+context visualization of a 3D image – female head
(1056×1528×150,C3, F3, F3).

7. Discussion and Future Work

Not using the type of symmetric extension suggested by our
general construction in subsection 5.1 to obtain the extra fine
samples required for a balanced decomposition may lead to the
use of extraordinary boundary filters. For the sake of com-
parison, we used half-sample symmetric extension in place of

the suggested whole-sample symmetric extension to obtain the
five extra fine samples required for a balanced decomposition
using the decomposition filter vectors in equation (A.3), which
contains the wide and optimal filters of cubic B-spline. This
led to the following matrix equation for a perfect reconstruc-
tion, both P and Q matrices containing unwanted extraordinary
boundary filters:
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in place of equation (A.4). Note that such extraordinary bound-
ary filters in P and Q matrices do not allow the anticipated sam-
ple split operations that yield suitable symmetric/antisymmetric
extensions to use for C and D for a perfect reconstruction only
by the use of regular filters.

Our method can be used to devise a balanced multiresolu-
tion scheme for any set of given regular multiresolution fil-
ter vectors. However, if the scheme would only make use of
regular reconstruction filters is determined by the properties of
the given multiresolution filter vectors. If the given filter vec-
tors are symmetric/antisymmetric, then our method can devise
a balanced multiresolution scheme that only uses regular filters.
Otherwise, some extraordinary boundary reconstruction filters
are introduced (see Appendix B, for instance).

The balanced multiresolution schemes devised by our ap-
proach can also be applied to open curves and tensor product
meshes (surfaces and volumes) in applications where bound-
ary interpolation is not important but a balanced decomposition
is preferred, for reasons such as partitioning the curve or the
mesh into even and odd vertices. Such a partitioning allows the
storage of coarse vertices and details in even and odd vertices,
respectively, as proposed in [OSB07]. However, some of the
devised balanced multiresolution schemes may support bound-
ary interpolation only in the context of subdivision i.e. when
we only consider the result of PC′ in order to increase the res-
olution of C. For example, the filters of second order B-spline
in equation (A.1) and the short filters of third order B-spline in
equation (4) lead to such boundary interpolating subdivisions.

There is a number of directions for future research. In this
article, we covered the commonly used types of symmetric and
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antisymmetric extensions. It would be useful to investigate and
develop extension types that can be utilized to devise balanced
multiresolution schemes for near symmetric and asymmetric
filter vectors in order to ensure a perfect reconstruction solely
by the use of regular filters. To start with, the devised balanced
multiresolution scheme given in Appendix B for Daubechies’
asymmetric D4 filters may provide some insights.

In addition, further investigations are needed for an in-
depth understanding of the relations between the symme-
try/antisymmetry exhibited by the filter vectors, parity of their
widths, and the determined types of symmetric/antisymmetric
extensions required for a perfect reconstruction using only reg-
ular filters. For instance, compare the multiresolution filter vec-
tors containing the inverse powers of two filters of fourth order
B-spline in equation (18) and the wide and optimal filters of
fourth order B-spline in equation (A.3). In these two sets, the
corresponding filter vectors have the same widths and they are
all symmetric. Now, observe that the two balanced multires-
olution schemes we devised using these two sets of filter vec-
tors suggest exactly the same type of symmetric extensions for
the column vectors of fine, coarse, and detail samples. There-
fore, the determined types of symmetric/antisymmetric exten-
sions are not dependant on actual filter values. Several other
such scenarios are shown in Table A.2.

From application’s standpoint, our current implementation
supporting focus+context visualization of 3D images (see
Figure 15, for example) can be extended by additionally per-
forming depthwise balanced decompositions and allowing 3D
ROIs that are not necessarily axis-aligned. These will facili-
tate a more flexible visualization framework for large-scale 3D
images.

8. Conclusion

In this article, we presented a novel method for devis-
ing a balanced multiresolution scheme, primarily applicable
to images, using a given set of symmetric/antisymmetric fil-
ter vectors containing regular multiresolution filters. A bal-
anced multiresolution scheme resulting from our method allows
balanced decomposition and subsequent perfect reconstruction
of images without using any extraordinary boundary filters.
This is achieved by the use of an appropriate combination of
symmetric and antisymmetric extensions at the image and de-
tail boundaries, correlating to implicit sample split operations.
Balanced wavelet transform of an image constructed through
balanced decompositions provides straightforward and efficient
access to details corresponding to a ROI on demand.

In order to support smooth multiresolution representations of
images beyond Haar wavelets and the associated scaling func-
tions, and still exploit the advantages of a balanced decompo-
sition, we used our method to devise balanced multiresolution
schemes for some commonly used sets of local multiresolution
filters obtained from higher order scaling functions and their
wavelets. Any such balanced multiresolution scheme can be
used to generate a balanced wavelet transform representation
of a multidimensional image in a preprocessing phase, which

can then be utilized to support its focus+context visualization
in an efficient manner.

We also presented a set of experimental results produced us-
ing our developed Focus+Context Studio prototype that allows
interactive multilevel focus+context visualization of large-scale
2D and 3D images. It exploits the balanced multiresolution
scheme we devised from the short filters of quadratic B-spline
in equation (4). We envision the integration of the key function-
alities of our prototype in visualization systems and application
programming interfaces (APIs) to enable users to visualize and
explore the contents of complex imagery such as large-scale
satellite images, clinical data, seismic data, etc.
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Appendix A. Further Examples with Symmetric/Anti-
symmetric Filter Vectors

Our first example here involves the multiresolution filter vec-
tors containing the local regular filters of second order B-spline,

a =
[
− 1

6
1
3

2
3

1
3 −

1
6

]
,

b =
[
− 1

2 1 − 1
2

]
,

p =
[

1
2 1 1

2

]
,

q =
[
− 1

6 −
1
3

2
3 −

1
3 −

1
6

]
,

(A.1)

derived by Sadeghi [Sad11] by reversing Faber subdivision
[Fab09] based on the construction procedure presented by
Samavati and Bartels in [SB99, BS00]. For the filter vectors
in equation (A.1), the matrix equations for a balanced multires-
olution scheme we devised using our method for n ∈ Z+ are
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and
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analogous to equations (1), (2), and (3), respectively.
The next example involves the following multiresolution fil-

ter vectors containing the local regular filters of cubic (fourth
order) B-spline from [SBO07]:
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(A.2)

The filter vectors in equation (A.2) are called the short filters
of cubic B-spline. For these filter vectors, the matrix equa-
tions for a balanced multiresolution scheme we devised using
our method for n ∈ Z+ are
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f2n−2


,

and


f1
f2
...

f2n

 =



1
8

3
4

1
8 0 · · · 0 0 0

0 1
2

1
2 0 · · · 0 0 0

0 1
8

3
4

1
8 · · · 0 0 0

...
...
...
...
. . .

...
...
...

0 0 0 0 · · · 1
8

3
4

1
8

0 0 0 0 · · · 0 1
2

1
2





c2
c1
c2
...

cn

cn


+



1
4

1
4 0 · · · 0 0

0 1 0 · · · 0 0

0 1
4

1
4 · · · 0 0

...
...
...
. . .

...
...

0 0 0 · · · 1
4

1
4

0 0 0
... 0 1





d1
d1
d2
...

dn


,

analogous to equations (1), (2), and (3), respectively.
Our last example uses the following multiresolution filter

vectors containing the local regular filters of cubic B-spline
from [SBO07]:

a =
[

23
196 −

23
49

9
28

52
49

9
28 −

23
49

23
196

]
,

b =
[

13
98 − 26

49
39
49 −

26
49

13
98

]
,

p =
[

1
8

1
2

3
4

1
2

1
8

]
,

q =
[
− 23

208 −
23
52 −

63
208 1 − 63

208 −
23
52 −

23
208

]
.

(A.3)

The filter vectors in equation (A.3) are known as the wide and
optimal filters of cubic B-spline. For these filter vectors, the
matrix equations for a balanced multiresolution scheme we de-
vised using our method for n ∈ Z+ are


c1
c2
...

cn

 =


23
196 −

23
49

9
28

52
49

9
28 −

23
49

23
196 0 0 0 · · ·

0 0 23
196 −

23
49

9
28

52
49

9
28 −

23
49

23
196 0 · · ·

...
...

...
...

...
...

...
...

...
...
. . .





f3
f2
f1
f2
...

f2n−1
f2n

f2n−1
f2n−2
f2n−3



,


d1
d2
...

dn

 =


13
98 −

26
49

39
49 −

26
49

13
98 0 0 0 · · ·

0 0 13
98 −

26
49

39
49 −

26
49

13
98 0 · · ·

...
...

...
...

...
...

...
...
. . .





f3
f2
f1
f2
...

f2n−1
f2n

f2n−1


,

and


f1
f2
...

f2n

 =



1
2

1
2 0 · · · 0 0 0 0 0

1
8

3
4

1
8 · · · 0 0 0 0 0

...
...
...
. . .

...
...
...
...
...

0 0 0 · · · 0 1
8

3
4

1
8 0

0 0 0 · · · 0 0 1
2

1
2 0

0 0 0 · · · 0 0 1
8

3
4

1
8





c1
c1
c2
...

cn−1
cn

cn−1



+



− 23
52 1 − 23

52 0 · · · 0 0 0 0 0

− 23
208 −

63
208 −

63
208 −

23
208 · · · 0 0 0 0 0

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 · · · − 23
208 −

63
208 −

63
208 −

23
208 0

0 0 0 0 · · · 0 − 23
52 1 − 23

52 0

0 0 0 0 · · · 0 − 23
208 −

63
208 −

63
208 −

23
208





d2
d1
d2
...

dn−1
dn

dn

dn−1


,

(A.4)
analogous to equations (1), (2), and (3), respectively.

In Table A.2, we summarize all the balanced multiresolu-
tion schemes presented in this article so far, in addition to
six other sets of symmetric/antisymmetric regular multiresolu-
tion filters. The biorthogonal and reverse biorthogonal filters
[CDF92, Dau92] we referred to in the table are available in
MATLAB [MAT14].
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Table A.2: Balanced multiresolution schemes.

Filters a b p q wa, wb Decomposition: F′, c1, d1 Reconstruction: C′,D′, fi ∈
[
Fl

T Fr
T
]T

Filters of second order
B-spline (A.1)

S S S S Odd F′ =
[
f2 f1 . . . f2n f2n−1 f2n−2

]T,
c1 = a−2 f2 + a−1 f1 + a0 f2

+ a1 f3 + a2 f4,

d1 = b−1 f2 + b0 f1 + b1 f2.

C′ = [c1 c1 . . . cn]T, D′ = [d2 d1 . . . dn dn]T,
f1 = p1c1 + p−1c1 + q2d2 + q0d1 + q−2d2,

f2n−1 = p1cn−1 + p−1cn + q2dn−1 + q0dn + q−2dn,

f2n = p0cn + q1dn + q−1dn.

Biorthogonal 2.2 filters
(a,b,p, and q in
[MAT14])
Short filters of quadratic
B-spline (4)

S A S A Even F′ =
[
f1 f1 . . . f2n f2n

]T, c1 = a−2 f1 + a−1 f1 + a1 f2 + a2 f3,

d1 = b−2 f1 + b−1 f1 + b1 f2 + b2 f3.

C′ = [c1 c1 . . . cn cn]T, D′ = [−d1 d1 . . . dn −dn]T, f1 = p2c1 + p−1c1 + q2(−d1) + q−1d1,

f2n = p1cn + p−2cn + q1dn + q−2(−dn).
Biorthogonal 3.1 filters
(a,b,p, and qR in
[MAT14])
Reverse biorthogonal
3.1 filters (a,b,p, and qR

in [MAT14])
Wide filters of quadratic
B-spline (a,b,p, and q
in [SBO07])

S A S A Even F′ =
[
f3 f2 f1 f1 . . . f2n f2n f2n−1 f2n−2

]T,
c1 = a−4 f3 + a−3 f2 + a−2 f1 + a−1 f1

+ a1 f2 + a2 f3 + a3 f4 + d4 f5,

d1 = b−2 f1 + b−1 f1 + b1 f2 + b2 f3.

C′ = [c1 c1 . . . cn cn]T, D′ = [−d2 −d1 d1 . . . dn −dn −dn−1]T,

f1 = p2c1 + p−1c1 + q4(−d2) + q2(−d1) + q−1d1 + q−3d2,

f2 = p1c1 + p−2c2 + q3(−d1) + q1d1 + q−2d2 + q−4d3,

f3 = p2c1 + p−1c2 + q4(−d1) + q2d1 + q−1d2 + q−3d3,

f2n−2 = p1cn−1 + p−2cn + q3dn−2 + q1dn−1 + q−2dn + q−4(−dn),

f2n−1 = p2cn−1 + p−1cn + q4dn−2 + q2dn−1 + q−1dn + q−3(−dn),

f2n = p1cn + p−2cn + q3dn−1 + q1dn + q−2−dn + q−4(−dn−1).

Biorthogonal 3.3 filters
(a,b,p, and qR in
[MAT14])

Short filters of cubic
B-spline (A.2)

S S S S Odd F′ =
[
f2 f1 . . . f2n f2n−1 f2n−2

]T,
c1 = a−1 f2 + a0 f1 + a1 f2,

d1 = b−2 f2 + b−1 f1 + b0 f2

+ b1 f3 + b2 f4.

C′ = [c2 c1 . . . cn cn]T, D′ = [d1 d1 . . . dn]T,
f1 = p2c2 + p0c1 + p−2c2 + q1d1 + q−1d1,

f2n−1 = p2cn−1 + p0cn + p−2cn + q1dn−1 + q−1dn,

f2n = p1cn + p−1cn + q0dn.

Reverse biorthogonal
2.2 filters (a,b,p, and q
in [MAT14])
Inverse powers of two
filters of cubic B-spline
(18)

S S S S Odd F′ =
[
f3 f2 f1 . . . f2n f2n−1 f2n−2 f2n−3

]T,

c1 = a−3 f3 + a−2 f2 + a−1 f1 + a0 f2

+ a1 f3 + a2 f4 + a3 f5,

d1 = b−2 f3 + b−1 f2 + b0 f1

+ b1 f2 + b2 f3.

C′ = [c1 c1 . . . cn cn−1]T, D′ = [d2 d1 . . . dn dn dn−1]T,

f1 = p1c1 + p−1c1 + q2d2 + q0d1 + q−2d2,

f2 = p2c1 + p0c1 + p−2c2 + q3d2 + q1d1 + q−1d2 + q−3d3,

f2n−2 = p2cn−2 + p0cn−1 + p−2cn + q3dn−2 + q1dn−1 + q−1dn + q−3dn,

f2n−1 = p1cn−1 + p−1cn + q2dn−1 + q0dn + q−2dn,

f2n = p2cn−1 + p0cn + p−2cn−1 + q3dn−1 + q1dn + q−1dn + q−3dn−1.

Wide and optimal filters
of cubic B-spline (A.3)



In the first column of In Table A.2, qR denotes the reversed
filter vector q. The second through fifth columns specify the
symmetric (S)/antisymmetric (A) structure of the a, b, p, and
q filter vectors, respectively, for each set of filters in the table.
The next column mentions the parity of wa and wb, based on
which we decide on the type of symmetric extension to use for
F.

For n ∈ Z+, the second-to-last column of Table A.2 illus-
trates the proposed extended vector of fine sample F′ and the
construction of the first coarse sample c1 and detail sample d1,
applicable to one possible balanced multiresolution scheme for
each set of filters in the table. Here, we only give the con-
struction of c1 and d1 because the remaining pairs of coarse
and detail samples can be obtained by subsequent shifts of
the filter vectors a and b by two fine samples along F′ (as
shown in Figure 10, for example). Finally, the last column
shows the corresponding extended vectors of coarse samples
C′ and detail samples D′, in addition to the reconstruction of
the fine samples in Fl and Fr as defined in subsection 5.2. In
this column, filter vectors of odd and even width are assumed
to have formats similar to

[
. . . v−2 v−1 v0 v1 v2 . . .

]
and[

. . . v−2 v−1 v1 v2 . . .
]
, respectively.

Although providing a recipe for choosing the appropriate set
of filters for a particular application is not the focus of this arti-
cle, here we provide a high-level guideline. To decide which set
of filters is more suitable for a particular application, a number
factors such as smoothness of results, widths of filter vectors,
the number of vanishing moments of the associated wavelet
function, and the support of underlying basis function are taken
into consideration. Firstly, when the visual quality of results is
important, a set of filters that provides higher level of smooth-
ness is preferred. Secondly, shorter widths of filter vectors im-
ply faster implementation and if applicable, higher frame rate.
An interactive focus+context visualization application like the
one demonstrated in this article performs more efficiently if the
filter vectors are not too wide. For instance, only one level of
balanced decomposition of a 512 × 512 × 512 image using a
width-7 a filter vector in place of a width-4 a filter vector will
take 21×2563 more multiplications, incurring a 75% increase in
the number of multiplications required. Next, higher number of
vanishing moments of the associated wavelet function implies
wider filter vectors and lesser smoothness of results. However,
higher number of vanishing moments allows better approxima-
tion of scaling functions, which is desirable in compression ap-
plications. Finally, filter vectors that provide compact support
lead to better local effects, usually required for applications al-
lowing multiresolution editing.

Daubechies proposed a family of orthogonal wavelets with
the highest number of vanishing moments for some expected
support but it does not allow for the best smoothness [Dau88].
The filter vectors resulting from this work are asymmetric (see
equation (B.1), for example). Using a similar idea for con-
struction, Cohen el al. proposed the first family of biorthogo-
nal wavelets, which leads to filter vectors that are symmetric
or antisymmetric about their centers [CDF92, Dau92]. The
biorthogonal and reverse biorthogonal filters we refer to in Ta-

ble A.2 resulted from this work. On the other hand, the B-
splines filters in Table A.2 are developed by Samavati et al.
based on reverse subdivision [SB99, BS00, SBO07]. Filters of
higher order B-spline produce smoother results. The associ-
ated construction procedure starts by setting the width of the
decomposition filter vector a, where wider a results in better
coarse approximations. Constraints can be set in the construc-
tion procedure such that the resulting coarse approximations are
smoother. For instance, Sadeghi and Samavati proposed smooth
reverse subdivision for obtaining smooth coarse data through
decomposition [SS09, SS11].

Appendix B. An Example with Asymmetric Filter Vectors

An attempt to apply our general approach for devising a
balanced multiresolution scheme described in section 5 to
Daubechies’ asymmetric D4 filters [Dau88, SDS96],

a = p =

[
1+
√

3
4
√

2
3+
√

3
4
√

2
3−
√

3
4
√

2
1−
√

3
4
√

2

]
,

b = q =

[
1−
√

3
4
√

2
−3+

√
3

4
√

2
3+
√

3
4
√

2
−1−

√
3

4
√

2

]
,

(B.1)

produces the balanced decomposition setup shown in
Figure B.16 and the perfect reconstruction setup shown
in Figure B.17. Note that it introduces two extraordinary
boundary filter values, −2+

√
3

√
2

and 2+
√

3
√

2
in the reconstruction of

f1 and f8, respectively. Because the filter vectors in equation
(B.1) are not symmetric/antisymmetric, the rewriting task sug-
gested in step 2(c) and that of step 3 in our general construction
given in subsection 5.2 were not entirely successful. Therefore,
our approach could not ensure a perfect reconstruction using
only the regular filters from equation (B.1).

As we observe in Figure B.17, this particular example does
not require any extraordinary boundary filters for the subdivi-
sion matrix P. This may not always be the case while using
other asymmetric filter vectors.
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[Fab09] Faber G.: Über stetige Funktionen. Mathematische Annalen 66
(1909), 81–94.

[FB88] Forsey D. R., Bartels R. H.: Hierarchical B-spline refinement.
In Proceedings of the 15th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA,
1988), SIGGRAPH ’88, ACM, pp. 205–212.

[GC95] Gortler S. J., Cohen M. F.: Hierarchical and variational geo-
metric modeling with wavelets. In Proceedings of the 1995 Sym-
posium on Interactive 3D graphics (Monterey, CA, Apr 9 1995),
I3D ’95, ACM, pp. 35–42.

[Haa10] Haar A.: Zur Theorie der orthogonalen Funktionensysteme.
Mathematische Annalen 69 (1910), 331–371.

[HMC11] Hsu W.-H., Ma K.-L., Correa C.: A rendering framework for
multiscale views of 3D models. In Proceedings of the 2011 SIG-
GRAPH Asia Conference (New York, NY, USA, 2011), SA ’11,
ACM, pp. 131:1–131:10.

[Hod03] Hodges E. R. S.: The Guild handbook of scientific illustration.
John Wiley and Sons, Hoboken, NJ, USA, 2003.

[KNI94] Kiya H., Nishikawa K., Iwahashi M.: A development of
symmetric extension method for subband image coding. IEEE
Transactions on Image Processing 3, 1 (Jan 1994), 78–81.

[KZT02] Kharitonenko I., Zhang X., Twelves S.: A wavelet transform
with point-symmetric extension at tile boundaries. IEEE Trans-
actions on Image Processing 11, 12 (Dec 2002), 1357–1364.

[LHJ99] LaMar E., Hamann B., Joy K. I.: Multiresolution techniques for
interactive texture-based volume visualization. In Proceedings of
the 1999 conference on Visualization (Los Alamitos, CA, USA,
1999), VIS ’99, IEEE Computer Society Press, pp. 355–361.

[LL00] Li S., Li W.: Shape-adaptive discrete wavelet transforms for ar-
bitrarily shaped visual object coding. IEEE Transactions on Cir-
cuits and Systems for Video Technology 10, 5 (Aug 2000), 725–
743.

[LS08] Lin J., Smith M. J. T.: New perspectives and improvements on
the symmetric extension filter bank for subband/wavelet image
compression. IEEE Transactions on Image Processing 17, 2 (Feb
2008), 177–189.

[MAT14] MATLAB and Wavelet Toolbox Release 2014a. The MathWorks,
Inc., Natick, MA, USA, 2014.

�����������������������

3 3

4 2

− 1+ 3

4 2

3 3

4 2

+ 1 3

4 2

−

1 3

4 2

− 3+ 3

4 2

1 3

4 2

− − 3 3

4 2

− +

�����������������������

1 3

4 2

− 3+ 3

4 2

3 3

4 2

− 1+ 3

4 2

�����������������������

�����������������������

3 3

4 2

− 1+ 3

4 2

3 3

4 2

+ 1 3

4 2

−

1 3

4 2

− 3+ 3

4 2

1 3

4 2

− − 3 3

4 2

− +

�����������������������

�����������������������

3 3

4 2

− 1+ 3

4 2

3 3

4 2

+ 1 3

4 2

−

1 3

4 2

− 3+ 3

4 2

1 3

4 2

− − 3 3

4 2

− +

�����������������������

���������������������

2 3

2

− +

2 3

2

+

Figure B.17: Perfect reconstruction of 8 fine samples using the recon-
struction filter vectors p and q from equation (B.1).

[Mey90] Meyer Y.: Ondelettes et Opérateurs. Hermann, 1990.
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