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Abstract
Haar wavelets have been widely used in Biometrics. One

advantage of Haar wavelets is the simplicity and the local-
ity of their decomposition and reconstruction filters. How-
ever, Haar wavelets are not satisfactory for some applica-
tions due to their non-continuous behaviour. Having a par-
ticular level of smoothness is important for many applica-
tions. B-spline wavelets are capable of being applied to sig-
nals and functions of any smoothness. However, the con-
ventional B-spline wavelets results ”non-local” decomposi-
tion filters and consequently, they are not efficient as are the
Haar wavelets.

We present our recently developed local filters of B-
spline wavelets. Here, we focus on quadratic case that guar-
antees once-differentiable smoothness. Practical issues for
the efficient implementation are discussed. We show that
how the resulting filters can be applied to curves, images
and surfaces.

Key words: subdivision, reverse subdivision, wavelets, mul-
tiresolution, B-splines, Haar.

1 Introduction

Wavelets and multiresolution have many applications re-
lated to the Biometric area such as data compression and
noise removal. However, they are specifically appealed for
extraction of high detailed features in fingerprint and iris
recognition[3], [7] and [8]. To date, mostly Haar wavelets
have been considered. We introduce an alternative multires-
olution approach based on quadratic B-spline wavelets.

1.1 Wavelets and Multiresolution
Multiresolution operations are specified in terms of the fil-
ter matricesAn, Bn, Pn andQn. Consider a given dis-
crete signalCn, expressed as a column vector. A lower-
resolution sampleCn−1 is created by a downsampling filter
onCn. This process can be expressed as a matrix equation:

Cn−1 = AnCn. (1)

The detailsDn−1 lost through the down-sampling are
captured usingBn:

Dn−1 = BnCn. (2)

The pair of matricesAn andBn are calledanalysis fil-
tersand the process of splitting a signalCn intoCn−1 and
Dn−1 is calleddecomposition.

Recovering the original signalCn is calledreconstruc-
tion. It involves refinement of the low-resolution sample
Cn−1 and detailsDn−1 using thesynthesis filtersPn and
Qn, which basically reverse the operations ofAn andBn:

Cn = PnCn−1 + QnDn−1. (3)

Such a decomposition and reconstruction corresponds to
some underlying function spacesVn−1 ⊂ Vn whereinCn

defines some functioncn =
∑

i c
n
i φ

n
i in the large space,

Cn−1 defines an approximationcn−1 =
∑

j c
n−1
j φn−1

j to
that function in the smaller space, andDn−1 defines the dif-
ferencedn−1 =

∑
k d

n−1
k ψn−1

k in the complement space
Vn \ Vn−1. The basis functionsψn−1 are conventionally
calledwaveletsand theφ are calledscale functions, since
the φn are frequently scaled and shifted versions of the
φn−1.

For an efficient representation, the following properties
are desired:

• Cn−1 is a good approximation forCn.

• The storage requirement for storingCn−1 andDn−1

is not more than that ofCn.

• The time required to decompose and reconstruct the
signal is linearly dependent onn.

We can recursively decompose the original signal
to Cl, Cl+1, . . . , Cn−1 and detailsDl, Dl+1, . . . , Dn−1

wherel < n. The original signalCn can be recovered from
the sequenceCl, Dl, Dl+1, . . . , Dn−1, known as awavelet
transform. Based on the properties mentioned above the
total size of the transformCl, Dl, Dl+1, . . . , Dn−1 is the
same as that of the original signalCn. In addition the
required time to transformCn to Cl, Dl, Dl+1, . . . , Dn−1

and vice versa is is a linear function ofn.
If Cn represents a high-resolution approximation of a

curve, thenCl is a very coarse approximation of the curve
showing the main outline, andDi consist of vectors which
perturb the curve into its original path. As Figure1 demon-
strates, if we eliminateDi, the reconstructed curve becomes



much smoother but without any style. In fact,Di can be
considered ascharacteristicof the curves. It is possible to
applyDi to a new coarse curve to obtain a new curve but
with the same character( See Figure 1). Consequently,Di at
different levels are important features for applications such
as iris recognition.

The matricesAn, Bn, Pn and Qn form the core of
the multiresolution approach, and the efficiency of the
wavelet transform depends on the structure of these matri-
ces. Specifically: banded matrices with repeated columns
result in more efficient decomposition and reconstruction
operations.

B-splines are often chosen as scaling functions [5]. The
first order B-splines form a set of step functions and Haar
functions are their associated wavelets [12, 13]. The result-
ing matrix filters are very simple and efficient. However,
these scaling functions and wavelets are non-continuous.
This is a problem when we have discrete data that is a
sample of smooth signals and objects. Higher order B-
splines and their wavelets can be considered for smooth
signals [6, 5, 10]. A common knot arrangement for B-
splines of orderk is to have knots of single multiplicity
uniformly spaced everywhere except at the ends of the do-
main, where knots have multiplicityk, [9, 1], an arrange-
ment used for endpoint-interpolating curves and surfaces.
The conventional definition of B-spline wavelets results in
analysis whose bands are much wider than those for Haar
wavelets.

We have introduced a new approach to construct mul-
tiresolution filters based onreverse subdivisionas described
in [2] and [11]. Based on this approach, it is possible
to obtain banded matrices for B-spline wavelets whose
bands are narrower than the ones conventionally produced.
In this paper we present filter matrices for one important
case, quadratic B-splines with the conventional knot se-
quence.The local filters of quadratic B-spline has been con-
structed based on Chaikin subdivision[4], for which the un-
derlying scale functions are the quadratic B-splines. These
filters are obtained from the approach of [2] and [11]. How-
ever, in this work, we emphasize on practical issues for ef-
ficient implementation.

Our local filters are described by matrix notation in Sec-
tion 2. Efficient algorithms for the resulting filters are de-
scribed in Section 3. We show that how the resulting filters
can be applied to curves, images and surfaces in Section 4.

2 Filters by Matrix Notation

The pair of matricesAn andBn, analysis filters, for decom-
posing the signalCn intoCn−1 andDn−1 are:

An =

 An
s

An
r

An
e

 (4)

where

An
s =

[
1 0 0 0 0 0 · · ·

− 1
2 1 3

4 − 1
4 0 0 · · ·

]
(5)

An
r =


0 0 − 1

4
3
4

3
4 − 1

4 0 0 . . .

0 0 0 0 − 1
4

3
4

3
4 − 1

4 . . .
...


(6)

An
e =

 · · · 0 0 − 1
4

3
4 1 − 1

2

· · · 0 0 0 0 0 1

 (7)

And the same block notation forBn:

Bn =

 Bn
s

Bn
r

Bn
e

 (8)

where

Bn
s =

[
− 1

2 1 − 3
4

1
4 0 0 0 . . .

0 0 − 1
4

3
4 − 3

4
1
4 0 . . .

]
(9)

Bn
r =


0 0 0 0 1

4 − 3
4

3
4 − 1

4 0 0 . . .

0 0 0 0 0 0 1
4 − 3

4
3
4 − 1

4 . . .
...


(10)

Bn
e =

[
· · · 0 0 1

4 − 3
4 1 − 1

2

]
(11)

An
s andAn

e always have two rows for anyn. An
r has

different size based on the value ofn however it always has
a regular structure. Elements of each row are obtained by
shifting right by two positions of the elements of the pre-
vious row. Therefore applyingAn to the high-resolution
dataCn reduces the size of the data ton+2

2 . In addition, the
regularity ofAn

r allows us to obtain a linear time algorithm
instead of matrix multiplication. The similar properties are
true forBn

r . The size ofDn becomesn−2
2 and again a lin-

ear time algorithm can be employed instead of the operation
BnCn.

Using the blocked matrix notation for the synthesis filters
P, we obtain:

Pn =

 Pn
s

Pn
r

Pn
e

 (12)



where

Pn
s =

[
1 0 0 0 0 · · ·
1
2

1
2 0 0 0 · · ·

]
(13)

Pn
r =



0 3
4

1
4 0 0 . . .

0 1
4

3
4 0 0 . . .

0 0 3
4

1
4 0 . . .

0 0 1
4

3
4 0 . . .

0 0 0 3
4

1
4 . . .

0 0 0 1
4

3
4 . . .

...


(14)

Pn
e =

 . . . 0 0 0 1
2

1
2

. . . 0 0 0 0 1

 (15)

And similarly forQn:

Qn =

 Qn
s

Qn
r

Qn
e

 (16)

where

Qn
s =



0 0 0 0 . . .

1
2 0 0 0 . . .

− 3
4

1
4 0 0 . . .

− 1
4

3
4 0 0 . . .

0 − 3
4 − 1

4 0 . . .

0 − 1
4 − 3

4 0 . . .


(17)

Qn
r =



0 0 3
4 − 1

4 0 0 . . .

0 0 1
4 − 3

4 0 0 . . .

0 0 0 3
4 − 1

4 0 . . .

0 0 0 1
4 − 3

4 0 . . .

0 0 0 0 3
4 − 1

4 . . .

0 0 0 0 1
4 − 3

4 . . .
...


(18)

Qn
e =

 . . . 0 0 0 1
2

. . . 0 0 0 0

 (19)

Again we have a column regularity structure forPn
r and

Qn
r .

3 Filters by an Efficient Algorithm

We show how an efficient algorithm can be made based on
the multiresolution filters in 2. For all algorithms we have
focused on doing just one step of decomposition or recon-
struction. Each algorithm can be used multiple times to
construct general wavelet transform. In all casesF repre-
sents the vector of high-resolution data,C represent low-
resolution data andD represents the detail vector.

The first algorithm isREDUCE-RESOLUTION. In this al-
gorithmF [1..m] is the input and the vectorC is the output.
The indexi traverses theF andj traverses theC.
REDUCE-RESOLUTION(F [1..m])

1 C1 = F1

2 C2 = − 1
2F1 + F2 + 3

4F3 − 1
4F4

3 j = 3
4 for i = 3 to m− 5 step2
5 Cj = − 1

4Fi + 3
4Fi+1 + 3

4Fi+2 − 1
4Fi+3

6 j = j + 1
7 endfor
8 Cj = − 1

4Fm−3 + 3
4Fm−2 + Fm−1 − 1

2Fm

9 Cj+1 = Fm

10 return C[1..j + 1]

The lines 1 and 2 in theREDUCE-RESOLUTION corre-
spond toAn

s matrix and the lines 8 and 9 correspond toAn
e

matrix. The for loop represents the act of the regular block
An

r .
The second algorithm isFIND-DETAILS.

FIND-DETAILS(F [1..m])
1 D1 = − 1

2F1 + F2 − 3
4F3 + 1

4F4

2 D2 = − 1
4F3 + 3

4F4 − 3
4F5 + 1

4F6

3 j = 3
4 for i = 5 to m− 5 step2
5 Dj = 1

4Fi − 3
4Fi+1 + 3

4Fi+2 − 1
4Fi+3

6 j = j + 1
7 endfor
8 Dj = 1

4Fm−3 − 3
4Fm−2 + Fm−1 − 1

2Fm

9 return D[1..j]

For the reconstruction we employ the following algo-
rithm to evaluatePnC + QnD.
RECONSTRUCTION(C[1..r], D[1..s])

1 E1 = 0D1

2 E2 = 1
2D1

3 E3 = − 3
4D1 + 1

4D2

4 E4 = − 1
4D1 + 3

4D2

5 E5 = − 3
4D2 − 1

4D3

6 E6 = − 1
4D2 − 3

4D3

7 j = 7
8 for i = 3 to s− 1
9 Ej = 3

4Di − 1
4Di+1

10 Ej+1 = 1
4Di − 3

4Di+1

11 j = j + 2
12 endfor



13 Ej = 1
2Ds

14 Ej+1 = 0Ds

15
16 F1 = C1 + E1

17 F2 = 1
2C1 + 1

2C2 + E2

18 j = 3
19 for i = 2 to r − 2
20 Fj = 3

4Ci + 1
4Ci+1 + Ej

21 Fj+1 = 1
4Ci + 3

4Ci+1 + Ej+1

22 j = j + 2
23 endfor
24 Fj = 1

2Cr−1 + 1
2Cr + Ej

25 Fj+1 = Cr + Ej+1

26 return F [1..j + 1]

Lines 1 through 14 inRECONSTRUCTIONmake theE =
QnD term. Lines 1 through 6 correspond toQn

s and lines
13 and 14 are for the act ofQn

e . The for loop at the line 8
is for the regular blockQn

r . In the lines 1,E1 has been set
to 0D1 instead of0 to have general algorithm that can work
for the data with any dimension induced byD. Lines 16
trough 25 makeF = PnC + E. Again the termsPn

e ,P
n
r

andPn
e are distinguishable in the algorithm.

Note thatm the size of the high-resolution data is equal to
r + s. It is clear that the running time of all three algorithm
are linear function ofm the size ofF .

4 Results

4.1 Curves
All filters and given algorithms are capable to apply directly
to the curves. For example for a 3D curveFi can be viewed
as a coordinate vector in the three dimensional Euclidean
space. The filters form valid operations in this Affine space.
Figure1 shows an application of using quadratic B-spline
wavelets.

4.2 Images
Similar to Haar Wavelets, we need to apply simultaneously
one particular filter to all rows(or columns) of the image.
Figure 2 shows an example of the filters on an image.

4.3 Surfaces
The filters can apply just only for tensor-product surfaces
that can be parameterized with a rectangular domain. For
these kind of surfaces two sets of embedded curves,u-curves
and v-curves, exist on the surface. The filters can be used
for all the u-curves (or v-curves) simultaneously. Figure 3
shows an example of a tensor-product surface. Each vertical
curve on the surface is a v-curve and each circular curve on
the surface is u-curve.

4.4 Closed data
A closed circular data such a circle-like curve doesn’t need
extra-ordinary operations near to the boundaries. For this
kind of data that may appears in curves and surfaces, we

only need to use regular filters (6),(10),(14) and (18).

4.5 Re-Sampling
A constraint on the number of input data is enforced by the
B-spline scaling functions. This is similar to that imposed
by the Fast Fourier Transform. In general, to achieve a de-
composition without any excess points, we require the size
of high-resolution data to be a valuem = 2k + N , where
N is a small constant associated with the multiresolution
scheme used. For the quadratic B-splineN = 2. An obser-
vation on the recursive structure of the filtering leads us to a
less rigid constraint: for a decomposition ofl levels,mmay
be of the form2lk + N . Once the ideal number of points
is known, the input data should be uniformly re-sampled to
that number.

5 Conclusion

We described a set of new local filters of quadratic B-spline
wavelets. An efficient algorithm for each filter operation
was presented. We would like to explore the impact of these
filters on iris recognition as a future work.
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Figure 3: Victor Hugo Surface: (a) The original surface. (b) The coarse surface after two levels of decomposition in each
direction, (c) The reconstructed with Di. (d) The reconstructed without Di. (e) The reconstructed with the smallest 60% of
Di.


