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Abstract: In this paper, we present a novel approach toward generating floral patterns. We extract the essence of a
pattern aside from its appearance and geometry into combinatorial elements. As a result, existing patterns can
be reshaped while preserving their essence. Furthermore, we can create new patterns that adhere to high level
concepts such as imperfect symmetry and visual balance. By decomposing floral patterns into a configuration
of circles and angles, we can reconstruct this patterns on different surfaces given a conformal mapping.

1 INTRODUCTION

Figure 1: Example of Persian floral patterns (Takestani,
2002).

Persian floral patterns have been used to decorate
books, carpets and buildings for many centuries. Ex-
amples of these patterns are illustrated in fig.1. These
patterns were not only used on the plane but also on
spherical geometry to decorate domes. Like other in-
stances of Islamic art, these patterns were designed by
skilled mathematicians, and they exhibit fascinating
geometric and mathematical properties. This art was
taught by traditional practitioners through apprentice-
ship. Therefore, few resources are remained about the
design process of these patterns.

Designing floral patterns can be divided into two
aspects. First, stems are used to compose and struc-
ture the space. Second, flowers and other ornamen-
tal elements are added to locations specified by the
stem structure. Although a pattern is never complete
without the second step, it is the first step that carries
most of the beauty of the design. The composition

should comply with aesthetic concepts such as bal-
ance and repetition. With an aesthetic composition in
hand, one can use pre-designed sets of flowers to dec-
orate a pattern. The main challenge of designing floral
patterns lies in finding the underlying composition or
the structure of the stems.

By analyzing existing floral patterns and study-
ing traditional literature, we realized that the under-
lying structure and design of these patterns are based
on circles. Spiral forms, flowers and even the shape
of the leaves can be expressed using circle arcs. As
we explain in section 3, we can capture the essence
of a pattern into a configuration of circles. There-
fore, The properties and appearance of a design can
be controlled by changing its underlying circular con-
figuration. This led us to relate our problem to a
well-established field of mathematics known as circle
packing.

Circle packing is a relatively recent field in math-
ematics that studies the configuration of circles show-
ing specified patterns of tangencies. Circle packing
is based on rich mathematical foundations such as
conformal structures and discrete analytic functions.
Capturing the essence of a floral pattern in a packing
of circles provides a powerful framework to generate
and manipulate these beautiful patterns.

By taking advantage of circle packing concepts
and tools, we can analyse, generate and edit floral pat-
terns and also formulate specific properties in their
structure. Furthermore, we can construct patterns
on non-Euclidean geometries and project designs on
different surfaces without distortion using conformal
mappings.



In what follows, we first discuss related work.
Next, in section 3 we analyze floral patterns and their
circular structure. In section 4 we present concepts
and definitions from circle packing and explain how
we apply them to control the properties of floral pat-
terns. In section 5 we provide a method for designing
a Persian floral pattern algorithmically. And finally,
section 6 concludes our discussion.

2 RELATED WORK

Ornamental design has been investigated in the con-
text of computer graphics for many years. One of the
earliest works in this area is an algorithmic approach
to generate 17 symmetry groups on the open plane
(Alexander, 1975). Later, Frieze patterns from group
theory were used to generate ornaments in bounded
areas (Glassner, 1996).

Separation of composition and ornaments was first
applied in (Smith, 1984). In this work the branch-
ing structures of plants are generated using parallel
rewriting grammars called graphtals; then, in a post-
processing step the result is visually enhanced by
adding leaves and flowers.

Although L-systems (Prusinkiewicz and Linden-
mayer, 1996) is widely used to generate plants, it is
not a suitable approach toward generating floral orna-
ments (Wong et al., 1998).

Generating spiral curves is investigated in (Xu and
Mould, 2009). These curves are generated based on
the trajectory of charged particles in a magnetic field
and are called magnetic curves.

Islamic and Persian patterns are studied in many
works in computer graphics, because of their geo-
metric and mathematical nature. Star patterns along
with a number of algorithms to generate them are
investigated in (Kaplan and Salesin, 2004; Kaplan,
2008). Animation of Persian floral patterns is studied
in (Etemad et al., 2008). In (Djibril and Thami, 2008),
classifying symmetric patterns in decorative Islamic
art is discussed. A discussion on computer aided art
can be found in (Geng and Geng, 2010).

Our work is closely related to the computer gener-
ated floral patterns of (Wong et al., 1998). This work
presents a grammar based approach to generate floral
patterns by defining a set of elements and their growth
rules. Starting with user-specified seed points, the
main role of the system is to decide which elements to
grow. In order to make this decision, the system finds
the largest empty circle inside the boundary and then
invokes the elements near that circle.

There are a number of draw backs to this method:
although aesthetic principles like visual balance are

discussed in this work, the presented algorithm does
not provide a mechanism to support these principles.
To address this issue, an interactive approach is pre-
sented, which still relies on artistic input for an aes-
thetic partitioning (Obispo and Anderson, 2007; An-
derson and Wood, 2008). Moreover, the provided al-
gorithm is costly because finding the largest circle in
every iteration is computationally expensive.

The approach we present here is not grammar
based and is able to generate patterns not only on the
plane but also on non euclidean geometries. More-
over, we are able to control high level properties of
the result such as visual balance and partial symme-
try.

3 ANALYSIS OF PERSIAN
FLORAL PATTERNS

As discussed in section 1, ornaments have two dif-
ferent aspects: composition and appearance. The
Composition involves partitioning the space inside
the boundaries of a design in a visually appealing way.
There are a number of guide lines to compose an aes-
thetic design (Wong et al., 1998):

Repetition, either in the form of simple transla-
tion or complex symmetries, implies a presence of or-
der and design in the pattern. Repetition appears in
Persian floral patterns in the form of bilateral sym-
metry and also imperfect congruency created by the
spirals.

Balance is another rule of aesthetic design, which
is related to visual weight of the components of the
design. In the case of floral patterns, visual weight
is mostly influenced by the size, number of turns and
density of elements of the spirals.

Adhering to the boundary is another important
rule in ornament design. A pattern that exhibits this
property evokes a sense of intelligence in the design
elements, which form according to their boundary.

Conventionalization and growth are also two
common property of ornaments (Wong et al., 1998).
Conventionalization involves representing abstract
forms of nature in the ornament. Floral patterns are
an abstraction of vines, climbing and winding to form
the composition of the design. Growth is the means of
connecting different parts of the design. In floral pat-
terns, growth is evident in spiral forms that represent
the stems. In floral patterns, and more specifically
Persian floral patterns, spirals are the main element of
composition (Etemad et al., 2008).

Besides the composition, appearance is another
aspect of floral patterns. Ornamental elements such
as flowers and leaves are added to the pattern based



on the structure to decorate the result. These ele-
ments can be reused in different designs. Hundreds of
these elements are available in several books, includ-
ing: (Jones, 1987; Aghamiri, 2004; Takestani, 2002;
Behzad, 1998; Honarvar, 2005).

Figure 2: An example of Persian floral pattern decomposed
into underlying configuration of circles.

Fig.2 shows a Persian floral pattern from Jame
mosque in Isfahan, Iran. This pattern consists of four
repeated parts using bilateral symmetry. To simplify
this pattern, we have removed the leaves and changed
the background in (fig.2:top, right). This pattern con-
sists of seven spirals. Representing the spirals with a
circle, the pattern is simplified to a configuration of
circles (fig.2:bottom, right).

These circles and their tangencies form a graph
in which every node is a center of a circle, and ev-
ery edge represents either tangency or overlap of two
circles. We call this graph the combinatorics of the
design. The stem represents a tree (an abstraction of
a plant in nature). Likewise, it represents a tree in the
combinatorics graph. The edges of this tree represent
transitions of the stem from one circle to another.

We have simplified the design given in fig.2 into
a circle packing. This enables us to not only distin-
guish between the appearance and the geometry but
also between the geometry and the combinatorics of
the pattern. In other words, such a decomposition en-
ables us to capture the essence of a design separate
from the geometry and shape, which is the most im-
portant contribution in this paper.

An important mathematical tool to manipulate
circles is the conformal transformation. This type
of transformation preserves the angle between lines.
Therefore, they map circles into circles. By captur-
ing a design in a configuration of circles, we can use
conformal mapping to transfer a design to another ge-
ometries or manifold without distortion.

In order to produce a design, we need informa-
tion about spirals, their connections and also leaves
and flowers. However, we should keep in mind that
we can only use circles and angles because these are
the only things that stay unchanged through confor-
mal mappings.

For the sake of simplicity throughout this paper,
we denote circle S centered at c and of radius r with
S(c,r). Since we are interested in define our orna-
ments only based on circles and angles, we define
point P on the circle S(c,r) with P(S,α) where α

is the angle of the arc between P and the x-axis, as
shown in fig. 3. Therefore, an arc on the circle be-
tween two points can be expressed by its starting an-
gle and the incremental angle to the end point. For
example, the arc A on circle S starting from P(S,α) to
Q(S,θ) is denoted by A(c,r,α,θ−α).

Figure 3: Circle S centered at c and radius r is denoted by
S(c,r). Arc A from P to Q is denoted by A(c,r,α,θ−α).

Spirals consist of circular arcs with different radii
and centers. Fig.4 shows a spiral and the circle
arcs that form it. This spiral consists of three cir-
cle arcs: A1(c1,r1,π,−π) , A2(c2,r2,0,− 2π

3 ) and
A3(c3,r3,− 2π

3 ,− 5π

3 ) , r1 > r2 > r3.

Figure 4: Spirals are constructed based on circles

There are different forms of spirals depending on
the arc angles of each arc. It is common in Persian flo-
ral patterns to reduce the radius of the inner circle by
a constant value (i.e r1 = r2 +c = r3 +2c) (Takestani,
2002).

The center c2 of the circle S2(c2,r2) which is inner
tangent to circle S1(c1,r1) at the point p(S2,θ) can be
found using following equations:

c2x = c1x +(r1 − r2)cos(θ)
c2y = c1y +(r1 − r2)sin(θ) (1)



Figure 5: Connections between spirals. right: Spirals are
tangent. left: Spirals overlap

The connection between two spirals depends on
their outer circles. The outer circles of the two spi-
rals should be either tangent or overlapped in order
to make a connection. Two types of connection are
shown in fig. 5. An important rule in floral pattern
design is that two connected spirals should have dif-
ferent rotation directions (Honarvar, 2005).

Figure 6: Design of a leaf based on circle arcs.

Although our main task here is to express the
structure of the ornament using circles and angles, we
realized that even the leaves and flowers in Persian
floral pattern may be expressed in such terms. Fig.
6 shows how a traditional-style leaf is designed with
five circles arcs. Of course, not all the possible or-
namental elements can be expressed efficiently using
only arcs.

4 CIRCLE PACKING

So far, we described how we represent a floral pattern
with circle arcs and their tangencies. We can use this
analysis to generate these types of patterns automati-
cally. In order to create a new design, the underlying
configuration of circles must first be designed. There-
fore, we need a method to fill a bounded area with cir-
cles of different size. Moreover, we want to be able to
control high level properties of the resulting circles.

There are different versions of the circle packing
problem depending on their constraints. For exam-
ple, some methods work with uniform circles only; or
some methods find the maximum radii for a number
of circles inside a bounded area. A collection of some
of these different circle packing problems can be
found in (Castillo et al., 2008). Among these works,
the circle packing problem introduced by (Thurston,
1985) is the best match for our problem. This ap-
proach studies the configuration of circles that exhibit
a specific pattern of tangency. Here, we present a brief

introduction to terminology and methods of this type
of circle packing. A thorough discussion on this circle
packing (which we simply call it circle packing from
this point) can be found in (Stephenson, 2005).

A packing of circles has two aspects: combina-
torics and geometry. The geometry of a packing is
defined by the location of the circles and their radii,
whereas the combinatorics are defined by the tan-
gency relations among circles. The tangencies studied
here are external; meaning that tangent circles have
disjoint interiors. Moreover, we limit our discussion
to tangencies among triples of circles; the tangency
relations between an n-tuble of circles can be con-
verted into triples by adding extra circles (Stephen-
son, 2005).

Combinatorics are encoded in abstract simplicial
2-complexes K which triangulate oriented topologi-
cal surfaces. Geometric realization of K is referred to
as the carrier of the packing which comes from con-
necting the center of the circles with geodesics.

Figure 7: A circle packing and its carrier.

Vertices of K can be interior or boundary. A ver-
tex V along with its neighbors U1,U2, ..,Un in K is
called a flower and neighbours U1,U2, ..,Un are called
petals. We use lower case letters to refer to the radius
of a circle (e.g. v is the radius of circle represented
by vertex V ). There is a face (2-complex) associated
with each tangent triple on K and there is an angle
α associated with vertex V in each face that contains
V (see fig.7). Angle α(v;ui,u j) in face < V,Ui,U j >
can be computed using law of cosines (Collins and
Stephenson, 2003):

α(v;ui,u j) = 2arcsin
(√

ui

ui + v
.

u j

u j + v

)
. (2)

The summation θ(v) = ∑α(v;ui,u j) for all faces
adjacent to V is called the angle sum of V . To have a
non-overlapping circle packing on the plane, the an-
gle sum of every interior vertex must be 2π. This is
can be seen clearly by looking at the carrier as a geo-
metric realization of the combinatorics. Similarly, the



geometric interpretation of a vertex having angle sum
higher than 2π on the plane is an overlapped flower.
Moreover, If the angle sum is less than 2π the flower
can form on the sphere, and if it is greater than 2π the
flower can form on the Poincare disc (Dubejko and
Stephenson, 1995).

An abstract simplicial 2-complex K can have a
feasible geometric circle packing if and only if it rep-
resents a triangulation of a space. If K has this neces-
sary and sufficient condition, then it can result in dif-
ferent geometric configurations of circles. Therefore,
we can impose more restrictions to obtain a unique
packing. These restrictions can be on the size or the
angle sum of the boundary circles. We use these re-
strictions to control the boundary shape of our floral
patterns. Finding a packing that satisfies given bound-
ary conditions is called the boundary value problem
(the Dirichlet problem) and there exists a unique (up
to automorphism) solution for this problem (Collins
and Stephenson, 2003).

The algorithm to find this packing is based on the
angle sums. This algorithm has two steps. The first
step is to find the correct radii for all the circles, and
the second step is to lay out the circles. This algorithm
is efficient and guaranteed to converge to the desired
packing (Collins and Stephenson, 2003).

As stated earlier, to form a non-univalent plan-
ner packing (i.e. a packing on the plane which does
not overlap), the angle sum of every inner circle must
be 2π. Starting from an arbitrary value for the radii,
first we initialize boundary radii with defined values.
Then, we iteratively refine the radius of every circle
without a radius restriction to a new value until the
angle sum condition is met (by a threshold). Assume
vertex V has k neighbors and its current angle sum is
θ. There is a radius re so that if all the neighbors of V
had this radius, the angle sum would still be θ. Then,
there is a radius rnew so that if V has rnew as its radius
and all the neighbors are of radius re the angle sum
would be Av. Replacing radii of circles with rnew it-
eratively will adjust the angle sum of the vertices and
eventually result in a set of radii so that the circles
with that radii can fit beside each other. The process
above is summarized in this equation:

rnew =
1− sin(Av

2k )

sin(Av
2k )

.
sin( θ

2k )

1− sin( θ

2k )
(3)

In this formula k is the degree of vertex V and Av
is the target angle sum for this vertex, which is 2π

for inner vertices in the case of planer packings. This
algorithm carries the angle sum from circles with a
higher angle sum to circles with a lower angle sum
until the error is less than a threshold.

The next step is to lay out the circles. Having

the combinatorics K and the radii computed above,
we traverse the combinatorics and place the circles,
which will now fit together to form the packing. Start-
ing from an edge of a face on K, two circles associated
with that edge are located arbitrarily and the third cir-
cle of that face is placed based on the position of the
first two. We then lay out faces that have a common
edge with this face, and similarly, we can place all
the circles based on the previous circles. The choice
of the first edge and the order of traversing the faces
does not change the final packing (Stephenson, 2005).

As explained in the previous section, the underly-
ing circles of a floral pattern can overlap. We can cre-
ate overlapped packings by adding constant values to
circles’ radii after the packing or to ui and u j in equa-
tion 2 while calculating the radii. Overlapped pack-
ings can be converted to floral patterns as depicted in
fig. 5.

We use the algorithm and concepts explained
above to create new designs with specified high level
properties such as imperfect symmetry and visual bal-
ance. Repetition and symmetry can be formulated in
the combinatorics of a pattern. Symmetric combina-
torics result in a partial or perfect symmetric floral
pattern.

Visual balance of the design is a factor of the size
of the spirals and the number of turns they make.
There is a relation between the size of a circle (rel-
ative to its petals) and the degree of its corresponding
vertex in the combinatorics. This fact is supported
by the Ring Lemma (Rodin and Sullivan, 1987) :
Let S(r0,c0) be an interior circle in a packing, and
Si(ri,ci) for i = 1..k (k ≥ 3) be its k petals. Then,
r0/ri ≤ a(k) in which, a(k) is a increasing function
of k. This implies that by increasing the degree of a
vertex, we can increase the radius of its correspond-
ing circle in comparison to its neighbors. Therefore, a
visually balanced result can be achieved using a bal-
anced combinatorics in which degrees of the vertices
do not deviate much. As an exaggerated example, if
all the vertices are of degree 6 (with no boundary con-
dition) then all of the resulting circles have the same
size.

Figure 8: Relation between the degree of a vertex and the
size of its corresponding circle compared to the petals.



5 GENERATING FLORAL
PATTERNS

With the analysis presented in section 3 and the
concepts provided in section 4, we propose a method
to generate floral patterns automatically.

Given boundary B, the problem is to generate a
floral pattern that fills this boundary and adheres to
high level properties such as balance and symmetry.
First, we find M, the basic motif of B. Then, we de-
fine the combinatorics K and set boundary conditions.
Next, we generate the circle packing. Having the cir-
cle packing we find the desired tree T in K. Then
we traverse T and set the spiral types for each circle.
Finally, we apply the symmetry and repetition rules
defined in first step to fill B. We will describe each
step in more details.

Symmetry is an important characteristic of the flo-
ral ornaments. As the first step, we should decide
what type of symmetry should be used for the given
boundary. There are a number of methods to detect
the symmetry in a shape automatically (Masuda et al.,
1993; Lee et al., 2008). Using these techniques, we
can detect the symmetry and specify the main mo-
tif in the boundary. We can focus only on the motif
and then repeat the generated pattern. Alternatively,
we can formulate the symmetry in the combinatorics
of the underlying circle packing and the tree. This
method results in an imperfect symmetry.

The combinatorics can come from an existing pat-
tern, or it can be defined so that it exhibits some spe-
cific properties, described in section 4. The same
combinatorics can result in different floral patterns
depending on the boundary.

After specifying the combinatorics, we solve the
boundary value problem. To specify the boundary
values, we need a correspondence between the points
on the given boundary (B) and the boundary of K.
Therefore, B is converted into a polygon having an
equal number of vertices to the boundary vertices of
K. For every boundary circle, we can either fix the ra-
dius or the angle sum. As shown in fig.9 right, the de-
cision is based on the importance of the polygon’s an-
gle at that vertex. If the center of the circle is collinear
with its neighbors by a threshold, we fix the radius.
Otherwise, we fix the angle sum of that circle.

Using the algorithm discussed in section 4 we gen-
erate the circle packing. At this point, some circles
may exceed the boundary. To solve this issue, we pro-
pose three approaches. First, we can push the circles
to fit within the boundary, which will result in a non-
univalent packing (i.e. overlapping circles). The sec-
ond approach is to scale the packing to fit the bound-
aries which will result in empty spaces left in some

areas of the pattern (usually corners). The third ap-
proach is to “cookie cut” the packing, by which we
mean removing the circles which fall outside of the
boundary. This approaches can be used in combina-
tion with each other.

The next step, is to specify a tree inside the com-
binatorics’ graph. This tree plays an important role
in the final appearance of the floral pattern, and of
course, the choice is not unique. Based on our ex-
periments, we present guidelines that can be used to
create more appealing results. Having the boundary
spirals as the leaves is more desired since it complies
more with conventionalization. Furthermore, it helps
to create a balanced composition by decreasing the
visual weight on the boundaries. Setting boundary
spirals as parts of the stem may result in larger arcs
with higher numbers of turns. Moreover, a combina-
torial symmetric tree results in a symmetric or imper-
fect symmetric design depending on the size of the
circles.

Similar to the discussion in section 4, the vertices
of the tree should have a balanced degree distribution
to achieve a visually balanced result. Similar to the
combinatorics, the tree can be extracted from an exist-
ing pattern designed by an artist. Many floral patterns
can be generated from a single combinatorics and a
single tree.

Figure 9: Right: Arranging boundary circles. Left: Parti-
tioning inner section of a spiral using circle packing.

After defining the tree, we traverse it and specify
the properties of the spirals (i.e. type, thickness and
number of turns). Stem’s thickness is usually uniform
in Persian floral patterns. It can also be defined based
on the depth of the corresponding vertex in the com-
binatorial tree. To achieve a balanced composition,
number of the turns of a spiral should be proportional
to the size of its outer circle.

Placement of ornaments is also done in this step.
We use circle packing within the circle (Wang et al.,
2002) to partition the space inside a spiral in order to
allocate space for the ornaments. As an example, fig.
9 shows a spiral partitioned based on the circles inside
its bounding circle. Circles 1, 2, 3 and 5 are available
to place an ornament, but circle 4 and 0 are occupied
by the stem and circle 6 is not attached to the stem.



Figure 10: An example on a pattern constructed on sphere.

We can construct these patterns in different ge-
ometries. As an example, in fig.10, We have created
a pattern on a sphere. For patterns on the sphere,
the combinatorics should be spherical; meaning that
there should be no boundary vertices. To create spher-
ical patterns, we remove one of the vertices from the
combinatorics graph and use its petals as the combi-
natorics’ boundary. Next, we create a planar packing
on the unit disc using the combinatorics and Poincare
disc metrics. Then we use stereographic projection
to map patterns on the unit disc to one of the hemi-
spheres.

In order to map a unit disc on the hemisphere, we
use a modified version of stereographic projection.
We place the center of the stereographic sphere on
the (0,0,0) instead of (0,0,1). Assuming P(u,v) is
a point on the plane the projected point Q(x,y,z) on
the sphere is given by following equations:

z =
1− (u2 + v2)

1+(u2 + v2)
, x = u(1+ z), y = v(1+ z) (4)

Then the equator is considered as the circle removed
from the combinatorics since it is tangent to all the
boundary circles. The circle represented by equator is
larger than other circles. We can use a Mobius trans-
formation (automorphisms on sphere) to normalize
the size of the results. This method provides seam-
less packing on the sphere (Stephenson, 2005). Since
we only map the arcs and this projection is conformal,
there is no distortion in the final results (i.e. circles re-
main circles).

We can cover arbitrary surfaces with floral pat-
terns given a conformal parametrization. Methods
such as (Bobenko et al., 2003) provide us with a circle
packings covering more general surfaces. We can use
these packing to construct floral patterns that cover an
object.

Figure 11: Final results by placing ornaments on the struc-
ture.

6 CONCLUSION

In this work, we presented an analysis of Persian
floral patterns based on circle packing. This ap-
proach helps us to separate the semantics and com-
binatorics of the design from its geometry and cap-
ture the essence of a design independent of its appear-
ance (i.e. the detailed ornamentation and the render-
ing style). Furthermore, the elegant mathematics sup-
porting this method enables us to generate new de-
signs that exhibit high level characteristics such as vi-
sual balance and imperfect symmetry. The presented
methodology may be applicable to other styles of flo-
ral patterns.

We have implemented the proposed method to
generate Persian floral patterns. Most of the pictures
in this paper are generated using this implementation.
It is important to notice that the domain and possi-
bilities of the presented approach extend beyond this
implementation. Fig.11 shows an example of the final
results with added ornament elements.

As future work, we would like to explore the pos-
sibility of interactive and sketch-based pattern design,
allowing the creation of patterns that adhere to struc-
tures provided by the user. Furthermore, animating
the generated patterns procedurally is another possi-
ble direction for future works.
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