
Multiresolution for Curves and Surfaces

Based On Constraining Wavelets

L. Olsen a,∗, F.F. Samavati a, R.H. Bartels b

aDepartment of Computer Science, University of Calgary
bDepartment of Computer Science, University of Waterloo

Abstract

We present a novel method for determining local multiresolution filters for a
broad range of subdivision schemes. Our approach is based on constraining the
wavelet coefficients such that the coefficients at even vertices can be computed from
the coefficients of neighboring odd vertices. This constraint leads to an initial set
of decomposition filters. To increase the quality of these initial filters, we use an
optimization that reduces the size of the wavelet coefficients. The resulting mul-
tiresolution filters yield a biorthogonal wavelet system whose construction is similar
to the lifting scheme. This approach is demonstrated in depth for cubic B-spline
curves and Loop subdivision surfaces. Our filters are shown to perform comparably
with existing filters.

Key words: multiresolution, splines, curve and surface representations, object
heirarchies, geometric algorithms

1 Introduction

Subdivision curves and surfaces are widely used to model graphical objects.
An artist or modeler only needs to construct a coarse representation of an
object, which can then be enhanced by subdivision to reach a smooth rep-
resentation. Subdivision schemes that work on arbitrary polygonal meshes or
offer extensions to traditional subdivision such as sharp creases, are even more
useful to a modeler.

∗ Corresponding author.
Email address: olsenl@cpsc.ucalgary.ca (L. Olsen).

Preprint submitted to Computers & Graphics 26 September 2006

Where subdivision offers an increase in the resolution of a model, multires-
olution introduces an analogous decrease in resolution via a decomposition
process. Trivially, a model that is the product of subdivision can be decom-
posed without introducing any errors. The more interesting use of multireso-
lution is to produce a low-resolution approximation of a high-resolution model
that is not the product of subdivision, but that has the topology of a subdi-
vided model. To allow for reconstruction of the original model, the multires-
olution process must determine and store some error terms at every level of
the decomposition. There are many potential applications of multiresolution,
of which two popular ones are mesh editing and mesh compression.

We present a method for constructing multiresolution filters for curves and
surfaces based on constraining the wavelets. Starting from a parameterized
relationship between an even wavelet coefficient and a neighborhood of odd
wavelet coefficients, we can simultaneously determine a way to compute even
wavelets from the odd neighbors and a decomposition mask for replacing even
vertices with a coarse approximation. The errors can then be used in an opti-
mization step to reach a better coarse approximation.

This paper contributes a novel numerical approach for constructing local mul-
tiresolution filters for any subdivision scheme. Our method is easy to under-
stand and apply, yet also fits in nicely with previous work on wavelets. In fact,
our filters yield a biorthogonal wavelet system. To demonstrate our approach,
we have developed multiresolution settings for cubic B-spline curves, as well
as Loop surfaces with irregular connectivity. In both cases, we also consider
boundary conditions.

The paper is organized as follows: Section 2 presents notation that will be used
for developing the rest of the paper; Section 3 discusses the existing work on
multiresolution; Section 4 provides a general overview of our approach, while
Sections 5 and 6 demonstrate our approach in detail for 3rd-degree (cubic)
B-spline curves and Loop surfaces. Finally, Section 7 discusses future research
directions for this work.

2 Notation

Subdivision is said to produce fine data from coarse data. The position of any
fine vertex is computed as a linear combination of coarse vertices, meaning
that it is feasible to express subdivision in matrix form. Furthermore, sub-
division is a local operation: the position of a fine vertex is determined by
a linear combination of a local neighborhood of coarse vertices. This results
in subdivision matrices that are banded and that contain repetitive entries,
which in turn implies that subdivision can be implemented in linear time.

2

The subdivision rules for a particular scheme usually come in two flavors. The
even rule is used to displace existing vertices based on a local neighborhood,
while the odd rule creates new vertices, usually along the edges between ex-
isting vertices. This terminology stems from the way subdivision curves are
indexed, but we use it here in a more general sense, where even implies that
a vertex exists at a coarser level and odd implies that it does not.

Multiresolution encapsulates two processes: decomposition (reverse subdivi-
sion plus error representation), and reconstruction (subdivision plus error
correction). These processes can be formalized with matrix notation. Denote
coarse data as C = [c0 c1 . . .]T and fine data as F = [f0 f1 . . .]T , where ci

and fi represent vertices in <n.

Decomposition is the process of downsampling some fine data F into a
coarse approximation C and some extra information, the wavelet coefficients
D = [d0 d1 . . .]T , where di are vector quantities. Wavelet coefficients are more
generically referred to as details, a term that we will use throughout this paper.
The details allow the original fine data to be reconstructed. Formally, we can
say that

C=AF

D=BF ,

where A and B are wide matrices known as decomposition filters.

Reconstruction is the process of increasing the resolution of coarse data
C to produce fine data F; if there are details D available, the reconstruction
process can use them to exactly reproduce the original fine data or to introduce
high-frequency information. Formally, we can write

F = PC + QD ,

where P and Q are tall matrices known as reconstruction filters.

Together, P, Q, A, and B are known as the multiresolution filters. Recon-
struction and decomposition are inverse processes, thus

A

B

 [P|Q] =

 I 0

0 I

 = I . (1)

For 1D objects without boundaries, the multiresolution filters can be entirely
described by finite sequences representing regular columns or rows of the cor-
responding matrices. Reconstruction filters P and Q will consist of shifted

3

versions of a regular column, the elements of which can be represented by the
sequences (. . . , p−1, p0, p1, . . .) and (. . . , q−1, q0, q1, . . .) respectively; these se-
quences are called reconstruction masks. (Note that most subdivision schemes
are symmetric, in which cases p−i = pi and q−i = qi.)

Decomposition filters also often contain repetitive shifted entries, but in-
stead of the columns, it is the rows that are repeated. The non-zero entries
(. . . , a−1, a0, a1, . . .) and (. . . , b−1, b0, b1, . . .) of typical rows in A and B, re-
spectively, are called decomposition masks.

For higher-dimensional objects such as polygonal meshes, there is less struc-
ture in the multiresolution filters, and thus repetitive rows and columns are
generally not observed. However, the behaviors of decomposition and recon-
struction can still usually be represented more compactly by looking at the
local interactions of vertices. A mask can then be considered, more generally,
to refer to compact (non-matrix) representations of multiresolution filters.

3 Previous Work

3.1 Subdivision

Parametric curves are a useful in computer graphics for interactive modeling.
A parametric curve Q(u) =

∑
i CiBi(u) is defined by an ordered set of control

vertices C = {c0, c1, . . . , cn} and a set of blending functions B; the blending
functions determine how much each control vertex contributes to a given point
along the curve, i.e. blend the control points into curve samples.

Subdivision is a method for creating a new set of control points C ′ and a new
set of basis functions B′, such that the new control points and basis functions
define the same limit curve as the originals, yet the control points themselves
are a better approximation of the limit curve. A benefit of subdivision is that
one only needs to be concerned with the basis functions when deriving the
subdivision filter; after that, the basis functions exist only implicitly.

The first curve subdivision scheme in graphics is credited to George Chaikin [1],
dating back to 1974. In this scheme, every line segment is contracted about
its centroid by a factor of one-half, and the endpoints of these contracted seg-
ments are joined to form the new curve. Equivalently, point ci is replaced by
two points on the line segment between ci and ci+1: one at 1

4
ci + 3

4
ci+1 and

another at 3
4
ci + 1

4
ci+1. The subdivision mask is therefore

(
1
4
, 3

4
, 3

4
, 1

4

)
.

In 1975, Lane and Riesenfeld [2] showed that Chaikin’s “corner-cutting” sub-

4

division scheme actually generates quadratic (2nd-degree) B-spline curves in
the limit. They further showed that the subdivision mask for any dth-degree
B-spline curve can be derived from Pascal’s triangle. For instance, the subdivi-
sion mask of Chaikin can be written as 1

22 (1, 3, 3, 1). In general, the subdivision
mask for a degree-d B-spline curve is given by 1

2d · (d + 2)th row of Pascal’s
triangle.

Cubic (3rd-degree) B-spline curves are particularly important in computer
graphics because they are low-degree but offer C2 continuity. The subdivision
mask for cubic B-splines is 1

8
(1, 4, 6, 4, 1). These mask values mean that point

ci is replaced by two points: an even point, c2i = 1
8
ci−1 + 3

4
ci + 1

8
ci+1 and an

odd point, c2i+1 = 1
2
ci + 1

2
ci+1.

Curve subdivision methods can be extended to higher-dimensional objects,
such as surfaces, represented as a 2D grid of control vertices, or volumes, rep-
resented as a 3D lattice of control points. In these cases, the curve subdivision
method is simply applied independently along the rows/columns/et cetera.
Curve subdivision can also be extended, though less easily, to objects whose
vertices are connected arbitrarily, i.e. polygonal meshes.

There are numerous subdivision schemes for polygonal meshes. Catmull-Clark
subdivision [3] is a scheme for arbitrary polygonal meshes based on bivari-
ate cubic B-splines. Loop subdivision [4] is a mesh subdivision scheme that
operates on triangle meshes, based on three-directional quartic box splines.
Another popular scheme is Doo-Sabin subdivision [5] for arbitrary polygonal
meshes, which is an extension of bivariate quadratic (2nd-degree) B-splines.

3.2 Multiresolution

Most research in multiresolution to date has focused on wavelets. The theory
of wavelets has a rich history that spans many scientific domains, primarily en-
gineering [6,7]. Stollnitz et al. concisely describe wavelets as “a mathematical
tool for hierarchically decomposing functions” [8]. Wavelet systems decom-
pose a function into a coarse approximation of the function plus some details;
where the coarse vertices are coefficients of the basis functions, the details are
coefficients of a set of wavelet functions.

Subdivision exists within a set of nested function spaces, say Sk and Sk+1.
These two spaces are related by their scaling functions: Φk form a basis for
Sk, while Φk+1 form a basis for Sk+1. The transpose PT of the subdivision
matrix defines the relationship between these bases.

Functions in Sk+1 can be expressed in terms of parts in Sk and remaining
parts in Sk+1, and for that we need a convenient basis Ψk for the complement

5

of Sk in Sk+1. So, the space Sk+1 has two bases: Φk+1, the fine scale basis; and
the union of Φk and Ψk, the coarse scaling functions plus the wavelet basis. A
coarse function in Sk can be represented by

∑
i ciΦ

k
i , and the reconstruction of a

fine function in Sk+1 from the associated coarse function and detail information
is done by

∑
i ciΦ

k
i +

∑
j djΨ

k. The relationship between Φk+1 and Ψk defines
the Q matrix [9].

Wavelet systems are classified according to the relationship between the wavelets
and the scaling functions. Stollnitz et al. [9] provide an excellent overview of
wavelet classifications, which we summarize here.

Orthogonal wavelets require that “the scaling functions are orthogonal to one
another, the wavelets are orthogonal to one another, and each of the wavelets
is orthogonal to every coarser scaling function” [9]. In such a setting, the
determination of the multiresolution filters is quite easy. Unfortunately, or-
thogonality is difficult to satisfy for all but the most trivial scaling functions.

Semiorthogonal wavelets relax the orthogonality conditions greatly, only re-
quiring that each wavelet is orthogonal to all coarser scaling functions. By
relaxing the constraints on the wavelets, it is easier to derive a Q filter (note
that there is no unique choice of Q, but there are some choices that are bet-
ter than others). The drawback of semiorthogonal wavelets is that while P
and Q will be sparse matrices – meaning that reconstruction can be done in
linear time – the decomposition filters A and B offer no such guarantee. It
often turns out that the decomposition filters are full matrices, meaning that
decomposition could take quadratic time.

Finally, there are biorthogonal wavelets that have many of the properties of
semi-orthogonal wavelets but enforce no orthogonality conditions. The only
condition in a biorthogonal setting is that [P|Q] is invertible, which by Eqn. 1
implies that the decomposition filters A and B exist (clearly this is the mini-
mum condition we need to satisfy). Biorthogonal wavelets allow a lot of free-
dom in the selection of multiresolution filters, so it is usually possible to have
a full set of sparse filters and therefore linear-time reconstruction and de-
composition. Warren [10] introduced such a sparse matrix construction for
determining simple biorthogonal wavelets for binary subdivision schemes.

Sweldens’ lifting scheme [11,12] is a general method for designing biorthogonal
wavelet systems. First, some initial biorthogonal filters P′, Q′, A′, and B′ are
selected. Then, these initial filters are lifted by a matrix S to create a new
biorthogonal system:

Q=Q′ −P′S

A=A′ + SB′ . (2)

6

P′ and B′ are unchanged by lifting. The choice of S determines the properties
of the wavelet system, such as the number of zero moments.

Samavati and Bartels pioneered a different multiresolution approach based on
local linear conditions (LLC) [13,14]. The idea of the LLC method is to derive
the A filter by minimizing the local error in the coarse approximation. Just
as subdivision hides the underlying scaling functions, the LLC method does
not use the scaling functions Φj or the wavelet functions Ψj directly.

Bartels and Samavati were able to apply this approach quite successfully to
B-spline subdivision curves [14]. One particularly interesting property of this
approach is that it can be interpreted as a semiorthogonal wavelet system with
a non-standard inner product definition.

Later, Samavati et al. applied the LLC method to the reversal of Doo-Sabin
subdivision [15]. They were able to derive a full set of multiresolution filters
that were sparse and efficient, and that also produced a locally optimal coarse
approximation of the fine data as quantified by the least squares error metric.

3.3 Multiresolution Loop

There are several existing approaches to creating multiresolution Loop sur-
faces. Samavati et al. [16] presented a parameterized reversal scheme for Loop
subdivision as well as variants such as Butterfly subdivision [17] (variants in
the sense that the face-split structure is the same, but the mask values are
different). However, only the A matrix is derived in their work, not a full set
of multiresolution filters.

Later, Hassan and Dodgson [18] presented a reversal scheme for Chaikin
curves, and briefly show how to extend it to Loop-like surfaces. Like Sama-
vati et al., the solution contains no error representation and thus is not a full
multiresolution solution.

Recently, Bertram [19] and Li et al. [20] constructed fairly stable biorthogo-
nal wavelets for Loop subdivision. Their approach is based on rewriting the
subdivision rules with some additional free parameters, such that regular sub-
division is unchanged but an inversion of the rules produces a multiresolution
system. Each researcher pursues a different method to determine the free pa-
rameters, but each results in a large and unwieldy set of constants to handle
different vertex valences. In this paper, a biorthogonal multiresolution system
is constructed by our method that provides competitive performance, but our
system has far fewer parameters and offers a more streamlined implementa-
tion.

7

4 Our Approach

Here we present a simple method that has several advantages over earlier
ones. By the wavelet constraint, we can compute details at even vertices from
neighboring odd vertices. This leads to an efficient data structure, because
we exploit the even-odd distinction and replace even vertices with coarse ap-
proximations and odd vertices with details. Our method works for arbitrary
connectivity without the need for special cases or precomputed weights, and
also for boundary cases. As we will demonstrate with our example subdivision
schemes, the method is theoretically sound and general enough to apply to
both curves and arbitrary-topology surfaces.

When deriving multiresolution filters, we most often have a subdivision matrix
P for which we would like to find the remaining multiresolution filters. In
wavelet approaches, these filters are derived in the sequence P→ Q→ A, B.
The reverse subdivision LLC approach derives the filters in the sequence P→
A→ B, Q.

A general approach to multiresolution is to construct a trial decomposition
filter Ã. Lazy wavelets [12] are one way of selecting this filter based on the
scaling functions. Another simplistic method is to assume an interpolating
scheme and simply discard the odd vertices. However, for most mesh sub-
division schemes, neither of these methods will produce a good trial coarse
approximation.

For mesh editing applications, the trial decomposition may suffice for creating
a multiresolution hierarchy. For other applications such as mesh compression,
however, the trial filters often produce large wavelet coefficients. Thus there
are methods such as lifting to enhance the trial filters.

We present a method for both specifying the trial filters and enhancing them
that is general enough to be applied to any subdivision scheme. In our ap-
proach, we will discover the filters in order P→ Q̃→ Ã→ B→ A, Q. There
are two distinct components:

(1) We arrive at trial filters Ã and Q̃ by requiring that even details can be
expressed as a linear combination of the neighboring odd details:

deven =
∑

i∈odd

αidi . (3)

In this way we only need to store details at the odd vertices, which en-
sures that the coarse data plus the details will not require more storage
space than the fine data. From this constraint on the details, we can
immediately get a trial approximation of the coarse data.

8

(2) We then use analytical optimization locally to refine our trial filters;
specifically, we want to reduce the magnitude of the details. By reducing
the magnitude of the details our filters will have more applicability to
compression applications, because the subdivision of a coarse approxi-
mation, without details, will be closer to the original fine data.

(3) To temper the interdependence of each local optimization, we soften the
refinement at each vertex and reach a more optimal solution.

To illustrate this approach, Section 5 will construct a set of multiresolution
filters for cubic B-spline curve subdivision. The strength of this approach is
that it is extensible to more complicated subdivision schemes including mesh
schemes. Though our approach is numerical, it fits in well with previous work
in wavelets. In particular, as we will see in Section 5.5, the optimization phase
is equivalent to the lifting process and our approach constructs biorthogonal
wavelet systems. In Section 6, we will demonstrate the power of our approach
by constructing a full set of filters for Loop subdivision.

Evaluation

To objectively evaluate the quality of a multiresolution system, the least-
squares error metric is used to measure the error introduced by decomposition.
More precisely, if a fine mesh Ck (where superscript denotes level in the mul-
tiresolution hierarchy) is decomposed j times to a coarse mesh Ck−j, then the
error in Ck−j is quantified by the difference between Ck and PjCk−j (Ck−j

subdivided – not reconstructed – j times). Formally, the least-squares error
E(Ck−j) is defined as

E(Ck−j) =
√
|Ck −PjCk−j|2 . (4)

If PjCk−j = Ck, then E(Ck−j) = 0. Note that this is error metric requires
some effort at the implementation level to ensure that the vertices are ordered
in a consistent fashion.

Both decomposition and reconstruction are linear in the number of vertices in
the model. Different filters could imply different constants depending on the
support of the filter (i.e. number of non-zero entries in a regular row or col-
umn, or the number of vertices considered by the associated mask). If a model
at level k has mk vertices, and mk+1 vertices at level k + 1, then both decom-
position and reconstruction have storage requirements in O(2mk+1); vertices
cannot be modified in-place, because the position of neighboring vertices de-
pends on a vertex’s original position.

9

Fig. 1. Local notation for our cubic B-spline curve decomposition: a fine curve
F = [· · · f−1 f0 f1 · · ·]T is decomposed to C = [· · · c−1 c0 c1 · · ·]T , and odd fine
points are replaced with details di. By the wavelet constraint, the even details can
be computed from the odd details.

5 Cubic B-Spline

The goal of decomposition is to find a good coarse approximation c0 for some
fine vertex f0. Because we want our decomposition filters to be local (i.e.
banded A and B matrices), we want our coarse approximation to be based
only on a local neighborhood . . . , f−1, f0, f1, . . . about f0. Figure 1 shows the
notation used for this local neighborhood.

5.1 Trial Filters

An important practical requirement of multiresolution filters is the storage
constraint: put simply, the storage requirement for the coarse data C and the
details D should not exceed that of the fine data F. Our approach is to begin
from this constraint and work outwards.

Subdivision displaces even vertices and creates odd vertices. This even-odd
distinction offers a natural way to satisfy the storage requirement during de-
composition: we can replace even points with coarse approximations, and odd
points with details. If we do this, however, we must be able to compute the
even details somehow to allow reconstruction. One possible solution is to com-
pute an even detail deven from some neighboring odd details, as in Eqn. 3.

The outcome of this constraint will be a set of trial filters, which we would like
to be banded for efficiency. Therefore, we should consider only a small number
of immediate neighbors of deven when computing it. Additionally, because
subdivision is usually a symmetric operation we can use the same coefficient

10

for all immediate neighbors and move the α terms outside of the summation:

deven = α
∑

i

di, i ∈ immediate odd neighbors of deven .

According to the notation laid out in Fig. 1, the representative even vertex is
d0, neighbored by d−1 and d1. Then, the above wavelet constraint becomes

d0 = α(d−1 + d1) . (5)

A detail di is defined as the difference between fine data and subdivided coarse
data: fi − f̃i, where the f̃i terms result from subdivision of C̃. So, by the
definition of cubic B-spline subdivision the details are:

d0 = f0 − f̃0 = f0 −
(

1

8
c̃−1 +

3

4
c̃0 +

1

8
c̃1

)
d±1 = f±1 − f̃±1 = f±1 −

(
1

2
c̃0 +

1

2
c̃±1

)
.

Because our goal is to find an expression for c̃0 that depends only on fine data
F, we should choose a value for α that eliminates all other coarse points c̃j 6=0

from the expression d0 = α(d−1 + d1).

If we substitute the full expressions for d−1, d0, and d1 into Eqn. 5, we can
find the coefficient of c̃1 on the left side and right side. On the left side, d0

contributes −1
8

c̃1, while on the right side, d1 contributes α−1
2

c̃1. To cancel these
terms from the expression, we set them equal: −1

8
= −α

2
. Thus α = 1

4
, and we

can write:

d0 =
1

4
(d−1 + d1) . (6)

Equation 6 is enough to determine Q̃, the contribution of the details D to fine
data F. For even points, we find the two neighboring odd details and use α
to compute the even detail according to Eqn. 6, so the row in Q̃ will contain(

1
4
, 1

4

)
. For odd points, we add its stored detail, i.e. the corresponding element

in Q̃ should be 1. Thus the reconstruction mask for Q̃ is
(

1
4
, 1, 1

4

)
, representing

a regular column of the filter.

Because of symmetry, our choice of α will eliminate c̃−1 and c̃1 from Eqn. 6,
leaving an expression for c̃0 in terms of fine data from F . After substituting

11

the full expression of each detail vector and simplifying, Eqn. 6 can be written
as:

c̃0 =−1

2
f−1 + 2f0 −

1

2
f1 . (7)

Equation 7 expresses coarse point c̃i in terms of fine points f−1, f0, and f1. In
other words, it represents a regular row of the decomposition filter Ã, which
can be compactly represented in mask form as

(
−1

2
, 2,−1

2

)
. Note that this

3-element mask is the same one as arrived at, via different means, by Bartels
and Samavati [14]. However, we are able to determine this trial filter without
solving any bilinear systems, so our method can easily be generalized to mesh
subdivision schemes.

Determining B̃ is straightforward now that we know Ã. Consider an odd detail
vector d1:

d1 = f1 −
(

1

2
c̃0 +

1

2
c̃1

)
=

1

4
f−1 − f0 +

3

2
f1 − f2 +

1

4
f3 .

This represents a regular row of B̃, which can be expressed as
(

1
4
,−1, 3

2
,−1, 1

4

)
in mask form. Since we only need to compute the details at odd points, B̃ is
fully determined.

In the next section we will summarize Q̃, Ã, and B̃ in matrix form, including
a treatment of the boundary cases for open curves.

5.2 Boundary Filters

To have a complete set of multiresolution filters applicable to either open or
closed curves, we should also consider the special boundary cases. For open
curves, we can express each filter with a block matrix. For example, the P
matrix would be written as: P = [Ps Pr Pe]

T , where Ps represents the filter
for the start of the curve, Pr is applied to regular vertices, and Pe applies to
the end of the curve. For open cubic B-spline curves, the P filter is:

12


Ps

Pr

Pe

 =



1 0 0 0 0 0 · · ·
1
2

1
2

0 0 0 0 · · ·

0 3
4

1
4

0 0 0 · · ·

0 3
16

11
16

1
8

0 0 · · ·

0 0 1
2

1
2

0 0 · · ·

0 0 1
8

3
4

1
8

0 · · ·
...

· · · 0 0 1
8

11
16

3
16

0

· · · 0 0 0 1
4

3
4

0

· · · 0 0 0 0 1
2

1
2

· · · 0 0 0 0 0 1



We can apply our approach in a similar fashion as above to discover full
multiresolution filters for open curves. Let f0, f1, f2, and f3 represent the
four fine vertices affected by the boundary subdivision mask. Unfortunately
these vertices have no clear distinction between even and odd points. For our
purposes, we will consider f0, f1, and f3 as even and f2 as odd.

The best coarse approximation c̃0 for f0 is easily found by noting that it does
not move during subdivision The best coarse approximation c̃1 for f1 is also
easy to compute because f1 is the midpoint of c̃0 and c̃1. We find c̃3 by setting
d3 = α(d2 + d4).

We do not need to compute a detail d0 for f0, because it will always be
zero. The fact that c̃0 does not move during subdivision also allows c̃1 to be
determined without error, so d1 will also be zero. The constraint d3 = α(d2+d4)
determines d2 and d4.

The result of this analysis is summarized in the block matrices below.

13


Ãs

Ãr

Ãe

=



1 0 0 0 0 0 · · ·

−1 2 0 0 0 0 · · ·

0 −1
2

2 −1
2

0 0 · · ·
...

· · · 0 0 0 0 2 −1

· · · 0 0 0 0 0 1




Q̃s

Q̃r

Q̃e

 =



0 0 0 0 · · ·

0 0 0 0 · · ·

1 0 0 0 · · ·
1
4

1
4

0 0 · · ·
...

0 0 0 0 · · ·

0 0 0 0 · · ·



B̃s

B̃r

B̃e

=



3
4

−3
2

9
8

−1
2

1
8

0 ...

... 1
4
−1 3

2
−1 1

4
...

...

... 0 1
8

−1
2

9
8

−3
2

3
4


.

5.3 Refinement

When an object F that is not the product of subdivision is decomposed with
Ã, we find in practice that the error E(ÃF) is large (Fig. 6(b), for instance).
While there is no choice of A for which E = 0 (except trivially), some choices
are better than others. In particular, having a filter with wider support (the
trial mask is only 3 elements) can often provide lower-error decompositions.

We consider a strategy of displacing each coarse vertex c̃i by some amount
δi, with the goal of reducing the overall error in the trial coarse vertices. We
therefore need to find a set of refinement vectors ∆ = [δ0, . . . , δn]T , represent-
ing the per-vertex displacements of C̃ = [c̃0, . . . , c̃n]T . The choice of ∆ should
satisfy E(C̃+∆) < E(C̃). This expresses the global error in the coarse points.
However, enforcing a global reduction in error is not an extensible approach
for general meshes.

Instead, we consider the local impact of each displacement. After refinement,
representative vertex c̃0 becomes c0 = c̃0 + δ0. Based on the subdivision mask
of cubic B-splines, δ0 affects the curve only in a 5-element neighborhood of
fine data: 1

8
δ0 to f±2,

1
2
δ0 to f±1, and 3

4
δ0 to f0. To have a more general

method, however, we can restrict the error analysis to a smaller 3-element
neighborhood.

In this case, the local error E around c̃0 can be represented by

E = |d−1|2 + |d0|2 + |d1|2 = |f−1 − f̃−1|2 + |f0 − f̃0|2 + |f1 − f̃1|2

14

After refinement, the displacement of c̃0 by δ0 changes the positions of f±1 (by
1
2
δ0) and f0 (by 3

4
δ0); δ0 should be chosen so that the new positions contain

less error. The local error Eδ0 after refinement is expressed as

Eδ0 =
∣∣∣∣f−1 −

(
f̃−1 +

1

2
δ0

)∣∣∣∣2 +
∣∣∣∣f0 −

(
f̃0 +

3

4
δ0

)∣∣∣∣2 +
∣∣∣∣f1 −

(
f̃1 +

1

2
δ0

)∣∣∣∣2 ,

which simplifies to

Eδ0 = a|δ0|2 − vT δ0 + b , (8)

where a = 17
16

, v = d−1 + 3
2
d0 + d1, and b = |d−1|2 + |d0|2 + |d1|2.

We would like to minimize Eδ0 , which by the form given in Eqn. 8 is a simple
quadratic optimization problem that can be solved analytically. To find the
minimum of the function, we take the first derivative and set it equal to zero:
E ′

δ0
= 2aδ0 − v = 0. The solution is δ0 = v

2a
. Note that this is a minimum,

because E ′′
δ0

= 2a > 0. In fact, it is a unique global minimum, which follows
from the fact that the Hessian ∇2E of Eδ0 is positive-definite.

We can substitute the proper values of v and a to get a closed-form expression
for δ0:

δ0 =
v

2a
=

8

17

(
d−1 +

3

2
d0 + d1

)
=

11

17
(d−1 + d1) . (9)

The final simplification step follows from Eqn. 6. Figure 2 illustrates how the
refinement vector is computed; geometrically, the neighboring details give a
good indication of where the original surface lies.

5.4 Partial Refinement

In our development of the refinement step, we have neglected one important
aspect: the refinements are not independent. The computation of an optimal
displacement for each coarse vertex assumes that all other coarse vertices will
remain unchanged, i.e. will not be displaced. This is, of course, not true; every
coarse point is displaced based on the positions of the trial vertices.

For an illustration of why this is problematic, consider Fig. 3. In the top
left, we see a section of a fine curve and its trial decomposition, and the trial
decomposition has been refined at only one vertex: c̃0. When this refined coarse
curve is subdivided (bottom left), the local error is truly minimized. When
every trial vertex is refined (top right), however, the error after subdivision

15

Fig. 2. Refinement of the trial vertices (top to bottom, left to right): fine data F;
coarse data C̃ results from applying the trial reverse filter Ã; δ0 is computed from
a local set of details; after refinement, the local error is reduced.

(bottom right) is no longer minimized. This is because each refinement assumes
that other coarse vertices will remain in their original positions.

Intuitively, we would expect the interdependence of the displacements to cause
a net “overshooting” effect, i.e. too much displacement. This is visible in Fig. 3:
the subdivision of the trial points, shown in (a), lies on one side of the fine
data, while the subdivision of the refined points, shown in (e), lies on the
opposite side. Therefore, a partial refinement strategy is considered; instead
of c0 = c̃0 + δ0, each refinement should be softened by setting c0 = c̃0 + µδ0,
where 0 ≤ µ ≤ 1 is some scalar to be determined.

It is not clear how µ might be chosen, outside of trial-and-error. In general,
a perfect optimization would involve a different value of µ for each coarse
vertex, allowing for sensitivity to the local feature scale. However, this would
lead to a decomposition mask that changes from vertex to vertex, which does
not lead to a very efficient algorithm. Thus a single value for µ is a necessary
simplification. An analytic approach to the selection of µ might be considered,
but any local approach would still suffer from interdependence problems. Most
importantly, however, it is necessary to have a method that can be extended
to mesh schemes.

16

Fig. 3. Local vs. global effects of refinement. Left: when only c̃0 is displaced by
refinement (top), the local error after subdivision is minimized (bottom). Right:
when all coarse vertices c̃i are displaced by refinement (top), the local error is not
minimized (bottom). The shaded regions in the bottom figures indicate the local
error size.

We consider a voting strategy, based on the observation that c̃0 wants to take
the full refinement step, while neighbors c̃−1 and c̃1 want c̃0 to not move at
all. In other words, the central vertex votes for µ = 1, while its neighbors each
vote for µ = 0. However, their votes do not carry equal weight, because the
position of c0 is much more important to c̃0 than to it’s neighbors. In fact,
based on the subdivision filter P, we know that c̃0 contributes 3

4
to f0, and

only 1
8

to c̃−1 and c̃1. If we adopt these weights in the voting scheme, then we

have µ =
(

3
4

)
· 1 + 2

(
1
8

)
· 0 = 3

4
. Thus c0 = c̃0 + 3

4
δ0, or equivalently we can

redefine δ0 as

δ0 ←
3

4
δ0 =

33

68
(d−1 + d1) . (10)

Note that µ is equal to the central weight of the subdivision filter.

5.5 Closed-Form Filters

There is a question of where the refinement process fits into the usual mul-
tiresolution framework. One possibility is to treat the refinement process as

17

Fig. 4. The multiresolution framework with refinement.

a separate step in decomposition, which is later undone before the normal
reconstruction process, as in Fig. 4.

Decomposition would now be a four-step process, where the latter two steps
are for refinement:

(1) Compute the coarse approximation: C̃ = ÃF.
(2) Compute the details: D̃ = B̃F.
(3) Compute the refinement vectors, ∆.
(4) Refine the coarse approximation: C = C̃ + ∆.

Similarly, reconstruction requires a couple of additional steps to undo the
refinement:

(1) Compute the refinement vectors, ∆.
(2) Undo the refinement of the coarse approximation: C̃ = C−∆.
(3) Reconstruct the fine data: F = PC̃ + Q̃D̃.

To summarize what we have accomplished to this point, we have established
trial filters Ã, B̃, and Q̃ by solving the wavelet constraint (Eqn. 5). These
filters were then improved by displacing each trial coarse point c̃0 by a refine-
ment vector δ0.

An important observation is that the refinement vectors are determined by
linear combinations of elements of D. This means that the entire set ∆ of
refinement vectors can be computed by some matrix L as ∆ = LD. The
entries of L are defined by the expression for δ0 (Eqn. 10).

Using this form for ∆, we can then incorporate the refinement step into the
trial filters to produce single, closed-form decomposition filters. Consider the
expression C = C̃ + ∆, which can be rewritten as

C = ÃF + LD = (Ã + LB̃)F ,

where

18

A = Ã + LB̃ (11)

is a closed-form decomposition filter.

The reconstruction step, F = PC̃+Q̃D, can similarly be expressed in a closed
form by rewriting it as

F = P(C−∆) + Q̃D = PC + (Q̃−PL)D ,

where

Q = Q̃−PL (12)

is our closed-form reconstruction filter. Note that it is unnecessary to alter the
B̃ filter to reflect the refinement. Instead, the reconstruction step is altered to
correctly interpret the original details.

The L matrix lifts the trial filters, just as the S matrix acts in Sweldens’
lifting scheme (Eqn. 2). Thus the refinement step can be viewed as a way to
determine the lifting matrix, and overall, our method is a way to construct
biorthogonal wavelet systems.

For cubic B-spline curve refinement, the matrix L is defined by Eqn. 10. Note
that it is unnecessary to lift the boundary points, because their details are
always zero. Thus L is


Ls

Lr

Le

 =



0 0 0 0 ...

0 0 0 0 ...

33
68

33
68

0 0 ...

0 33
68

33
68

0 ...
...

... 0 0 0 0

... 0 0 0 0



.

19

When L is used to lift Q̃ to Q = Q̃−PL, the resulting filter is


Qs

Qr

Qe

 =



0 0 0 0 ...

0 0 0 0 ...

239
272

−33
272

0 0 ...

−91
1088

−157
1088

−33
544

0 ...

−33
68

35
68

−33
68

0 ...

−33
544

−95
544

−95
544

−33
544

...
...

... 0 −33
544

−157
1088

−91
1088

... 0 0 −33
272

239
272

... 0 0 0 0

... 0 0 0 0



.

The associated mask representation is
(
−33
544

−33
68

−95
544

35
68

−95
544

−33
68

−33
544

)
.

Similarly, L can be used to lift Ã to A = Ã + LB̃, resulting in


As

Ar

Ae

 =



1 0 0 0 0 0 0 0 0 ...

−1 2 0 0 0 0 0 0 0 ...

99
272

−99
136

91
544

173
136

157
544

−33
68

33
272

0 0 ...

0 0 33
272

−33
68

95
272

35
34

95
272

−33
68

33
272

...
...

... 0 0 33
272

−33
68

157
544

173
136

91
544

−99
136

99
272

... 0 0 0 0 0 0 0 2 −1

... 0 0 0 0 0 0 0 0 1



.

The asociated mask for the regular portion of A is
(

33
272

−33
68

95
272

35
34

95
272

−33
68

33
272

)
.

20

Original Trial Refined LLC

Ck PCk−1 PCk−1 PCk−1

E = 1.982 E = 1.008 E = 1.0

(a) (b) (c) (d)

Fig. 5. A curve with 96 points (a) is decomposed once and then subdivided without
details using: (b) our trial filter; (c) our refined 7-element filter; and (d) the LLC
filter.

Original Trial Refined LLC

Ck P2Ck−2 P2Ck−2 P2Ck−2

E = 4.266 E = 0.963 E = 0.959

(a) (b) (c) (d)

Fig. 6. A 97x97 terrain model (a) is decomposed twice in each direction and then
subdivided without details using: (b) our trial filter; (c) our refined 7-element filter;
and (d) the LLC filter. (Terrain source: http://seamless.usgs.gov).

5.6 Results

For cubic B-splines, we have the fortunate situation of having some previously
established filters with observedly good performance to compare against. Bar-
tels and Samavati [14] present several 7-element masks with near-minimum

norms. We chose the first such mask –
(

23
196

−23
49

9
28

52
49

9
28

−23
49

23
196

)
– for com-

parison; we will refer to this mask as the LLC mask. Our refined mask is
evaluated against the trial mask,

(
−1
2

2 −1
2

)
, and the LLC mask. The support

of the refined filter and the LLC filter are both seven elements, so their run-
ning times are both linear with the same constant; the trial mask has a smaller
constant, but the difference is negligible for models of the size used here.

The various masks were used to decompose both curves and surfaces, which
were then reconstructed without details. We then computed the error of each

21

Fig. 7. Local notation for our Loop surface decomposition. During decomposition
of fine data (left), a representative even vertex f0 is replaced by coarse vertex c0,
while edge neighbors f1, . . . , fn are replaced with details d1, . . . , dn (right).

reconstructed model relative to the original model according to Eqn. 4 to get
a quantitative measure of filter performance. Figures 5 and 6 show a pair of
results in detail; the numerical results from these and several other models are
summarized in Fig. 12.

Figure 5(a) shows a curve representing a face in profile. The curve was decom-
posed once and then reconstructed with (b) our trial filter, (c) our 7-element
filter, and (d) the LLC filter. We can see from the errors that our refined filter
is only about 1% higher than the LLC filter.

Figure 6(a) shows a section of real terrain data collected by the United States
Geological Survey [21]. The terrain was decomposed with the (b) trial, (c)
refined, and (d) LLC filters. Here the trial filter is utterly incapable of dealing
with the complex geometry, performing over 400% worse than the LLC filter
and obscuring important features like the river valley. Meanwhile, our refined
filter is a mere 0.5% higher than the LLC and both are able to preserve the
river valley and other features.

6 Loop Subdivision

Now that we have seen our approach applied to a simple subdivision scheme,
we can extend it to a more complex surface subdivision scheme. Loop subdivi-
sion is a scheme that operates strictly on triangle meshes and has C2 continuity
at regular (valence 6) vertices. Loop subdivision is quite popular for triangle
meshes because of its smoothness and also its ease of implementation.

22

6.1 Subdivision Filter

Loop subdivision [4] is subdivision scheme for triangle meshes; each iteration
of subdivision inserts a vertex along each edge of the mesh, splitting each
triangle into four. Consider a vertex c0 of valence n, as depicted in Fig. 7. The
Loop subdivision filter for even vertices yields a fine point f0 according to the
filter:

f0 = (1− nβ)c0 + β
n∑

i=1

ci , (13)

while odd vertices use the filter

fi =
3

8
(c0 + ci) +

1

8
(ci−1 + ci+1) , (14)

where β = 1
n

(
5
8
−
(

3
8

+ 1
4
cos

(
2π
n

))2
)
. Note that indices of fi and ci should be

interpreted modulo n. These two equations define the subdivision masks for
Loop subdivision.

6.2 Trial Filters

Based on the wavelet constraint expressed in Eqn. 3, our goal is to determine
a scalar α such that our even details can be expressed in terms of surrounding
odd details. For the local Loop neighborhood, we can express the wavelet
constraint as:

d0 = α(d1 + d2 + . . . + dn) , (15)

where detail vector di captures the difference between fine data fi and subdi-
vided coarse data f̃i: di = fi − f̃i. In Loop subdivision we have

d0 = f0 −
(

(1− nβ) c̃0 + β
n∑

i=1

c̃i

)
,

di = fi −
(

3

8
(c̃0 + c̃i) +

1

8
(c̃i−1 + c̃i+1)

)
, i = 1, 2, . . . , n .

We determine α by substituting these full detail expressions into Eqn. 15.
Because of symmetry, we only need to consider one of c0’s neighbors, say c1.
On the left side of Eqn. 15, the coefficient of c1 is −β; on the right side, the

23

coefficient is −3α
8
− 2α

8
= −5α

8
. By setting the left- and right-side coefficients

equal, c1 (and all other neighbors of c0) will be eliminated:

−β = −5α

8
−→ α =

8β

5

Thus Eqn. 15 becomes

d0 =
8β

5

n∑
i=1

di . (16)

From Eqn. 16, we can immediately determine the contribution of D to F, i.e.
Q̃. For even vertices we find all of the surrounding details di and scale the sum
by α, exactly as in Eqn. 16. For odd vertices, we simply find the corresponding
detail, which is stored.

We can also determine Ã from Eqn. 16. Because of symmetry, our choice of
α will eliminate c̃i6=0 from the equation, leaving an expression involving only
coarse vertex c̃0 and fine data fi. After substituting the full expression of each
detail vector into Eqn. 16 , we get:

c̃0 =
1

1− nα
f0 −

α

1− nα

n∑
i=1

fi . (17)

Equation 17 represents a decomposition mask for the Ã filter.

The role of B̃ is to compute the details, D = B̃F. By our wavelet constraint
(Eqn. 15), we only need to compute and store details at odd vertices. Consider
a representative odd detail, di:

di = fi − f̃i = fi −
3

8
(c̃0 + c̃i)−

1

8
(c̃i−1 + c̃i+1) , i = 1, 2, . . . , n .

It is feasible to find an expression for di that depends only on fine data fi

by replacing each c̃i according to Eqn. 17, but that requires enumerating the
1-ring of four different vertices and determining where they overlap. It is more
practical to simply use the form above to compute the odd details.

6.3 Refinement

Again we wish to find a refinement vector δ0 that can reduce the local error
about c̃0. As before, we consider the 1-ring of neighbors of c̃0; if we displace c̃0

24

by δ0, how does the error change? Let Eδ0 be the error after refinement. Then

Eδ0 = |d0 − (1− nβ) δ0|2 +
∣∣∣∣d1 −

3

8
δ0

∣∣∣∣2 + . . . +
∣∣∣∣dn −

3

8
δ0

∣∣∣∣2 (18)

based on the contribution of (1− nβ)δ0 to f̃0 and 3
8
δ0 to f̃1, . . . , f̃n.

To reduce the error in our trial filter, we should choose δ0 such that Eδ0

is minimized. Simplifying Eqn. 18 yields a form that can again be solved
analytically:

Eδ0 = a|δ0|2 − vT δ0 + b ,

where

a = n
9

64
+ (1− nβ)2 ,

v = 2 (1− nβ) d0 +
3

4

n∑
i=1

di ,

b =
n∑

i=0

|di|2 .

This is of the same form as the cubic B-spline error function from Eqn. 8.
Setting δ0 = v/2a, we find:

δ0 =
v

2a

=
2 (1− nβ) d0 + 3

4

∑n
i=1 di

2
(

9n
64

+ (1− nβ)2
)

=
2 (1− nβ) 8β

5

∑n
i=1 di + 3

4

∑n
i=1 di

2
(

9n
64

+ (1− nβ)2
)

δ0 = κ
n∑

i=1

di , (19)

where Eqn. 16 is used to eliminate d0 and

κ =
1

(1− nβ)2 + 9
32

n

[
8

5
β(1− nβ) +

3

8

]
.

25

Fig. 8. Boundary vertices and edges in a Loop model can be decomposed with cubic
B-spline filters.

6.4 Partial Refinement

Using the voting strategy, c̃0 again wants to take the full refinement step, while
neighbors c̃i want c̃0 to not move at all. The central vertex votes for µ = 1
with a weight of 1 − nβ, while the first-ring neighbors vote for µ = 0 with a
weight of β. Thus

µ = (1− nβ) 1 + (nβ) 0 = 1− nβ . (20)

Therefore

κ =
(1− nβ)

(1− nβ)2 + 9
32

n

[
8

5
β(1− nβ) +

3

8

]
.

6.5 Boundary Filters

A subdivision mask can only be applied when a complete neighborhood exists.
For interior vertices, a full neighborhood is always defined, as well as for inte-
rior edges. If there is a boundary in a mesh, however, then vertices and edges
that make up the boundary do not have full neighborhoods. Special boundary
masks must be defined to handle such cases. See Fig. 8.

According to the Loop subdivision rules, boundary vertices are subdivided
according to cubic B-spline subdivision. Thus for multiresolution boundary
filters, a cubic B-spline multiresolution should be used, such as the systems
described in Sec. 5.5. In particular, the regular filters Ar, Br, and Qr are used
along any continuous boundary, while the boundary cases As/e, Bs/e, and Qs/e

can be applied to corner points.

26

Original Refined LQS

Ck PCk−1 P2Ck−2 PCk−1 P2Ck−2

E = 0.520 E = 1.517 E = 0.517 E = 1.414

Fig. 9. An alien model consisting of 1536 faces (left) is decomposed once and twice
with our refined filter, and then with the LQS filter. The decomposed model is then
subdivided to the original resolution for error measurement.

6.6 Closed Form

As with the simple curve case, the refinement vector to improve our trial Loop
decomposition filter is a linear combination of the odd details surrounding our
representative vertex. So, if D is a vector of all our detail vectors, we can write
all refinement vectors as a vector ∆ such that ∆ = LD for some matrix L,
where L is determined by the refinement stage (Eqn. 19).

A side-effect of refinement is a widening of the decomposition mask. We saw
it in the cubic B-spline case, where our trial filter of width 3 became a filter of
width 7. This widening arises because we are incorporating information from
surrounding details, which in turn are based on a wider neighborhood of fine
vertices.

In fact, a closed-form of our Loop decomposition filter after refinement would
require a 3-ring of neighbors about the central vertex. Even if all vertices in
the mesh are regular (valence-6), enumerating a vertex’s 3-ring is a challenging
problem.; in a non-regular setting, enumerating a 3-ring is even more difficult.
So, it seems that for Loop surfaces we must be content with a step-wise de-
composition as depicted in Fig. 4.

6.7 Results

For evaluation of our Loop filters, we compare our filter’s performance with
the multiresolution Loop scheme of Li et al. [20], which we will refer to as the
LQS filter. The performance of each filter is measured according to Eqn. 4. The
LQS filter has slightly wider support than the refined filter, but the difference
in running time between the two filters is not noticeable.

27

Original Refined LQS

Ck P2Ck−2 P3Ck−3 P2Ck−2 P3Ck−3

E = 2.632 E = 4.728 E = 2.171 E = 3.657

Fig. 10. A pawn model consisting of 19456 faces (left) is decomposed once and twice
with our refined filter, and then with the LQS filter. The decomposed model is then
subdivided to the original resolution for error measurement.

Original Refined LQS

Ck P2Ck−2 P2Ck−2

E = 1.276 E = 4.420

Fig. 11. A wolf model consisting of 9056 faces is decomposed twice with the refined
filter and the LQS filter, and then subdivided to the original resolution.

Figure 9 depicts a model of an alien head (left). This model has relatively
few sharp edges, but contains a lot of tangential vertex displacement. The
model is decomposed once and twice with both the refined filter and the LQS
filter. Visually, the results of each filter are about the same, and the error
measurements confirm the similarity of performance.

The pawn model of Fig. 10 contains some high-frequency features that put
stress on a decomposition filter. The original model contains many sharp edges
and flat regions that would normally be smoothed out by subdivision. After
two levels of decomposition, both the refined filter and the LQS filter are able
to preserve the features of the model. After the third level, both filters begin
to lose some details, such as in the ridge at the top and smooth edges of the

28

Fig. 12. Summary of error measurements from several models. Left : cubic B-spline
results comparing our refined filter with the Bartels-Samavati filter. Right : Loop
results for our refine filter compared against the LQS filter.

base. Visually and numerically, the filters again perform quite similarly.

Finally, Fig. 11 shows a wolf model with sharp teeth. Such features would
normally be smoothed out considerably by subdivision. When the model is
decomposed twice with our refined filter, the teeth are preserved as well as
could be expected. The LQS filter, however, has difficulty with the feature and
overcompensates, causing the teeth to protrude through the wolf’s mouth. In
this example, our refined filter performs considerably better.

7 Conclusion & Future Work

We have presented a general approach for constructing multiresolution filters
for a broad range of subdivision schemes. Our approach exploits the distinction
between even and odd vertices to find a good set of trial filters, similar to lazy
wavelet constructions. The trial filters are then refined by an optimization step
that seeks to reduce the error introduced during the decomposition stage.

To explore the suitability of our approach, we have applied it to cubic B-
spline curves and Loop subdivision. Using our approach, we are able to quickly
and easily find a set of trial filters. Our trial Ã filters consider a very small
neighborhood (only the first-level neighbors of each even vertex) and were
therefore sub-optimal in terms of the magnitude of the details.

By performing a local optimization, and then softening the results of the
optimization to account for the interdependence of the local settings, we were
able to vastly reduce the error in our coarse approximations. The results for
both cubic B-spline curves and Loop surfaces (Fig. 12) showed that our method

29

performs in line with earlier methods, while being easier to understand and
implement. In addition, our method allows for easy treatment of boundary
cases.

Our technique is a natural fit for many subdivision schemes because it is based
only on the distinction between even and odd vertices. The current direction of
this research is applying it to Catmull-Clark subdivision. Loop and Catmull-
Clark subdivision represent the most popular subdivision schemes, and unlike
Loop, there aren’t any existing multiresolution filters for Catmull-Clark.

References

[1] G. Chaikin, An Algorithm for High Speed Curve Generation, Computer
Graphics and Image Processing 3 (4) (1974) 346–349.

[2] J. Lane, R. Riesenfeld, A Theoretical Development for the Computer
Generation and Display of Piecewise Polynomial Surfaces, IEEE Transactions
on Pattern Analysis and Machine Intelligence 2 (1) (1975) 35–46.

[3] E. Catmull, J. Clark, Recursively Generated B-spline Surfaces on Arbitrary
Topological Surfaces, Computer-Aided Design 10 (6) (1978) 350–355.

[4] C. Loop, Smooth Subdivision Surfaces Based on Triangles, Master’s thesis,
Department of Mathematics, University of Utah (1987).

[5] D. Doo, M. Sabin, Behaviour of Recursive Subdivision Surfaces Near
Extraordinary Points, Computer-Aided Design 10 (6) (1978) 356–260.

[6] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied
Mathematics, 1992.

[7] G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellesley College, 1996.

[8] E. Stollnitz, T. DeRose, D. Salesin, Wavelets for Computer Graphics: A Primer,
Part 1, IEEE Computer Graphics and Applications 15 (3) (1995) 76–84.

[9] E. Stollnitz, T. DeRose, D. Salesin, Wavelets for Computer Graphics:
Theory and Applications, Morgan Kaufmann Publishers, Inc., San Francisco,
California, 1996.

[10] J. Warren, Sparese Filter Banks for Binary Subdivision Schemes, Mathematics
of Surfaces VII.

[11] W. Sweldens, P. Schröder, Building Your Own Wavelets At Home, in: Wavelets
in Computer Graphics, ACM SIGGRAPH Course notes, 1996, pp. 15–87.

[12] W. Sweldens, The Lifting Scheme: A Construction of Second Generation
Wavelets, SIAM J. Math. Anal. 29 (2) (1997) 511–546.

30

[13] F. Samavati, R. Bartels, Multiresolution Curve and Surface Representation by
Reversing Subdivision Rules, Computer Graphics Forum 18 (2) (1999) 97–120.

[14] R. Bartels, F. Samavati, Reversing Subdivision Rules: Local Linear Conditions
and Observations on Inner Products, Journal of Computational and Applied
Mathematics 119 (2000) 29–67.

[15] F. Samavati, N. Mahdavi-Amiri, R. Bartels, Multiresolution Surfaces having
Arbitrary Topologies by a Reverse Doo Subdivision Method, Computer
Graphics Forum 21 (2) (2002) 121–136.

[16] F. Samavati, H. Pakdel, C. Smith, P. Prusinkiewicz, Reverse Loop Subdivision,
Tech. rep., University of Calgary, available at http://pharos.cpsc.ucalgary.ca/
(2003).

[17] N. Dyn, D. Levin, J. Gregory, A Butterfly Subdivision Scheme for Surface
Interpolation with Tension Control, ACM Trans. Graph. 9 (2).

[18] M. F. Hassan, N. A. Dodgson, Reverse subdivision, in: N. Dodgson, M. Floater,
M. Sabin (Eds.), Advances in Multiresolution for Geometric Modelling,
Springer, 2005, pp. 271–283.

[19] M. Bertram, Biorthogonal Loop-Subdivision Wavelets, Computing 72 (1-2)
(2004) 29–39.

[20] D. Li, K. Qin, H. Sun, Unlifted Loop Subdivision Wavelets, in: 12th Pacific
Conference on Computer Graphics and Applications, 2004.

[21] USGS, US Geological Survey’s Seamless Data Distribution System, available at
http://seamless.usgs.gov/website/seamless (Oct. 2004).

31

