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Figure 1: The work-flow of Cover-it: Starting with (a) an input model, we generate (b) a 2D layout of simple patches and (c) an animation showing
how these patches fit on (d) the 3D print of the model. As guides, (e) the patch outlines are etched into the print to support the creation of (f) the
final covered print.

ABSTRACT

The ubiquity of 3D printers has made it possible to print various
types of objects, from toys to mechanical objects. However, most
available 3D printers are single or double colors. Even printers that
can produce objects with multiple colors do not offer the ability to
cover the object with a desired material, such as a piece of cloth
or fur. In this paper, we propose a system that produces simple
2D patches that can be used as a reference for cutting material to
cover the 3D printed object. The system allows for user interactions
to correct and modify the patches, and provides guidelines on how
to wrap the printed object via small curves illustrating the patch
boundaries etched on the printed object as well as an animation
showing how the 2D patches should be folded together. To avoid
wasting materials, a heuristics method is also employed to pack
2D patches in the layout. To compensate the effect of inflation re-
sulted from covering objects with thick materials, an offsetting tool
is provided in Cover-it. In addition, since many low scale details of
an object is not visible after covering, a mesh can be simplified in
Cover-it to reduce the number of 2D patches.

Index Terms: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Modeling packages; I.3.8 [Computer
Graphics]: Applications

1 INTRODUCTION

Nowadays, numerous inexpensive 3D printers are available for fab-
ricating 3D objects. This has generated exciting opportunities for
creative applications and stimulated both researchers and industrial
companies to explore the use of the 3D printing technology. As
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a result, many different models — such as prototypes, toys, me-
chanical objects and accessories — are printed and utilized today.
However, most current 3D printers are only able to print objects in
one or two colors and only in a single material. More advanced (and
expensive) 3D printing technologies can produce objects in multi-
ple colors. However, these objects are not able to be produced with
various coverings, such as fur, leather, decorative paper/fabric, or
other textiles, which is necessary in the design of commonly avail-
able objects. To address this, we can use 3D printers to generate
the underlying 3D model, and then cover them manually by the de-
sired coverings. However, appropriately wrapping a complicated
3D object with a (2D) material is not an easy task.

In this paper, we present Cover-it, an interactive system specially
designed for guiding the task of wrapping 3D prints with various
coverings. For a given 3D object, Cover-it creates a 2D layout of
simple patches for covering 3D prints (see Fig 1). This layout can
be used as a stencil guide for cutting patches from various cover-
ings. Cutting can be done manually or with the aid of digital cut-
ter printers (see Fig 1 (b)). To keep the process of attaching 2D
patches on 3D prints simple, the number of patches should be small
and, each patch should have simple boundaries. Furthermore, in
the interest of pasting each patch on the object without wrinkles,
the patch should be developable.

These criteria have been previously conceived in applications
such as paper craft and stuffed toy creation [21, 8]. As a result,
we use D-Charts [8] which is a simple and efficient segmentation
method. To customize the result, we provide a set of interactions to
locate segments and seams.

Although D-Charts can successfully segment a given mesh to a
set of developable patches, there are other aspects specific to 3D
print covering in addition to developability of patches. In gen-
eral, two important constraints exist: Patches must be accurately
attached together (patch-patch alignment). Patches must be ac-
curately attached to their corresponding regions on the 3D prints
(patch-surface alignment). The second condition does not exist
for paper craft and stuffed toy applications. However, to cover 3D
prints, the second condition is very important as a slight violation



in the position or orientation of the patch over the 3D print leads to
uncovered and/or noticeable overlaps. Pasting patches on 3D prints
with respect to the second constraint can be an extremely tedious
and time consuming task. For example, the process of pasting the
red patch in Fig 1 (b) on the bunny (Fig 1 (d)), even with the use
of the color-coded diagram in Fig 1 (c), is hard and unreliable. As
a result, it is necessary to provide a clear guide for the pasting pro-
cess. In addition, the seams between patches present an important
consideration for the covering problem. For instance, they should
be ideally moved to less visible regions or they can be aligned with
feature curves to respect an important aspect of the surface. There-
fore, the ability to interactively control the cutting layout is desir-
able.

In Cover-it, some guidelines are also provided to make the pro-
cess of attaching patches to the 3D prints easier. Color-coding the
patches is beneficial but not enough, as it remains difficult to locate
the patch accurately on the 3D print. As a result, in Cover-it, the
boundary of each patch is carved as a small but visible etch on the
3D print (see Figures 1 (e) and 8). Therefore, the exact location of
2D patches on the mesh is apparent. In addition, as evident in Fig 1
(c), it is hard to determine the final orientation of each of these 2D
patches. Therefore, in Cover-it, an animation is provided showing
how the 2D patch is oriented on the 3D print.

An additional set of user interactions are also designed in Cover-
it to customize the final result of the system. In Cover-it, it is possi-
ble to simplify the mesh to decrease the number of segments. This
simplification technique works based on a developability factor for
creating objects at different resolutions. In fact, the mesh is sim-
plified at vertices with a low Gaussian curvature and small incident
triangles so that the overall shape of the mesh is affected as little as
possible. If a mesh is covered with a thick material, the final object
is undesirably inflated. To compensate this artifact, an offsetting
tool is provided in Cover-it to make an offset surface correspond-
ing to the thickness of the employed material. 2D patches can be
created using a cutter printer that receives the 2D layout as an in-
put and cuts the 2D patches out of a resource material. To avoid
wasting materials, the 2D layout resulting from the segmentation is
also packed using a heuristic approach [1]. In Cover-it, it is also
possible to control the position of 2D patches on the layout using
simple rotation and translation tools.

In summary, this paper makes the following contributions:

• The proposed solution of wrapping 3D prints with 2D cover-
ings to provide more interesting and realistic objects.

• Analysis of the requirements for covering 3D prints.

• The design of a system that provides a low number of devel-
opable patches with simple boundaries packed in a 2D lay-
out in addition to pasting guidelines such as an animation and
patch boundaries carved on the object. Other useful interac-
tions, such as control over the placement of seeds and seams,
are also included.

We organize the paper as follows: Related work is presented in
Section 2. The requirements of a proper covering of 3D prints is an-
alyzed in Section 3. Section 4 provides an overview of the segmen-
tation and packing techniques employed in Cover-it. Guidelines
that are provided in Cover-it to simplify the pasting process are de-
scribed in Section 5. We present the user interactions of Cover-it
in Section 6. Section 7 presents the results and discussion and we
finally conclude in Section 8.

2 RELATED WORK

Cover-it is a system that provides a set of 2D patches to wrap a
3D print covered with a set of developable patches. Therefore, the
related work of our system includes previous work in model fab-
rication, developable surfaces, paper crafts, and segmentation. In

Cover-it, the corresponding region of each patch on the surface is
highlighted by carving the boundary of the patch on the 3D print.
As a result, our work is weakly related to 3D puzzle creation. In the
following subsections, we discuss the previous work of each cate-
gory in detail. Naturally, the scope of some of these works spans
multiple categories.

2.1 Stuffed Toys and Model Fabrication
The final product of our system is a 3D print covered with a given
material, which is similar to plush toys except that, in our system,
a 3D print underlies the outer material rather than a soft stuffing.
Plushie is an interactive system for making toys using a sketch-
based interface [17]. However, whereas Plushie is a modeling sys-
tem that allows a user to model a toy, our system accepts any (pre-
existing) 3D model as an input mesh. In fact, 3D model in Plushie
is not accurately respected. Similar to Plushie, Pillow is designed
to make toys using an interactive system [6]. Skouras et al. [24]
also propose an interactive system for inflatable models that are de-
fined by a set of drawn seams. These systems are tools for creating
objects and do not handle existing 3D models, unlike the work of
[7], which considers the problem of covering pre-existing 3D ob-
jects. However, the problem tackled by the work is not the covering
of the surface of the model. Rather, the purpose of [7] is to de-
sign a cover for personal belongings to protect them from dust and
damage.

Cover-it also shares similarities with systems designed for model
fabrication. Wang [30] propose a method to interpolate boundary
curves using stretch-free patches for prototyping leather patches on
objects such as shoes. In [29], a system is designed to provide a
2D patterns that can be sewn together to provide a clothing or a
stuffed toy. Chen et al. [4] propose an interesting system to fabri-
cate a wooden 3D model. The motivation for their work, regarding
the lack of simple methods to print an object covered with different
materials and in various colors, is the same as ours. In their work,
the purpose is to provide a small number of solid pieces to be as-
sembled, therefore they significantly simplify the object. However,
we intend to work with soft coverings wrapped on 3D prints and
can support more detailed objects. In addition, there are other as-
pects for covering 3D prints such as aligning the patches on a 3D
surface (i.e. patch-surface alignment), which is not the case for [4]
as there is no underlying 3D print.

In D-Charts [8], the developable segments of the mesh are de-
tected using a region growing algorithm that considers developa-
bility, compactness, and smoothness of the boundary edges as the
elements of the fitness function. The purpose of their segmentation
is to produce stuffed toys using soft materials. To guide the cor-
respondence between 3D patches and 2D patches, they use a color
coding for the patches. Since they make stuffed toys with no under-
lying 3D print, patch-patch alignment is a sufficient constraint. The
segmentation component of our system is very similar to [8]. In our
proposed system, patch-surface alignment is also considered, as it
significantly affects the final results. To fulfill this constraint, a set
of interactions and guidelines are provided.

2.2 Developable Surfaces
Detecting the developable patches of a given surface has important
applications in computer graphics. Developable surfaces are tradi-
tionally defined as surfaces with zero Gaussian curvature. Gaussian
curvature is the product of the principal curvatures, κ1 and κ2, and
can be used as a metric to find developable patches.

To calculate the Gaussian curvature, Yamauchi et al. [32] use
an area of the Gauss map and apply it to identify the developable
patches of a surface. In [18], a sketch-based modeling approach
is proposed to produce developable surfaces by interpolating the
boundary curves using a developable triangulation. Liu et al. [13]
propose a method to produce conical and circular meshes using an



optimized subdivision on quad meshes with planar faces. Kilian et
al. [9] propose an interesting system (curved folding) for designing
developable surfaces in which a model can be approximated by a
single planar sheet of material without stretching, tearing or cutting.
The work of Tachi [27] presents a different method to fold a given
mesh shape using several foldings without cuts.

2.3 Paper Crafts
Converting a mesh to a paper craft, which involves unfolding a
given mesh to a set of foldable paper patches is also related to our
work. Mitani and Suzuki [16] propose a method in which the given
mesh is initially partitioned along its features lines. Partitions of
the mesh are then segmented to smaller partitions in such a way
that these segments can be approximated by triangle strips. They
then use the triangle strips to cut the paper and construct the paper
craft. This method drastically simplifies the object and the resulting
triangle strips are narrow and hard to attach.

In [21], a given mesh is segmented into a relatively small set of
patches with smooth boundaries via an optimization method that
locally fits a conic or planar surface to the mesh. In [15], the same
problem is tackled by approximating the patches using a set of gen-
eralized cylinders. Although these methods preserve the overall
look of the mesh, some undesirable pointy patches are created.

Unfolding the mesh into large triangle strips is also discussed in
[26, 28]. Takahashi et al. [28] generate a guide to fold the paper
craft using color coding along the cuts. However, their final result
is still composed of a complicated patch that is hard to fold. Our
work, by contrast, is not limited only to paper and can accept a wide
variety of covering materials with different properties. As with the
aforementioned model fabrication methods, paper crafts are only
constrained to patch-patch alignment, as opposed to our method in
which patch to surface alignment is important.

2.4 Segmentation
There exist many previous works that segment a given mesh to a
number of patches for different applications such as texture map-
ping, remeshing, morphing, multiresolution and more [20]. Seg-
mentation is the problem of partitioning a given mesh to a number
of smaller patches with respect to one or more objectives. These
objectives can be measured in terms of the planarity of the patches,
human perception, or a topological constraint. In our proposed sys-
tem, we look for 2D patches that can be attached together on top
of 3D prints. Therefore, the developability of the segment is one of
the objectives.

Sander et al. [19] use the planarity of patches as a metric to seg-
ment a mesh into an atlas of geometry images. In [5], a new metric
for planarity called `2,1 is defined, which is an `2 measurement of
normals. Using this metric, a remeshing technique is proposed that
clusters faces with close normal vectors. To identify planar seg-
ments of mechanical objects, a variational mesh segmentation has
been proposed by Yan et al. [33] in which a quadratic function fit-
ting is used to estimate the planarity of the object with error metrics
similar to those offered by Cohen-Steiner et al. [5]. In order to
morph polyhedral surfaces, a decomposition of a model to a num-
ber of patches is proposed by Shlafman et al. [23] by considering
a linear combination of the physical and angular distances between
faces. Physical distance is estimated by the distance between the
barycenter of the faces and angular distances are given by the dihe-
dral angles between the faces. Although these segmentation meth-
ods perform very well in identifying segments that satisfy their ob-
jectives, they do not provide a complete system for our purpose of
finding patches that simplify the pasting process to 3D prints.

2.5 3D Puzzles
As finding the correspondence between 2D patches and 3D patches
on the surface of the 3D print can be challenging, working with

Cover-it can be similar to solving a 3D puzzle. In 3D puzzles, a
mesh is also segmented into several pieces in order to provide a
challenging and fun experience. Lo et al. [14] generate a 3D poly-
omino puzzle in which a 3D object is formed of small pieces that
connect to each other at the boundaries. Xin et al. [31] create a 3D
burr puzzle in which all the pieces except one stay stationary. Song
et al. [25] define an interlocking puzzle by subdividing the volume
enclosing a 3D object. Although these models segment a mesh to a
set of pieces, their intention is different from Cover-it. Cover-it tries
to provide a simple fabrication for covered 3D prints by providing
guide lines as opposed to puzzles, which should be challenging by
nature.

3 REQUIREMENTS ANALYSIS

In this section, we describe why we have chosen specific methods,
guidelines and interactions in Cover-it. The purpose of Cover-it
is to wrap the 3D print of a given triangular mesh with different
coverings. There exists an associated 3D triangular mesh for each
3D print. One obvious solution is to cut small triangular pieces
associated with the triangular faces of the mesh and paste each piece
on the 3D print. This can obviously become a very tedious task as
a mesh can have several thousand triangular faces. On the other
extreme, one can try to cover the entire 3D print using only a single
patch, which may have several long cuts. For example, one large
triangle strip can be generated, similarly to some works in paper
crafts [26, 28]. However, this is also very difficult, as following a
long triangle strip on the 3D print and pasting it at the right position
is a hard process. Our initial approach generated such a monolithic
patch, resulting in the wrapping process for the bunny (See Fig 2)
taking several hours. In fact, we did not find any advantage to the
single piece approach as lots of effort is already spent on aligning
cuts between sub-regions (e.g. 1 and 2 in Fig 2 (c)). Therefore,
the covering can include multiple but preferably a small number
of patches (Fig 2 (c)). Patches with complex boundaries are also
cumbersome to attach, as each requires aligning many edges on the
surface and along neighbor patches. This observation is similar to
the work on D-Charts proposed by [8].

(b)

1 2
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Figure 2: (a) A bunny covered by a paper triangle strips. (b) Gaps are
noticeable on the the 3D print. (c) A triangle strip used for covering
the bunny. The boundaries are complex and it is difficult to associate
them with their patches on the surface. Smooth boundaries (red) are
easier than complex boundaries (blue). (1) and (2) should be aligned
with each other.

Patches with simple boundaries are better for alignment and at-
tachment. However, our purpose is to paste the patches on the sur-
face of the 3D prints. Our initial experiments showed that it is dif-
ficult to paste the patches in the exact position given only a color
coded model as a guide (see Fig 3 (c)). Although the virtual model
can be rotated and zoomed using standard interactions, guessing the
exact orientation of the patches on the surface is difficult. To quan-
tify the difficulty of this task and also observe the issues of pasting,
we designed a pilot study and asked 10 people to paste a 2D patch
on the 3D print of bunny. As preparation, we located a quadrilat-
eral patch on the bunny for the participants to paste (Fig 3 (a), (b)).
We use this quad patch as a reference for measuring and digitizing
the error of the pasting process. On the 2D patch, we locate three



reference points whose exact positions on the quad patch were pre-
viously captured. After participants placed the patches on the quad
patch, we compared the position of the points with their exact posi-
tions by aligning quad patches. On average, each participant spent
112 seconds doing this task. Fig 3 (d) shows the distribution of
the reference triangles for all 10 cases. The outlier triangle (light
blue) belongs to a person who tried to do this task very fast. To
define a metric for measuring correspondence error, we used the
common areas between the participant’s triangle and the reference
triangle. For this, we employed a simple Monte Carlo technique
to measure overlapping area of these triangles. The study showed
that the pasted patch deviated from its exact location by a factor
of 60 percent. Such inaccuracy for one piece can create significant
misalignment in consecutive pieces. For example, Fig 14 shows
the final covering of the bunny by one of the participants in which
many parts of the 3D print is not covered properly. The participant
spent about 45 minutes to cover the entire 3D print.

(a) (b) (c) (d)

Figure 3: (a) A 3D print and a quadrilateral patch assigned to the
surface as a benchmark. (b) Attaching the patch on the benchmark.
(c) The 3D object associated with the printed model as a reference
for users. (d) Reference points are white vertices and the reference
triangle is shown with dashed lines. The reference triangle of each
user is drawn in a unique color. Deviation from the reference is no-
ticeable.

To aid the pasting process, we designed two additional tools (in
addition to color coding the patches). We provide an animation that
shows how a 2D patch corresponds to the patch on the surface. In
addition, the boundary of each patch is carved on the 3D model,
providing a useful hint to where the patch should be located (see
Fig 8).

We also noticed that when a 3D print is covered, depending on
the covering material, low scale details are no longer visible. As a
result, it is possible to reduce the mesh and obtain simpler patches.
In many cases, only a subset of the surface should be covered or
the user may require that the seams follow a specific path on the
surface as even a simple manipulation and adjustment of seams and
patches on the virtual 3D model can reduce the difficulty of the
pasting process. For instance, suppose that we wish to dress the
Beethoven model in a suit (see Fig 13). Unless interactions are pro-
vided to place seams in the proper positions, this task is impossible.
Therefore, in Cover-it, seams can be selected and interactively con-
trolled and edited. The positions of patches can be also controlled
by selecting a seed triangle from which a patch is grown. These
interactions are described in Section 6.

4 PATCH DETECTION

To cover a mesh with a set of material pieces, we need to segment a
3D object to a set of 2D patches. Each 2D patch is associated with a
3D patch on the 3D print. We use segmentation method proposed in
D-Charts [8] due to its simplicity, interactivity, and possibility to ac-
cept several different factors in its fitness function. Starting from a
set of seed triangles and based on the fitness value, a triangular face
is attached to the current selections. Using such a method, seams
are located along the edges. Although the result of this segmen-
tation method is dependent on the initial location of the seeds and
a bad distribution of seeds may result to undesired patches, it can
be a useful property since it provides a flexibility for the system to

(a) (b) (c) (d)

Figure 4: (a) Initial patches are seeded onto the mesh. (b) Patches
are grown and the face with the best fitness value (green triangle) is
iteratively added to the patch (c). (d) Patches cover all the faces of
the mesh.

locate patches on the desired locations. This way, the final result is
not totally dependent to the optimization technique. In this section,
we present an overview of the algorithm that detects patches.

4.1 Algorithm Overview

The 3D mesh needs to be segmented with respect to the desired
properties of the 2D patch layout, which is at least an NP-complete
problem and often NP-hard [20]. To simplify this, similar to D-
Charts [8], we use a multiple seeds region growing algorithm to
make 2D patches. The algorithm initializes the patches using a set
of initial seeds that are selected triangular faces. These seeds can
be chosen to be geodesically far from each other (using Dijkstra’s
algorithm). In Cover-it, these seeds can also be interactively chosen
if a particular area should be covered without a seam. Among the
triangular faces in the neighborhood of a seed, the one with the
best fitness value (within an acceptable tolerance) is attached to the
seed’s patch (see Fig 4).

Patches corresponding to the initial seeds may not cover all the
faces of the object, due to the tolerance constraint defined on the fit-
ness of triangles. In this case, more seeds are automatically added
to a set of uncovered triangles and the process repeats until all faces
of the mesh are covered (see Fig 4 (d)). Additionally, each 3D patch
has a corresponding 2D patch to which its triangles are projected,
so that the shape (area and angle) of the triangles is preserved as
much as possible. It is possible to perform this task using a param-
eterization technique preserving the shape such as ABF++ [22].

4.2 Fitness Function

For a given triangular mesh M, a fitness function F is used to
evaluate whether a face fa can be attached to patch pi, which has
been initialized by seed si. Large fitness values indicate that face
fa should be added to pi. Function F is a combination of ele-
ments, each playing an important role in the formation of the fi-
nal patches on M. In Cover-it, we define the total fitness function
F = αFdev +βFcomp + χFsmooth +δFvis. We can control the effect
of each of these elements by varying the coefficients of F . Similar
to D-Charts, Fdev, Fcomp, and Fsmooth are functions to respectively
evaluate the developability, compactness, and smoothness of the
boundary of patches.

We have added Fvis to the fitness function used in Cover-it for
pushing the seams to the least visible parts of the 3D print. There-
fore, we wish to locate the seams at occluded areas such as beneath
the 3D print or its standing regions. Cover-it provides an interaction
in which the 3D model can be placed on a plane with a specific pose.
Then, the visibility of face fa is calculated against a defined plane
ρ by Fvis =

ACOS(n f a·nρ )
π

. It is possible to define multiple planes in
scenarios for which the 3D printed object is intended to be located
back to a wall. In the case of multiple planes, Fvis with the smallest
value is chosen. In Cover-it, in addition to defined planes, it is also
possible to use ambient occlusion maps to determine the visibility
of faces as a factor in Fvis [10].
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Figure 5: (a) Venus with visibility factor relative to the planes included
in the fitness function. (b) Venus without visibility factor. The seams
in (a) are pushed further from the front (visible) side of the object than
in (b).

4.3 Packing 2D Patches
To avoid wasting materials, it is desired that the patches are packed
as much as possible in the 2D layout Ω which represents the domain
of the covering layout. 2D patches are extracted from Ω which is
typically rectangular. If Ψ is the bounding box encapsulating all
2D patches, waste is defined as ω = Ω/Ψ. It is desired that the ω

be minimized. This problem is known to be NP-Hard which needs
an optimization or heuristic technique to estimate the configuration
of 2D irregular shapes in which the waste in minimal [3, 2, 1]. In
cover-it, we use the heuristic technique proposed in [1] to minimize
ω . Following assumptions are made in [1] that are compatible with
our need:

• Patches are irregular polygons without holes and Ω is rectan-
gular and large enough to contain all the patches.

• Patches can be rotated and they should not have overlaps
while they stay within Ω.

To find the optimal packing, a directed graph with nodes cor-
responding to all possible allocations of patches is used. A path
from an initial node (the allocation of the first patch) to the goal
node which is the last allocated patch to the layout with the lowest
waste is the solution for the problem. Since possible allocations
of patches contain many configurations of rotated patches with dif-
ferent orders, some relaxation rules are used in [1] to shrink the
search space. Examples of these rules are to constrain possible ro-
tations for a patch or to prune the graph when a node imposes a
large waste to the layout. These relaxation rules may produce good
results that are not necessarily optimum. As a result, in Cover-it, we
have also provided simple interactions such as rotating and translat-
ing 2D patches to edit and improve the 2D layout. Fig 6 illustrates
the results of the packing method and some interactions in Cover-it
applied on the 2D layout of Furry Wolf illustrated in Fig 16.

Packing

Editing

(a)

(b)

(c)

Figure 6: (a) 2D patches of Furry Wolf. (b) Patches are packed in the
2D layout using the heuristic method. (c) Some patches are edited
by rotations and translations.

5 PASTING GUIDES

As concluded in Section 3, it is necessary to have proper guides in
the the pasting process. Therefore, Cover-it provides three methods
to aid pasting process. In the following, we discuss these methods.

Carving the 3D Print: As discussed in Section 3, we etch the
3D prints along the patch boundaries. To do so, the patches are
contracted by slightly moving the boundary edges and the voids
between the edges are filled using a triangulation between the two
boundaries (see Fig 8). Formally, let vertices v0 and v1 forming
edge e in triangle T belong to patch pi (see Fig 7). The new posi-
tions of v0 and v1 — denoted by w0 and w1 — are determined by
wk = αvk +(1−α)v2 in which k = 0,1 and v2 is the other vertex of
triangle T . e also belongs to another triangle T́ belonging to patch
ṕi. v0 and v1 also receive two new positions, ẃ0 and ẃ1 using v́2,
the third vertex of T́ . A quadrilateral void q = (w0,w1, ẃ1, ẃ0) is
made due to the repositioning of vertices. To fill q and carve the
boundary edge, we introduce two new vertices u0 and u1 that are
determined by moving v0 and v1 in the direction opposite to their
normal vectors (ui = vi−βni in which i = 0,1 and ni is the normal
of vi). Now, eight triangles, as shown in Fig 7, is used to fill the gap
(see Fig 7 (d)). This process leads to an etch along the boundary
that is visible on the 3D prints. The width and depth of the etches
are controllable in Cover-it by changing the value of α and β .
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Figure 7: (a) Edge e is in between two triangles T and T́ in two
patches pi and ṕi. (b) Triangles T and T́ are contracted by mov-
ing boundary vertices along the edges. (c) v0 and v1 —the original
vertices of T and T́— are moved along their normal vectors n0 and
n1. (d) The gap between the contracted triangles is filled by a retrian-
gulation.

Figure 8: Left: Etches on the 3D model. Right: Etches on the 3D
print.

Color Coding: Similar to common segmentation visualizations



[20], we use a color coding in which each patch receives a unique
color. We try to establish a strong contrast between the colors of
neighboring patches in order to enhance a visual difference between
the faces of the patches.

Animation: Animation is a useful tool to provide an insight to
the users about the 3D objects [11]. As the third method for guiding
the pasting process we use an animation which simulates how the
2D patches qi should be located on the 3D patches pi. In the anima-
tion, the 2D patches are located near the 3D patches and gradually
morphed to their destination position (see Fig 9). To do so, we
first estimate the corresponding orientation of qi relative to pi. The
transformation T that is used to appropriately orient qi along pi is
estimated by averaging all the transformations Tk that map the faces
fa ∈ pi to ga ∈ qi (i.e. T =∑

n
a=1

Ta
n in which n is the number of faces

in pi). In this way, T qi is approximately placed on pi. Afterwards,
T qi is translated by αN in which N is the average of the normal
vectors na of all faces in pi (i.e. N = ∑

n
k=1

nk
n ). q́i = T qi +N is now

located appropriately on top of its corresponding patch pi. Eventu-
ally, to morph the patch q́i to pi, a linear interpolation between the
vertices of q́i and pi is used.

Figure 9: (a) A 2D patch. (b) 3D model visualized in its patches. (c),
(d), (e) Sequences of the animation showing how the 2D patch in (a)
is morphed to its corresponding 3D patch on the 3D model.

6 USER INTERACTIONS

To control and modify the covering process, patches can be modi-
fied by placing seeds and selecting seams. These modifications can
be done via simple interactions with the system that are described
in the following section.

Placing Seeds: If seams should not appear in a specific region
on the surface due to their visibility or importance, a seed can be
placed in that region. Due to the existence of the seed in the region,
the faces in that region are combined into one patch which pushes
the seams further. In Cover-it, a seed can be selected using a simple
mouse interaction.

Simplifying the Mesh: Many details of the mesh are not vis-
ible after covering it with materials. As a result, in Cover-it, the
mesh can be simplified in the interest of having smaller number
of patches. A mesh is automatically simplified through deleting
vertices and its surrounding triangles. The metric is a linear com-
bination of Gaussian curvature estimation and the area of the tri-
angles surrounding a vertex. The holes created after removing the
vertex with the smallest Gaussian curvature are filled using a con-
strained Delaunay triangulation. Fig 10 illustrates that the number
of patches can be drastically reduced from 25 to 9 without losing
much detail, as opposed to the methods proposed in [4].

Offsetting: Materials that are used to cover a 3D printed ob-
jects usually have a thickness. Covering a 3D printed object with a
thick material results an inflated covered shape far from the origi-
nal desired object. In Cover-it, we use an offsetting method [12] to
compensate this artifact. Offsetting the surface proportional to the
thickness of the material produces a closer shape to the original de-
sired object (see Fig 11). Note that both simplifying the mesh and
offsetting are interactive features in Cover-it (please see the supple-
mentary video).

Figure 10: Bunny (a) 25 patches and 3002 faces, (b) 21 patches with
2002 faces, (c) 16 patches and 1602 faces (d) 9 patches and 1202
faces.

Figure 11: (a) The original model of shark. (b), (c) The offset model of
(a) by respectively 0.02, and 0.04 percent. (d) Panther shark created
by covering model (c). It is apparent that the thickness of the material
and glue has provided an overall shape similar to (a).

Smoothing the Boundary: To control the smoothness in the
fitness function, we provide a brush tool to smooth the boundary of
each patch. By using this tool, the strength of the smoothness factor
is increased if the total fitness function is within a given threshold
(see Fig 12). This means that if adding a face from one patch to
another does not produce significantly poorer patches (i.e. does not
add a face with a very low fitness value), the faces are transferred.
Otherwise, faces stay in their original patches.

(a) (b)

Figure 12: (a) The model before smoothing the boundaries. Bound-
aries that are intended to be smooth are highlighted. (b) The model
after smoothing the boundaries. One of the 2D patches is shown
before and after smoothing.

Choosing Seams: The patch boundaries show the cuts that
should be applied to materials in order to cover the 3D print. These
cuts are seams made up of a set of edges on the mesh. In Cover-it,
these seams occur on the boundary between faces that cannot be-
long to the same patch due to the fitness value. However, to better
represent some parts of the mesh, specially the geometric features,
it is possible to specify a set of edges to be a seam on the mesh.
These seams can be the result of a feature detection algorithm, or



they can be specified by the user (see Fig 13). In Cover-it, a brush
tool is provided to select and deselect the seams. After specifying
the seams, two faces sharing an edge that belongs to a seam cannot
belong to the same patch.

Figure 13: Some feature curves on the 3D model of Beethoven are
selected interactively and patches are crafted according to the fea-
ture curves. The 3D print of the model is covered by two different
materials according to the feature curves.

7 RESULTS AND DISCUSSION

In this section, we provide some results of Cover-it. After including
pasting guides in the system for wrapping 3D prints, a significant
improvement to the results were achieved as the average time that
participants took to cover a bunny was reduced from ∼ 45 minutes
to∼ 25 minutes. These results also featured a reduction in the num-
ber and size of gaps and misalignment. Fig 14 shows the results of
the pasting process, before and after providing the guidelines (we
used a material that shows the seams properly).

(a) (b)

(c) (d)

Figure 14: (a),(b) Left: Covered print after providing guidelines.
Right: Covered print before providing guidelines. It is apparent that
the seams are significantly reduced when guidelines are provided.
(c) Seams do not meet without guidelines. (d) The same seams in
(c) perfectly meet on the 3D print.

We used Cover-it to make various models with different materi-
als (see Fig 16 and Fig 15). Table 1 indicates, for each model, how
many patches are created by Cover-it and how much time (in min-
utes) we spent to make the final 3D covered model. In Table 1, we
only report pasting time. The timing for the cutting phase has been
excluded as it can be done manually or using cutter printers. Note
that two different 2D layouts were generated for the wolf model;
one for each employed material.

In Cover-it, creating the 2D layout is very fast and provides in-
teractive results. This is important since the user can see the result
of a set up for parameters and the locations of seeds real time and

Table 1: Number of faces, and number of patches for each model as
well as time required to cover the 3D print.

Model # of Patches # of triangles Time
Beethoven 13 5030 9

Teddy 17 8704 24
Venus 12 708 20
Bunny 14 1250 22

Brown Wolf 18 542 27
Furry Wolf 12 542 10

Table 2: The time (seconds) for segmenting models.
Model Segmentation Time

Beethoven 0.76
Teddy 0.86
Venus 0.43
Bunny 1.02
Wolf 0.34

modify them accordingly. Table 2 lists the time of segmentation for
some examined models.

8 CONCLUSION AND FUTURE WORK

Cover-it uses a multiple seed region growing approach. It also pro-
vides simple interactions to improve the patches, such as brush tools
to smooth the boundary and choose seams on the patterns. Some
gluing guidelines, including color coding, patch boundary carving
on the 3D prints, and an animation showing the orientation of each
patch are also provided. 2D patches on the layout is also packed
using a heuristic method. As available 3D printers are unable to
print objects in different materials, we believe that Cover-it can be
helpful in designing objects that are required to be using different
materials and colors.

Materials used for covering 3D prints may carry different physi-
cal properties that should be considered in making the cutting lay-
out. We can use a parameter setting that is pre-defined for common
materials such as fur, leather, and paper. To define such settings, we
may need to analyze the physical properties of materials.

Figure 15: All the models together.
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