The Visual Computer manuscript No.
(will be inserted by the editor)

Richard Pusch - Faramarz Samavati -

Ahmad Nasri -

Brian Wyvill

Improving the Sketch-Based Interface

Forming Curves from Many Small Strokes

Abstract Sketch-based interfaces are becoming a useful
methodology for interaction with a wide range of appli-
cations. Drawing is a natural and simple paradigm for
designers. One of the problems in most of the current
generation of such interfaces is that designers are forced
to use single strokes where they may prefer to use many
strokes while drawing with traditional tools such as a
pencil.

In this work we have addressed this problem by ana-
lyzing multiple strokes and replacing them with a single
stroke that makes a reasonable estimate of the designer’s
intention. Qur solution recursively subdivides space stop-
ping where either there is only a single stroke, or several
strokes that have a proper ordering using Principal Com-
ponent Analysis. The subspaces are then reconnected,
and the orderings are joined to create the control points
of a single B-Spline curve. The resulting curve is very
noisy due to the multitude of strokes. A multi-resolution
technique that makes use of reverse subdivision has been
used to fit a smooth B-Spline curve.

Keywords Curve Fitting - Sketch-Based Interface -
Small Strokes - PCA - Reverse Subdivision

R. Pusch
University of Calgary,
E-mail: rapusch@ucalgary.ca

F. Samavati
University of Calgary,
E-mail: samavati@cpsc.ucalgary.ca

A. Nasri
American University of Beirut,
E-mail: anasriQaub.edu.lb

B. Wyvill
University of Victoria,
E-mail: blobQcs.uvic.ca

/

Fig. 1 A traditional hand-drawn example at two different
stages. The last row shows a result from our system.

1 Introduction

Sketch-based interfaces are becoming a popular way for
describing complex tasks to modeling and animation sys-
tems. At an early stage of design, artists and designers
often use pencil or pen and ink sketches to make pro-
totypes of their ideas. Sketching a curve is the basic
primitive for an artist to build preliminary drawings, yet
current sketch-based systems restrict the user to curves
formed by a single stroke of the input device. There exists
right from the start a disconnect between the sketching
methodologies employed by traditional pen-and-paper
artists and the sketching interfaces in sketch-based sys-
tems. It is common for a designer to use many small
strokes which define the general shape of a final curve
(see Fig. 1). This disconnect cripples the current inter-
face, and initial sketches performed in this manner will
often be drawn on paper, foregoing sketch-based systems
entirely. We propose an alternative input method for 2D
curves which uses many small strokes. Our goal is to

Richard Pusch et al.

bridge the current gap between pen-and-paper sketching
techniques and the sketch-based interface.

Using our method, designers can freely input many strokes
in any order and direction to draw complex curves (i.e.,
with high curvature or multiple turning points). The fi-
nal output of this system is a B-Spline curve which can
be used by many applications. Although it is possible to
extract a point cloud from all of the input strokes, we
use the local ordering of points in each stroke for more
efficiency and to better approximate the input strokes.
Our method also has the advantage of using reverse sub-
division filters that automatically generate a local least-
squares minimizer for B-Spline subdivision curves with-
out solving any linear system.

The rest of the paper is structured as follows: some re-
lated works are discussed in section 2. The proposed
methodology, described in section 3, provides some back-
ground on principal component analysis, and describes
how they are employed to solve the multiple strokes prob-
lem. Some implementation details are presented in sec-
tion 4 and results are given in section 5. Finally section 6
describes some conclusions and possible future work.

2 Related Work

Igarashi [4] has implemented a system for 3D freeform
design which requires nice curves input in 2D. Cherlin [3]
models 3D shapes with few strokes (i.e., curves), but each
curve must be drawn without lifting the input device.
These systems provide evidence that there is a need for
B-Spline curve input, but the difficulty with the interface
limits their applicability and requests that users draw
difficult and complex curves in a somewhat unnatural
way.

Baudel [2], Kara [5], Zheng [12], Michalik [7] and others
have discussed techniques for using strokes to modify ex-
isting strokes. For example, Zheng [12] deforms a curve,
locally matching it with another curve. This becomes
computationally expensive due to knot removal tech-
niques and cannot guarantee smooth transitions. Micha-
lik [7] starts with few control points, fits a curve, and
then adds more control points locally until the deviation
from the input curve is sufficiently small.

While these methods are close to our objective, there is
still a requirement that a base curve be given that can be
later modified. It is desirable that the system makes no
assumption about the shape of the curve until all strokes
have been input. Additionally, many of these systems
solve an optimization problem iteratively, which is costly.
Kara [5] also employs a technique that accepts many
strokes but the overall shape of the curve is assumed to
be simple (small curvature and no turning point). For
example, Kara’s method will handle the leftmost set of

strokes shown in Fig. 7 but not any of the other more
complex shapes shown to the right.

Each of the above methods either solves a linear system
for fitting a curve, or minimizes some function with itera-
tive optimization. This can be time consuming and diffi-
cult to implement. Schmidt et al. [11] provide a solution
for connecting disjointed strokes or smoothing several
minimally self-intersecting (i.e., overlapping) strokes. How-
ever, their approach uses 2D variational implicit curves
which provide a framework for these tasks, but are not
as applicable to a wealth of systems as B-Spline curves.
Kegl et al. [6] discuss a method to skeletonize handwrit-
ten letters, a similar problem to ours, but they construct
a Euclidean graph where a given vertex may have a de-
gree of more than two, which does not translate well to
B-spline curves.

Bartels and Samavati [1,9] construct multiresolution fil-
ters based on local least-squares minimization. As a re-
sult, they provide pre-calculated reverse subdivision fil-
ters that can be used for curve fitting in a very efficient
manner. We use this approach for fitting the final curve
in section 3.5.

3 Methodology of Approach

In this section, we outline some important notation, pro-
vide some background on PCA, and describe the various
stages of our algorithm.

The scenario we consider is the designer or artist interac-
tively sketching a set of strokes (s;)(1<;<pn) With a curve
in mind, and we must find a B-spline curve that resem-
bles the general shape of these strokes. Such a technique
can be used as an important component for many sketch-
based techniques ([4,3,11]) to build 3D models since
their modeling techniques strongly rely on the structure
of the input curves. Each stroke s; includes an ordered
set of points whose ordering is induced by the input de-
vice. However, the entire set of points

P:USi
%

do not have a global ordering since a designer does not
have to sketch strokes in a specific order. Finding the
global ordering is the first and major step in our work.
Although P may be treated as a pure point cloud, we
found the local ordering of s; very useful.

One possibility for ordering the points is to sort them
based on their z or y coordinate. This is problematic
since this method not only depends to the coordinate sys-
tem but can cause a many-to-one collision for the sorted
value (z or y). To address these issues, we can use a
linear transformation to map the points into a new nor-
malized coordinate system whose first coordinate shows

Improving the Sketch-Based Interface

the greatest variance of the points. Principal Component
Analysis (PCA) is a simple technique for finding this
transformation. To form PCA for Np = {p1,p2,...pn}
, a local neighborhood in P , let p; = (z;,¥;). Then the
covariance matrix can be defined by

T T
= xxxy)
(yTx vy

_ _ T

X=[x1 —Z,x9 —T,...Tp —)]

_ _ _\1T

Y=W—09:-7-- gy — 9] -
In the above equation Z and § show the average of z
and y coordinates of Np. The principal components can
be found by determining the eigenvectors of the covari-
ance matrix. Let A\; > A5 be the sorted eigenvalues of the
covariance matrix, and let V7, V5 be the associated eigen-
vectors. Then, V; is the direction of greatest variance in
N, (principal component).

where

Finding the size of Np is an important issue. A very small
size neighborhood can capture variations of the strokes
but it reduces the efficiency of the box connection algo-
rithm and makes many small pieces of local orderings.
These small pieces must be properly connected to form
the global ordering (bottom-up approach). In fact, the
orderings of s; will be useless in this case. In addition,
when using a bottom-up approach, it is hard to differ-
entiate between stroke features and noise. On the other
hand, a very large neighborhood generates an efficient
method but it may lose some important features. For
example, for a “Z”-like set of stokes, if we consider the
entire neighborhood as Np, we cannot obtain a reason-
able ordering by projecting points to the z-axis, which
is the principal component.

In our method, we make use of the ordering of s; and
start with a bounding box containing all the strokes.
Then, we adaptively subdivide the boxes until each in-
dividual box contains either a single stroke, or several
strokes that have a proper ordering using PCA.

Our goal is to ensure that each box contains a set of
points simple enough to obtain a local ordering. First,
we recall that each stroke s; has an induced ordering
from the input device. Therefore, if a box contains only
one stroke, it needs no further subdivision as we have
already obtained a suitable ordering. We may also be
able to create an ordering if the PCA of the box, and
each stroke, is similar enough (see Fig. 2).

However, if a box contains many strokes and the PCA
determines we cannot yet find a suitable ordering, we
must subdivide this box. We can choose to subdivide the
box into two horizontal halves, into two vertical halves,
or into four equal quadrants depending on local trends
of the data. We continue to recursively and adaptively
subdivide each box as necessary until all boxes are simple
enough to obtain a local ordering.

-

Fig. 2 Strokes contained in a simple box. Each stroke will
have a similar principle eigenvector, which is also similar to
the eigenvector of the box’s points as a whole.

Once this has been accomplished, we must connect the
boxes in a way which is both visually acceptable to the
user, and which matches his original intentions for the
curve. A clever subdivision of the original bounding box
is important for this step, as connecting the boxes be-
comes difficult if there are many small boxes, each con-
taining small, nearly straight features of the curve.

Once a global ordering on the boxes is obtained, we sim-
ply connect each local ordering to obtain a single order-
ing Py which contains every point drawn by the user. We
then fit a quadratic B-Spline curve to Py using a reverse
Chaikin subdivision technique (section 3.5).

3.1 Simplicity of a Box

A given box b; will contain a number of strokes s; (see
Fig. 2), some of which could extend to other boxes. The
PCA provides us with a metric for measuring how close
the data in the box is to a straight line segment, and
how close each stroke is to the overall trend in the box. If
the points are roughly distributed along a line, the first
eigenvalue of their covariance matrix will be relatively
larger than the second eigenvalue.

We first compute the principal vector of the box b;, then
each of the included strokes s;. If these vector directions
are close enough, and the data in the box is approxi-
mately straight (determined by the ratio A\;/Az2), then
the box is considered simple enough to obtain an order-
ing (see Fig. 2). This value of this ratio must be greater
than a certain threshold, because only data that shows a
dominant trend is considered simple enough to obtain an
ordering. When the ratio is below this threshold, no dom-
inant trend can be found and the eigenvectors of random
strokes may be similar through coincidence. The situa-
tion is also considered simple if the box contains only
one stroke, for reasons previously stated.

3.2 Conditions for Subdividing a Box

When choosing a subdivision method for a box, we want
the sub-boxes to be as simple as possible so we can stop

Richard Pusch et al.

L

Fig. 3 The data shows no horizontal or vertical trends, so
quad subdivision is best.

Fig. 4 The data is largely horizontal, so we choose to sub-
divide it into two horizontal boxes. The vertical case is analo-

gous. This will often isolate the key components, making each
sub-box a simple case. The turning point T is also shown.

P T

subdivision early. The subdivision method is chosen ac-
cording to the trend of the data in that box. That is,
if the data in a box is largely horizontal, then the box
is subdivided into two horizontal halves (see Fig. 4). By
subdividing in this way, we will often isolate the large,
simple components representing a single trend into the
sub-boxes. For example if the box in Fig. 4 were cut ver-
tically rather than horizontally as shown, we would keep
the problem area, near to the turning point T, intact in a
sub-box and the situation would not be simplified. When
the data shows no particular trends (indicated by a low
A1/ A2 ratio for a box), or the trend shown is largely di-
agonal, we choose to subdivide into four quadrants (see
Fig. 3).

Additionally, very straight strokes or strokes that con-
tain a lot of points should be given more influence in
deciding how to subdivide a box. This allows the most
dominant strokes in the box to dictate how a box is sub-
divided, as these strokes will play the largest part in
determining when we have reached a simple case. Thus,
when determining the nature of the data, we perform
a weighted average of the angle between the z-axis and
each stroke’s primary eigenvector. We weight each value
with the A;/As ratios and the number of points on the
stroke. The value of this weighted average is compared
to thresholds to create one of three distinct cases for
subdivision;

1. two vertical halves,
2. two horizontal halves,
3. four equal quadrants.

Lastly, very thin boxes, either vertical or horizontal, are
undesirable, as the trend in such boxes always dictates we
subdivide to create two even thinner boxes. This causes

Fig. 5 Two overlapping strokes are projected onto the box’s
eigenvector to obtain an ordering on the points. This re-
creates a jaggedness in the control polygon. p;_1 and p; are
also shown.

a case of near-infinite recursion, creating dozens of thin
boxes which we are quite difficult to reconnect. Thus,
when we encounter an extremely thin box, we will al-
ways choose to subdivide the box in such a way as to
reduce the aspect ratio of the sub-boxes, regardless of
the supposed data trends in the box.

3.3 Ordering Inside a Simple Box

Once a box has been declared “simple”, we must find a
local ordering on the points in this box. There are only
two cases to handle. If the box contains a single stroke,
we take the ordering created by the input device.

If the box contains many strokes, we simply project each
point along the box’s principle eigenvector and sort the
points according to their projected distance. This will
create a local ordered list of points within the box. When
there are overlapping strokes, however, this will create a
jaggedness in the local ordering which has proven diffi-
cult to denoise (see Fig. 5).

One approach to solve this issue is to replace the points
responsible for jaggedness with points equally distributed
along an average curve. We form this curve with the
weighted average of the pieces of each stroke involved
in the overlap (see Fig. 6). This method allows us to
keep curvature information about the desired curve dur-
ing stroke overlap.

To do this, we first must determine all regions of overlap.
Each region contains jaggedness that will require fixing.
We find each stroke’s start and end point in the box, and
sort them by their distance along the primary eigenvector
of the box. Denote each point in the sorted list of these
“event points” as p;. Note that p; ; comes before p; in
the local ordering for each i.

We then process the list left to right, and maintain a list
of “active” strokes by adding a stroke when we reach its
starting point and removing a stroke when we encounter
its endpoint. Each time we add or remove a stroke from
the active stroke list by encountering p; (and there were
at least two strokes in the list before the change), there is

Improving the Sketch-Based Interface

a region of overlap which needs to be fixed. Specifically,
each point in the ordered list between p;_; and p; is part
of a jagged sequence, and each stroke in the active stroke
list is contributing points to this jagged sequence.

In order to fix this jaggedness, we must remove all points
between p; 1 and p; in the ordered list and replace them
with a non-jagged sequence. We want this sequence to
contain roughly the same density of points as the sur-
rounding strokes, and we want the sequence to represent
an average of the strokes contributing to the jaggedness.
We use a B-spline representation to achieve this result.

For simplicity, consider the case where there are only
two overlapping strokes (see Fig. 6). We create two B-
spline curves using the points of each stroke contributing
to the overlap (i.e., the points on each stroke between
pi—1 and p;); denote them as T'(u) and B(u). Let t and
b be the number of control points on T'(u) and B(u)
respectively, and let m be the maximum of ¢ and b. We
will then sample, with equal distribution, m points along
the following B-spline curve:

t b

Ct+ bT(u) T bB(u)

We will then replace all the points in the local order-
ing between p;_; and p; with these m points. We use a
weighted average of the two B-spline curves because it
is reasonable to assume that a stroke with more points
indicates a more confident stroke from the user, which
should have a bigger impact on the final curve. We also
only sample m points to maintain a similar density of
points for the overlapping sections. This algorithm is
also easily extendable to an area of overlap containing
an arbitrary number of strokes.

A(u)

Pi—1 T'(u)
3
L2 e
7 8
B(w) P

Fig. 6 The pieces of the strokes between p;_; and p; are
overlapping. We replace the points in that range with points
equally distributed on the “average curve” A(w). This order-
ing has no jaggedness and is appropriately dense.

Once we have fixed all the overlapping strokes by mov-
ing the points to an appropriate “average curve”, the
ordering in the box is complete.

3.4 Global Ordering on the Set of Boxes

In order to connect boxes from a set B = {by, bs,...b,},
we choose any box b and add it to an empty list of boxes

L. We find the last point in the local ordering of b, de-
termine the global stroke to which this point belongs,
and “follow” the stroke along its induced ordering to the
next point. If this point is in a new box, this becomes
the next box in our ordering; add it to the end of L. We
continue in this way until we are unable to follow each
successive box to a new box.

We then re-examine the original box b and attempt to
“follow” the first stroke in the box backwards in a similar
way. Each new box that we find is connected by adding
it to the front of L. When we follow this trail to its
completion, we have connected all boxes for our global
ordering as listed in L.

3.5 Fitting a Final Curve

Once we have an ordering on the boxes, we can sim-
ply connect each box’s local ordering together to form a
large list of points Py, which can be interpreted as a very
noisy approximation of the user’s intended curve. Simply
using these points as control points for a B-spline curve
does not generate good results, as there are far too many
points, and noise from the input device remains in the
data.

One possible approach to this problem is to employ a
least square B-spline fitting [8]. This approach requires
finding the solution to a large linear system. As an alter-
native, we have chosen to use a multiresolution represen-
tation based on reverse subdivision [1,9]. In these works,
a “local” least-squares approach (minimizing the error in
a local neighborhood of the data) is used to find a set of
coarse points of half size along with a set of details. Due
to the regularity (subdivision and its reverse), it results
in some simple decomposition filters; therefore, by using
these pre-determined filters, we can find a set of coarse
control points without solving any linear system. Notice
that by changing the size of the local neighborhood, dif-
ferent filters are determined. Narrower filters are easier
to implement but generate larger least-squares error.

In our implementation, for sake of simplicity, Chaikin
subdivision (uniform quadratic B-spline curve) has been
used. Any other uniform B-spline can be similarly used.

The reverses Chaikin subdivision can reduce the number
of control points and the noise of the curve [9]. As general
reverse subdivisions, this technique will decompose a set
of points into a set of coarse points of half size and a set
of details. Since the details are largely filled with noise
in our case, they are simply discarded. The coarse points
are then interpreted as control points for a quadratic B-
spline curve.

Richard Pusch et al.

We have used two different reverse Chaikin techniques.
The first one is the filter with width four

1 3 3 1
q; = _Zpi—l + Zpi + 1Pi+1 - Zpi+2
where each g¢; is a coarse point and each p; is a fine point,
and the step size of i is two. All results shown were made
by a filter with width eight

LR T DR
40p273 40Pz—2 40101—1 40pz

27 1 9 3
+ Epiﬂ - Epiw - Epwrs + Epi+4

q; =

We have found that the wider filter creates a better
curve.

4 Implementation

In this section, we discuss specific implementation de-
tails, including threshold values and details about con-
necting the boxes to obtain a global ordering.

4.1 Deciding Box Simplicity

As discussed in section 3.1, a box may be considered sim-
ple enough to obtain a local ordering if the strokes are
“similar”. When checking for simplicity in the implemen-
tation, each box is assumed to be simple, and then each
stroke contained in the box is checked. Strokes containing
few enough points are disregarded; our particular input
device sensitivity has caused us to set this threshold to
70. We disregard these strokes entirely as short strokes
do not overly affect the curve structure and therefore
do not have a significant ordering. Otherwise, if we come
across a stroke whose primary eigenvector forms an angle
40 degrees or more with the box’s primary eigenvector,
or if a stroke has a A1 /A2 ratio of 10 or less, we will mark
the box as not simple. The first condition shows a stroke
too diverse from the rest of the box, and the second con-
dition indicates that some stroke in the box is too curvy
to obtain a meaningful ordering through projection.

4.2 Choosing a Subdivision Method

ratio of the strokes is less than 50, or if the weighted
angle is between 30 and 60 degrees. Otherwise, the box
is subdivided into vertical halves if the weighted angle is
larger than 60 degrees, and into horizontal halves if the
weighted angle is less than 30 degrees.

When we encounter a box with an aspect ratio of 5 or
greater, we choose to subdivide in such a way as to lower
the aspect ratio of the sub-boxes, independent from the
data trends in the box.

4.3 Connecting Boxes

When connecting some boxes, “following” the original
stroke based on the order induced by the input device
brings about problems when some strokes are drawn in
different orders from others. This problem is attacked in
two steps in the implementation. Firstly, when attempt-
ing to follow a stroke “forward” out of a box, we nor-
mally find the last point along the local ordering, find
this point’s main stroke, and then look at the next point
higher in the ordering along the main stroke. If there
is no next point or the next point is in the same box,
then we have reached a dead end. We will then try find-
ing the previous point lower in the ordering along the
main stroke. This helps us when some strokes are drawn
right-to-left; the point we are looking for to continue our
connection is often “backwards” to our assumption.

Secondly, it is also possible that loops can occur, so that
box A leads to box B, then back to box A. This is due
to the local ordering in box Bj; the projected points on
the eigenvector are in the reverse order compared with
the original data. When this happens, attempting to fol-
low box B “forward” is confusing, because “forward” is
a different direction along the strokes for the local order-
ing and the global ordering induced by the input device.
Therefore, when such a loop is detected, the local order-
ing in box B will be reversed and the system will attempt
to reconnect B with the new ordering.

Finally, due to floating point error and other local in-
stabilities of the input device, it may not be possible to
follow the very last or the very first point in the local
ordering out of the box. When it is not possible to fol-
low the stroke found at one of the extreme endpoints, a
move is made towards the median of the local ordering
and will stop when a point on another stroke is discov-

Each stroke’s contribution to the weighted angle is weightedered. An attempt is made to continue by following the

by two factors. The first factor is the number of points
on the stroke. This ensures that short, divergent strokes
have significantly less effect on the curve. The second
factor is the ratio A; /A2 which allows straighter strokes
to have more of an impact on the subdivision choice. A
box is subdivided into quadrants if the average A;/A2

new stroke out of the box. This process is continued until
the connection is established. Either we will find another
box to connect from some other stroke, or else none of
the strokes in the box can be followed in the attempted
direction. This implies that there are no more boxes with
which to connect in this direction.

Improving the Sketch-Based Interface

5 Results

Fig. 7 illustrates results generated by our system. The
strokes input by the user are shown, as well as the final
curve generated. The left-most figure can be achieved
through a variety of approaches, but the remaining fig-
ures have non-trivial curvature and cannot be done with
current methods.

The two right-most examples show efforts to handle curves
with sharp features or figures made of more than one
dominant curve. In these examples, we must directly in-
dicate the end of each set of strokes in the application
(for the cup-like shape there are three independent sets
of strokes, and for the letter ‘P’, there are two).

6 Conclusion and Future Work

In this work, we addressed the problem of analyzing mul-
tiple strokes and replacing them with a single stroke that
makes a reasonable estimate of the designer’s intention.
We adaptively subdivide the 2D plane until each sub-box
is simple enough to obtain an ordering. We then connect
the subspaces and their local orderings to obtain a rough
estimate of the user’s curve. We fit a B-spline curve to
the data using Chaikin reverse subdivision.

This method provides a bridge between current sketch-
based interfaces and traditional methods employed by
pen-and-paper artists for initial sketch generation. Our
system can handle sketches of varying degrees of curva-
ture, including many changes in curvature. We believe
that bridging this gap is crucial for the sketch-based in-
terface, where users of our system can effectively sketch
a wide variety of interesting curves.

Our box connection algorithm follows boxes if there are
strokes connecting them. We did not implement the case
that has sparse strokes with gaps because, as is evident
in Fig. 1, in most artistic drawings there are no gaps in
the strokes. The artist usually wants complete control
over his conceptualization. However, as a solution for
the sparse case, it is possible to maintain a data struc-
ture which contains a list of all neighboring boxes for
any given box [10]. Ray casting techniques can be imple-
mented to determine if there are more boxes to connect
in the ordering, instead of immediately stopping when
we are unable to follow a stroke to a new box.

Our current implementation struggles when there are
sharp features in the desired curve (that is, the desired
curve is not C'' continuous everywhere). While it is pos-
sible to simply draw each smooth section of the curve
individually and then connect them as separate curves
later, as our results section demonstrates, it may be ben-
eficial to support sharp features on a single curve.

Our implementation also cannot support self-intersecting
curves, since each box has only one local ordering and
at most one entry and exit point from the box. These
assumptions are not true of a box containing a self-
intersecting piece, as the box will have two entry and
exit points, and each intersecting piece will require an
separate ordering. This is a desirable trait of our sys-
tem, but one which would require a different paradigm
to accomplish.

References

1. Bartels, R.H., Samavati, F.F.: Reversing subdivision
rules: Local linear conditions and observations on inner
products. Journal of Computational and Applied Math-
ematics 119(1-2), 29-67 (2000)

2. Baudel, T.: A mark-based interaction paradigm for free-
hand drawing. In: Proceedings of the 7th annual ACM
symposium on User Interface Software and Technology,
UIST ’94, pp. 185-192. ACM ISBN:0-89791-657-3 (1990)

3. Cherlin, J.J., Samavati, F.F., Sousa, M.C., Jorge, J.A.:
Sketch-based modeling with few strokes. In: Proc.
of the 21st Spring Conference on Computer Graphics
(SCCG’05) (2005)

4. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: A sketch-
ing interface for 3d freeform design. In: Proc. of SIG-
GRAPH 99, pp. 409-416 (1999)

5. Kara, L.B., Shimada, K.: Construction and modification
of 3d geometry using a sketch-based interface. In: EURO-
GRAPHICS Workshop on Sketch-Based Interfaces and
Modeling, pp. 59-66. Eurographics (2006)

6. Kegl, B., Krzyzak, A.: Piecewise linear skeletonization
using principal curves. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24(1), 59-74 (2000)

7. Michalik, P., Kim, D.H., Bruderlin, B.D.: Sketch- and
constraint-based design of b-spline surfaces. In: ACM
Symposium on Solid and Physical Modeling, pp. 297-
304. ACM (2002)

8. Piegl, L., Tiller, W.: The NURBS Book, 2nd Ed. Springer
(1997)

9. Samavati, F.F., Bartels, R.H., Olsen, L.: Local b-spline
multiresolution with examples in iris synthesis and volu-
metric rendering. In: Series in Machine Perception and
Artificial Intelligence, Vol. 67, Synthesis and Analysis in
Biometrics, chapter 2 (2007)

10. Samet, H.: Foundations of Multidimensional and Metric

Data Structures. Morgan Kaufmann (2005)

Schmidt, R., Wyvill, B., Sousa, M.C., Jorge, J.A.:
Shapeshop: Sketch-based solid modeling with the blob-
tree. In: EUROGRAPHICS Workshop on Sketch-Based
Interfaces and Modeling. Eurographics (2005)

Zheng, J.M., Chan, K.W., Gibson, I.: A new approach
for direct manipulation of free-form curve. Computer
Graphics Forum 17(3), 327-334 (1998)

11.

12.

Richard Pusch et al.

[) C

¢ \\\\

)

DI

Fig. 7 Some results of our system. The top row shows stroke input, and the bottom row shows a quadratic B-spline curve
which approximates the strokes. The shapes may have interesting curvature changes which are limitations of other systems.

R. Pusch is a Masters stu-
dent in the Department of
Computer Science, University
of Calgary. Richard gradu-
ated with a B.Sc. in Com-
puter Science, with a minor
in Pure Mathematics, in De-
cember 2005, and began his
postgraduate work in Septem-
ber 2006. His current re-
search interests in computer
graphics include Sketch-Based
Modeling, Multiresolution and
Wavelets, and Surface Model-
ing and Deformation.

F.F. Samavati is an associate
professor in the Department
of Computer Science, Univer-
sity of Calgary. He is also an
adjunct associate professor in
Computer Engineering Depart-
ment, Technical University of
Lisbon, Portugal. He received
his Ph.D. degree from Sharif
University of Technology in
1999. He was a research visi-
tor at University of Waterloo in
1997. Dr. Samavati’s research
interests are Computer Graph-
ics, Geometric Modeling, Vi-
sualization, and Computer Vi-
sion. He has authored more

than 40 research papers in Subdivision Surfaces, Sketch-
Based Modeling, Multiresolution and Wavelets, Surface Mod-
eling and Scientific Visualization.

b

A. Nasri is a professor in com-
puter graphics at the Ameri-
can University of Beirut. He
received a Ph.D. in Computer
Graphics from the University
of East Anglia in 1985. He was
a research visitor at various
universities such as MIT, Ari-
zona State University, Univer-
sity of Calgary, Purdue Uni-
versity, Brigham Young Uni-
versity, Seoul National Univer-
sity, and Cambridge Univer-
sity. With Malcolm Sabin he
co-edited a special issue of the
Journal of Visual Computer
on Subdivision surfaces, 2002.

Since 1982 he has been involved in promoting subdivision
surfaces and its use in computer graphics, geometric model-
ing, and animation. His research interests also include Digital
Arts, and the use of Computer Graphics in Education.

B. Wyvill was a professor
at the University of Calgary
for 25 years with research in-
terests in implicit and sketch-
based modeling and also non-
photorealistic rendering. Re-
cently he moved to the Univer-
sity of Victoria to take up a tier
one Canada Research Chair.

