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Abstract

It is possible to define multiresolution by reversing the process of subdivision. One approach to

reverse a subdivision scheme appropriates pure numerical algebraic relations for subdivision using

the interaction of diagrams [1, 2]. However, certain assumptions carried through the available work,

two of which we wish to challenge: (1) the construction of multiresolutions for irregular meshes are

reconsidered in the presence of any extraordinary vertex rather than being prepared beforehand as

simple available relations and (2) the connectivity graph of the coarse mesh would have to be a

subgraph of the connectivity graph of the fine mesh.
√

3 subdivision [3] lets us engage both of these

concerns. With respect to (2), the
√

3 post-subdivision connectivity graph shares no interior edge

with the pre-subdivision connectivity graph. With respect to (1), we observe that no subdivision

produces an arbitrary connectivity graph. Rather, there are local regularities imposed by the

subdivision on the fine mesh, which may be exploited to establish, in advance, the decomposition

and reconstruction filters of a multiresolution for an initially given irregular coarse mesh. We

provide indications that our proposed approach for
√

3 subdivision is potentially useful for other

primal subdivision schemes by mentioning results for the Loop [4] and Catmull-Clark subdivisions

[5]. Finally, after showing some results, we analyze the quality of the reversal matrix and present

a technique using numerical optimization.
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1. Introduction

Multiresolution surfaces have found many applications in computer graphics and scientific visu-

alization. In multiresolution, objects can be efficiently and elegantly represented, and analyzed at

multiple levels of detail. In this representation, a high resolution approximation of a surface can be

decomposed into a lower resolution approximation and a hierarchical sequence of detail information5

that together provide a complete reconstruction of the original surface.

There are two main approaches for establishing a multiresolution representation: functional

and discrete. In the functional approach (see e.g., [6, 7]), from a sequence of nested basis functions

(refinable scale functions)
{
φjn
}

, the complementary basis functions
{
ψjn
}

(or wavelet functions) are

determined. The complete sets of
{
φjn
}

and
{
ψjn
}

are used to construct a multiresolution analysis.10

In the discrete approach, a multiresolution is constructed using reverse subdivision for a given

subdivision scheme. To build a multiresolution by reversing subdivision, two general methods have

been proposed: operative and diagrammatic. In the operative approach, reverse subdivision fil-

ters are designed based on geometric and topological operations used in the subdivision scheme.

Examples of this approach can be found in [8, 9, 10, 11, 12]. The diagrammatic approach con-15

tains methods that systematically generate multiresolution filters based on linear equations being

constructed to achieve certain conditions from the interaction of multiresolution filters (e.g., bi-

orthogonality conditions). This approach benefits from linear algebra and matrix computations

and may take advantage of many numerical techniques. As shown in [13], for curves and tensor-

product surfaces, due to their regular structures, it is not hard to build a multiresolution in this20

way. However, it has not been previously clear how to use the diagrammatic approach for general

meshes. Previous attempts in diagrammatic approaches were either limited to regular meshes or

suffered from lack of generality, meaning that in the presence of any extraordinary vertex in the

diagram, a new set-up had to be made to define the multiresolution matrices.

Here, for the first time, we generalize diagrammatic approaches for subdivisions of a general sur-25

face and provide a method to deal with extraordinary vertices. In our proposed method, we represent

general rows/columns of multiresolution matrices by diagrams and translate matrix multiplications

into interactions between these diagrams. Diagrams can be considered as a generalization of sub-

division masks in which the connectivity of contributing vertices and their weights are represented.

From interactions of the diagrams, we derive certain linear equations to establish biorthogonality30

relationships of multiresolution filters. We examine our new method for
√

3 subdivision and mention
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how to apply it for the Catmull-Clark and Loop subdivision schemes. Matrices that we obtain for

these subdivision schemes are consistent with the resulting filters due to multiresolution techniques

of the operative approach.

Our method takes advantage of the local effects of extraordinary vertices in subdivision surfaces35

by observing that these vertices cannot be entirely arbitrary in nature. From a given starting

mesh, each subdivision acts on any vertex in a limited possible way, and all meshes refined from the

starting mesh have only a limited collection of extraordinary vertices. Using this fact, as we show in
√

3 subdivision, and indicate in the Loop and Catmull-Clark schemes, it may be possible to catalog

the multiresolution filters for any vertex in the limited collection. In addition to the construction of40

these filters, we analyze the quality of the reversal matrix by quantifying the local deviation after

decomposition and discuss how to improve this deviation using a least squares model.

Our proposed method here is designed for primal subdivisions in which the set of the vertices

before subdivision is a subset of vertices after subdivision. Discussion about finding multiresolution

for dual subdivisions such Doo-Sabin is out of scope of our work here; interested readers may consult45

[12]. We note that similar to other multiresolution methods constructed by reversing the subdivision

process [1, 8, 9, 12, 14], the input of our multiresolution method needs to be semiregular (i.e., a mesh

with subdivision connectivity). Fortunately, this constraint is not too restrictive as such meshes are

rapidly becoming more popular [15, 16] and there exist various remeshing techniques to convert an

arbitrary mesh to a semiregular one [17].50

2. Related Work

Multiresolution analysis provides a means to transition from a high to a low resolution and

vice versa [18]. Several methods have been proposed to reduce the resolution of an object for

applications such as mesh morphing, compression, or view dependent rendering [18, 19, 20, 21, 22].

These methods can be constructed using three main categories of functional methods, diagrammatic55

approaches, and operative approaches. In the following, we describe related work for each of these

categories. In addition to these methods, spectral mesh processing also exist that rely on the

classical discrete Fourier analysis and mesh Laplacian. However, here, we do not discuss such

methods as we do not follow the same approach. An interested reader may refer to [23, 24].
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2.1. Functional Methods60

One way to define multiresolution is to solely work with basis functions spanning a vector space

[6, 25]. In fact, a function that belongs to a linear function space V k can be represented as a vector

c = [c0, c1, ...], in which ci is the coefficient of the ith basis function of V k . The basis functions of

V k are also referred to as scaling functions and are denoted by φki . The set of all scaling functions

for V k is denoted by Φk(u) =
[
φk0 , φ

k
1 , ...

]
.65

Subdivision can be defined in terms of scaling functions. Assume that we have a set of points c

and we obtain a new set of points f using subdivision P; (f = Pc). If we consider these two sets of

points as the coefficients of scaling functions, we would have

Φk−1(u) = Φk(u)P. (2.1)

An additional space, W k, called the wavelet space, is also needed in multiresolution analysis.

W k is the complementary space of V k to span V k+1. Basis functions of the wavelet space W k are70

usually denoted by Ψk(u) =
[
ψk0 , ψ

k
1 , ...

]
. We can also represent Ψk in terms of scaling functions as

Ψk−1(u) = Φk(u)Q,[
Φk−1|Ψk−1

]
= Φk [P|Q] . (2.2)

The matrices P and Q are used to perform a reconstruction (i.e., transition from resolution

k−1 to resolution k). However, decomposition, which is a transition from resolution k to resolution

k− 1, is also necessary. As a result, Φk is decomposed into its complementary basis functions Φk−1

and Ψk − 1 by75

[
Φk−1|Ψk−1

]  A

B

 = Φk.

Having equations (2.2) and (2.3), we come up with the following relations between multiresolu-

tion matrices:

 A

B

 = [P|Q]
−1

=⇒
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 A

B

 [P|Q] =

 I 0

0 I

 . (2.3)

Constructing multiresolutions using the functional approach has been extensively studied in the

literature. There are mainly three categories of multiresolution in this setting, involving wavelets

that are orthogonal, semi-orthogonal, and biorthogonal. In orthogonal wavelets, the scaling functions80

are orthogonal to one another and every wavelet is orthogonal to every coarser scaling function.

In addition, the wavelets are orthogonal to one another [18]. Semi-orthogonal wavelets relax the

orthogonality conditions by only requiring that each wavelet is orthogonal to all coarser scaling

functions [26]. Biorthogonal wavelets, however, are merely required to satisfy one condition, namely,

to have [P|Q] invertible. Note that c is a set of coarse vertices and f is the set of subdivided vertices85

with f = Pc. If f is perturbed by some vectors, g = f + e is obtained. The set of coarse vertices

and detail vectors are found as linear combinations of vertices in g, shown in a matrix notation

by c̄ = Ag and d = Bg. Having c̄ and d, the perturbed vertices g can be reconstructed as

g = Pc̄ + Qd. One approach to construct biorthogonal wavelets is the lifting process, in which

matrices P, Q, A, and B are initially constructed. Then, a lifting matrix L modifies the original90

scheme as Qlift = A + LB and Alift = Q−PL [27]; matrices P and B remain unchanged.

2.2. Diagrammatic Approach

With the motivation of extending matrix representations to non tensor product surfaces, Sama-

vati and Bartels [2] defined diagrammatic tools that are regular patterns of value-labeled nodes.

To determine the multiresolution filters for the regular setting, they extended matrix-matrix in-95

teractions to diagram-diagram interactions. From these interactions, a method of multiresolution

construction was introduced where two systems of linear equations and a bilinear system of equa-

tions were formed. Multiresolution filters were found from the solutions of these systems. In [1],

using diagram interactions, a new construction was introduced which did not require any bilinear

equations. In this work, using SVD, Bartels and Samavati defined diagrammatic tools for meshes100

with regular vertices. However, multiresolution for a general connectivity mesh using the diagram-

matic approach has not been established before. Here, we show how to establish such a general

construction by examining the
√

3, and sketching the Loop and Catmull-Clark subdivision schemes.
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2.3. Operative Approach

In contrast to diagrammatic approaches in which all the relations are introduced using linear105

systems resulting from diagram interactions, in an operative approach, multiresolution filters are

directly constructed from the specific definition and properties of a given subdivision mask. In the

operative approach, reverse subdivision filters are produced by isolating a coarse point and defining

its positions based on its neighborhood. In order to reconstruct without losing any information,

additional detail vectors are needed. Having possibly more than one solution for coarse points and110

details, constraints can be imposed to limit the space of possible solutions.

In the constrained wavelet approach [8], a constraint is that the details for old vertices are defined

as a linear combination of details of new vertices. After finding coarse approximations and details,

similar to lifting schemes, coarse approximations are improved. To do so, an additional smoothing

step is performed on the constraining wavelets to reduce the local deviations and improve upon115

the reverse subdivision. As a result, in the constrained wavelet approach, reverse subdivision filters

can be divided into two parts, one of finding a coarse approximation and the other of smoothing.

In this process, initially details and coarse approximations are determined. Afterwards, coarse

approximations are smoothed to get better approximations using an optimization scheme that

provides a smoothing vector. In [8, 9], the Loop and Catmull-Clark filters are obtained using120

constraining wavelets. Mahdavi-Amiri and Samavati have used the same approach to find the
√

3

and
√

2 reverse subdivision filters [10, 11]. In 10, we discuss how one can use a similar approach to

reduce the local deviations of our proposed multiresolution.

2.3.1. Smooth Reverse Subdivision

We pointed out that a smoothing vector is used to reduce the magnifying effect of reverse125

subdivision. However, the resulting meshes of reverse subdivision can be still very coarse. As

a result, smooth reverse subdivision is proposed to improve upon the results. The basic idea of

smooth reverse subdivision [28] is to perturb coarse approximations by a vector to minimize an

energy function Etotal(∆) = ωEsub(∆)+(1−ω)Esmooth(∆) in which Esub is the Euclidean distance

between fine points and subdivided coarse approximations and Esmooth is the energy of a coarse130

approximation vertex in its local neighborhood. Perturbation vectors for the Catmull-Clark and

Loop subdivisions are proposed in [29]. Using this method, Mahdavi-Amiri and Samavati [10, 11]

provided filters for smooth
√

3 and
√

2 reverse subdivision methods.
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The approach presented in [1, 2, 13, 30] follows the outline for development of biorthogonal

multiresolutions that can be found in the literature; e.g., see [31]. As in much of the wavelet135

literature, the main attention in these publications was on multiresolutions in regular settings.

In [1], numerical constructions were offered for irregular settings, but they inadequately required

computations on the fly for any extraordinary vertex rather than using predetermined formulas.

Here, we intend to overcome this inadequacy.

3. Overview of Our Work140

The construction assumes only that a subdivision is defined, which may be expressed using a

subdivision matrix P, applied to a coarse mesh of points c to produce a fine mesh of points f :

f = Pc. (3.1)

The matrices P for subdivisions are sparse and patterned. Specifically, each of the |f | fine points

is produced locally as an affine combination of the |c| coarse points lying in a small geometric

neighborhood. The coefficients in the combination constitute the entries in a row of P that yields145

the fine point. In primal subdivisions, the fine points fall into two categories: either (|f |−|c|) newly

created points or |c| pre-existing points whose positions have been adjusted. Figure 1 shows this

schematically, with the squares in the bottom diagram indicating the created points and the circles

representing the adjusted points. There, c0 and c3, for example, have moved to adjusted positions

f0 and f6, while f1 and f3 are new.150

Figure 2 augments Figure 1 emphasizing the local nature of the action of P on c by showing

the contribution a coarse point makes to each fine point that it influences. For example, for each

coarse point cκ there is one associated column, pκ of P, and f = · · ·+ pκcκ + · · ·. In particular, the

fine point fk =
∑
κ pk,κcκ, where pk,κ is the kth component of column pκ. If we transcribe each

nonzero pk,κ onto its fk node, we can easily see how many, and which, fine points are influenced by155

cκ. In Figure 2, at the top we see the influence of c0 and in the middle we see the influence of c3.

These are P column diagrams associated with c0 and c3 respectively.

For construction in [1, 13] first finds a reversal matrix, A, that satisfies AP = I, and conse-

quently,

c = Af . (3.2)
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Figure 1: Coarse to fine subdivision.

The construction of the reversal, local least squares fitting is needed to find A, one row at a160

time. The κth row aκ of A provides an approximation of the position of the coarse point cκ

whose displaced-point image in the fine mesh is fk. To construct aκ, a geometric neighborhood of

fine points is taken that includes the fine points around fk whose positions are defined by affine

combinations involving cκ. Figure 2 at the bottom shows an A row diagram for recovering the

position of c0 from its subdivision image f0 together with all the nearby fine points influenced by165

c0. The position would be given as c0 =
∑6
j=0 a0,jfj . For c0 to be a least squares fit of f0, . . . , f6

with respect to an associated submatrix of P, the components of a0 are determined to meet the

following conditions: (1) the row-column product a0p0 must equal 1; (2) all row-column products

of a0 with the other columns of P must be zero; (3) the vector a0 must have the least Euclidean

norm among all solutions. This last condition, on the minimality of the norm of a0, is what makes170

a0 a local least squares solution. The discussion for establishing this constitutes Section 3.3 of [13].
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Figure 2: P diagrams for c0 → f0 and c3 → f6 and A diagram for f0 → c0.

So, looking at the example of Figure 2,

a0,0p0,0 + a0,1p1,0 + a0,2p2,0 + a0,3p3,0 + a0,4p4,0 + a0,5p5,0 = 1∑
j a0,jpj,` = 0, ` 6= 0∑
j a

2
0,j = min .

(3.3)

Included in the second line of (3.3), for ` = 3, is the interaction of the diagram of a0 at the bottom

of Figure 2 with the middle diagram of that figure, namely, for illustration:

a0,0p0,3 + a0,3p3,3 + a0,6p6,3 = 0.

Suppose a mesh of fine points g has subdivision connectivity consistent with P, but, g 6= Pc for175

all c. Such situations arise when the points of g are measured from a physical object, or when the

fine points f = Pc, for some c, are displaced into positions g by editing in an interactive manner.
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We may produce coarse points c̄ = Ag, but if we apply P to c̄, we will only produce g plus some

error e as follows:

g = Pc̄ + e. (3.4)

To correct for the error e, the construction finds two more matrices, the detail matrix B and the180

correction matrix Q, such that

d = Bg, (3.5)

and

e = Qd. (3.6)

The rows of the matrices A and B provide decomposition filters that may be applied to a fine

mesh g to obtain, respectively, a coarse approximation c̄ to g and detail information d for g. The

rows of the matrices P and Q provide reconstruction filters that yield g as185

g = Pc̄ + Qd. (3.7)

The matrix Q is generated from A one column at a time. Each column of Q starts with a

geometric neighborhood which determines a submatrix of A, and the submatrix, in turn, defines a

null space of A in which the column of Q is required to lie. The Q resulting from determining all

columns in this way is sparse and patterned.

The matrix B is generated in two steps [1]. A matrix T is constructed from Q, row by row,190

as a left inverse, that is, TQ = I, in the same manner as A was constructed from P. Then,

B = T(I−PA). The resulting B is sparse and patterned.

Each column of Q can be represented by a column diagram referenced to one of the newly

created points of f , and likewise for each row of B. Q, T and B are constructed with the aid of

row and column diagrams in much the same way as A.195

In our work here we initially carry out the construction for the
√

3 subdivision [3]. This con-

tribution is discussed in details. Later, we briefly show how to derive the Loop and Catmull-Clark

multiresolution masks using the same construction. The P column diagrams are presented in Sec-

tion 4. The construction of A row diagrams follows in Section 5. The presentation ends with the

construction of the Q column diagrams and the B row diagrams respectively in Section 6 and Sec-200

tion 7. In Section 8, we discuss the possibility of using this method for other subdivision schemes

such as Loop and Catmull-Clark. Handling the boundary of
√

3 subdivision and its reverse is also

discussed in Section 9.
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We chose to investigate
√

3 subdivision since the mesh-to-mesh behavior of the subdivision is

novel for the local least squares construction. In all previous studies that generated multiresolutions205

using this construction, the edges of the coarse mesh were repeated (usually with extra nodes along

their length) in the fine mesh. The coarse mesh was, in a sense, a submesh of the fine mesh. This is

not the case in a single step of
√

3 subdivision. We later describe how we can apply this construction

on the more straightforward Loop and Catmull-Clark subdivisions.

Figure 3: A point with valence n.

A new result of our work here is the capability to handle extraordinary points in a diagrammatic210

approach. Such a point in a mesh is one that has a valence different from that of a regular point

(valence six for triangular meshes and valence four for quadrilateral meshes). It is a feature of primal

subdivisions that, after one or more steps of applying P, extraordinary points find themselves

isolated in a neighborhood of regular points, as shown in Figure 3. This observation opens the

way to constructing A, and subsequently Q and B, in a more general way. We extend diagrams215

for extraordinary points and construct multiresolution masks for
√

3, Loop and Catmull-Clark

subdivisions.

Figure 3 mainly presents an overview of the issues in constructing A. It indicates the P column

diagram associated with c0, where the nodes of the diagram are shaded. Indeed, c0 is the central

node of the diagram with valence n. The nodes to be occupied by the resulting A row diagram220

in order to recover the position of c0 from the points of the fine mesh are labeled. We show that

as the valence n is increased, a nested system of equations (3.3) is generated with solutions aj as

functions of n. Such a nested system for
√

3 subdivision is indicated by (5.1) of Section 5.

The local least squares A filters of width two for
√

3, Loop and Catmull-Clark subdivisions all
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Figure 4: Left: A triangular patch with vertices illustrated by circles. Middle: face vertices are inserted in each

triangle. Right: new edges are inserted (black lines) and old edges are removed (grey lines). Dashed lines connect a

face-vertex to an adjacent triangle.

prove to reduce to width one when the appropriate equations for width two are formed (the other225

ring of ai values all turn out to be zero). We indicate why this happens at the end of Section 5. As

a result, here we only present the width-1 case of A.

4.
√

3 Subdivision: P Column Diagram

An important question corresponding to our construction is how to modify diagrams P, A,

Q, and B such that extraordinary valences are handled. We begin by taking the definition of230

√
3 subdivision [3] and composing a P column diagram for the subdivision. In

√
3 subdivision,

a new vertex is inserted in the centroid of faces and existing vertices are averaged considering

their neighborhoods. Finally, edges creating a coarse triangle are removed from the edge set of

the fine model. Figure 4 shows the process of 1-to-3 refinement. The result for a central node of

extraordinary valence, is shown in Figure 5. The key to understanding this diagram is that each n235

represents the valence of a node, and the α quantities, as defined in [3],

αnλ =
4− 2 cos

(
2π
nλ

)
9

, (4.1)

with λ standing for any of the circle-node indices.

The central node in Figure 5 has valence 9 to show an extraordinary example. Any node

representing a displaced point (circle) may have any valence, and so, the grey triangles hide one or
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Figure 5: P column diagram pk for cκ → fk.

more edges. The connectivity graph of the fine mesh consists of the black edges, the grey triangles,240

and the circle and square nodes. Grey edges not being part of the connectivity graph, are also

shown to reveal the connectivities between the original coarse nodes. Every other circle node in the

fine mesh serves as the central node for a similar P column diagram, and what we establish with

respect to Figure 5 will hold throughout.

The
√

3 subdivision generates the introduced points with a regular connectivity. Each introduced245

node is 6-connected, and its adjacent neighbors alternate between introduced-point nodes (squares)

and displaced-point nodes (circles). As a consequence of this, for
√

3 subdivision, the three nodes

at the upper right edge of Figure 5, distinguished by bold squares, are joined through a chain of

square nodes, and no circle nodes, as indicated by the two mini-chains of square nodes within the

two upper-right grey triangles. It turns out that this subdivision-induced regularity, even after250

just one step of the subdivision, will permit us to develop a multiresolution for generally-connected

coarse meshes.
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5.
√

3 Reversal: A Row Diagram

To reverse the
√

3 subdivision, we find an A row diagram for each coarse node (displaced fine

node). Figure 6 shows how such a diagram appears if it has width 1. By default, the local least255

squares construction begins with a diagram of width 2, to include all fine points influenced by the

central node of Figure 5, but, as it will be made clear at the end of this section, equations (3.3) can

sometimes act to zero out the outermost elements of A, and that is exactly what happens in
√

3

subdivision, so that Figure 6 is sufficient for our purposes.

Figure 6: A row diagram ak to obtain cκ.

To repeat (3.3), the row-column interaction between the central a values of Figure 6 and the260

central column p values represented by Figure 5 must result in 1:

(1− αnk)ak,0 +
1

3
ak,1 + · · ·+ 1

3
ak,9 = 1.

The row-column interaction between the a values of Figure 6 and the p values of any of the peripheral

14



Figure 7: P Column on the periphery.

coarse nodes, e.g., those in Figure 7, must result in 0:

αnk
nk

ak,0 + 0ak,1 + · · ·+ 0ak,λ−1 +
1

3
ak,λ +

1

3
ak,λ+1 + 0ak,λ+2 + · · ·+ 0ak,9 = 0.

15



It is more informative to put this in terms of the submatrix of P corresponding to these equations:

[ak,0, ak,1, . . . , ak,9]



1− αnk
αnk
nk

αnk
nk

αnk
nk

αnk
nk

αnk
nk

αnk
nk

αnk
nk

αnk
nk

αnk
nk

1
3

1
3 0 0 0 0 0 0 0 1

3

1
3

1
3

1
3 0 0 0 0 0 0 0

1
3 0 1

3
1
3 0 0 0 0 0 0

1
3 0 0 1

3
1
3 0 0 0 0 0

1
3 0 0 0 1

3
1
3 0 0 0 0

1
3 0 0 0 0 1

3
1
3 0 0 0

1
3 0 0 0 0 0 1

3
1
3 0 0

1
3 0 0 0 0 0 0 1

3
1
3 0

1
3 0 0 0 0 0 0 0 1

3
1
3



= [1, 0, . . . , 0] .

(5.1)

The matrix in equation (5.1) is the version for nk = 9, which has 10 columns and 10 rows. Generally,265

for a node with nk-connectivity, the matrix will have nk+1 rows and columns, and the pattern of the

contents in each column follows what is shown in (5.1) which is equivalent to the local subdivision

matrix of [3].

The minimum norm solutions (3.3) in all cases follow a simple pattern. If the central node has

nk-connectivity as in Figure 5, then270

ak,0 = − 2

3αnk − 2
(5.2)

and

ak,i =
3

nk
· αnk

3αnk − 2
(5.3)

for i > 2. For example, the first condition of (3.3) can be easily verified using (5.2) and (5.3) for

P and A diagrams. From here on, for simplicity, we will let ak stand for the value of ak,0 of (5.2)

and hk stand for the common value of all other ak,i of (5.3).

We end this section by seeing why the outer ring of A components are zero. Figure 8 looks at275

corresponding portions of Figure 6 and Figure 5, with Figure 6 filled out to width 2. The interaction
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between the shown portions of these diagrams, for the purpose of constructing A, would yield

ak,10
αnj
nj

+ ak,11
αn`
n`

= 0.

Continuing around the margin of the A diagram in Figure 6 (filling in unknowns ak,12, . . . , ak,18)

yields a set of similar equations that can be expressed in matrix form as

[ak,10, . . . , ak,18]



αnj
nj

0 0 0 0 0 0 0
αnj
nj

αn`
n`

αn`
n`

0 0 0 0 0 0 0

0
αnζ
nζ

αnζ
nζ

0 0 0 0 0 0

0 0
αnξ
nξ

αnξ
nξ

0 0 0 0 0

0 0 0
αnη
nη

αnη
nη

0 0 0 0

0 0 0 0
αnπ
nπ

αnπ
nπ

0 0 0

0 0 0 0 0
αnψ
nψ

αnψ
nψ

0 0

0 0 0 0 0 0
αnφ
nφ

αnφ
nφ

0

0 0 0 0 0 0 0
αnµ
nµ

αnµ
nµ



= [0, . . . , 0] .

The structure of the matrix for any other number of outer-ring A components is consistent with this.280

The rows of the matrix clearly have linear independence, and left-multiplication by the a vector

forms a linear combination of those rows. The result is zero only when ak,10 = · · · = ak,18 = 0.

6.
√

3 Correction: Q Column Diagram

Finding corrections e (3.6) from detail information d (3.5) is done using the matrix Q, which is

constructed one column at a time, as discussed in [1]. The ith column of Q governs the contribution285

to e made by the detail di on the introduced (square) node i, and there is one column of Q uniquely

associated with each introduced node; e.g., see Figure 9. That node, and certain surrounding nodes,

are labeled with symbols for a Q column diagram of width 1. One usually starts with a trial diagram

of width 0 (the node i alone in this case), and increases the width until a diagram is found for which

all possible interactions with the row diagrams of A will be zero. For the
√

3 subdivision, width 1290

proves to be sufficient.
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Figure 8: Row diagram of A, interacting with an outer P column diagram.
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Figure 9: The Q column diagram for node i.

Recall that we have found A row diagrams to consist of a displaced coarse (circular) node as

a central node, with one value, together with all its immediately surrounding introduced (square)

nodes, with a commonly held value, namely,

aσ = − 2

3αnσ − 2
, and (6.1)

hσ =
3

nσ

αnσ
3αnσ − 2

. (6.2)

And this is the case for the emphasized nodes (σ = µ, j, ν, k, `, ζ) in Figure 9. These are the central295

nodes of all the A row diagrams that will interact with the proposed Q column diagram, and the
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requirement is that these interactions be as in equation (6.3) for nontrivial values of qi,j , j = 0, . . . , 6:

hk hk ak hk 0 0 0

0 hζ 0 0 0 0 0

0 0 0 hµ 0 0 0

hj 0 0 hj aj hj 0

0 0 0 0 0 hν 0

h` h` 0 0 0 h` a`





qi,0

qi,1

qi,2

qi,3

qi,4

qi,5

qi,6


=



0

0

0

0

0

0



. (6.3)

This is equivalent to demanding that the qi vector of (6.3) lie in the null space of the coefficient

matrix in (6.3). The null space of this matrix has dimension one, and a corresponding basis vector

is300 

1

0

−hkak

0

−hjaj

0

−h`a`



. (6.4)

Transcribing this to a diagram, we arrive at Figure 10.

Figure 10: Q column diagram.
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To apply Q, we must have detail vectors d assigned to each introduced (square) node. The

elements of Q will be used to compute the errors e as follows: each of the diagram’s node values

in Figure 10 specifies what multiple of the di associated with the central node i is added onto

the diagram node’s accumulating e value. For instance, −hkak × di is added to node k as node305

i’s contribution to ek. When every square node has been visited, and all multiples have been

accumulated, we have the error on the ith square node as

ei = di (6.5)

and the error on the kth circle node as

ek = −hk
ak

nk∑
λ=1

dk+λ, (6.6)

where ak and hk are the A values associated with the k circle node, and the dk+λ are the details

associated with all the nk square nodes immediately surrounding that circle node. Plugging hk and310

ak of equations 6.1 and 6.2 in this equation, we obtain:

ek =
3αnk
2nk

nk∑
λ=1

dk+λ (6.7)

With this insight, we could suspend the construction at this point, since we see that the d values

on the introduced (square) nodes are simply the error values on those nodes, which we can calculate

as the simple differences Pc̄− g, and the error values on the displaced (circular) nodes are simple

combinations of those introduced-node errors. However, to be complete, we will construct the B315

filter in the next section.

7.
√

3 Detail: B Row Diagram

B is used to compute the detail value di for each introduced (square) node i to be used with

column qi of Q to ascertain the errors shown in (3.4). B can be found in two steps [1]. First, a left

inverse T is found for Q:320

TQ = I.

This is done via local least squares just as A was found from P. Then, B is obtained as

B = T (I−PA) . (7.1)
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In particular, the ith row, bi of B, will be obtained from T, P and A through ti, the ith row of T,

and the intermediate rows ri and si as follows:

ri = tiP

si = riA

bi = ti − si.

(7.2)

The construction of T turns out to be trivial for the Q we have determined in Section 6.

Figure 11 shows the T row diagram of width 1 for node i. Compare this with Figure 10 for the Q325

column diagram for the same node, and the TQ interaction is easily seen. The sum of the products

Figure 11: Width 1 ti.

of the node entries in Figure 10 and Figure 11 must add up to 1, and the sum of the products of

the quantities ti,0, . . . , ti,6 with any other Q column diagram must be 0. This leads to

[ ti,0 ti,1 ti,2 ti,3 ti,4 tl,5 ti,6 ]



1 0 0 0 0 0 0

0 1 0 0 0 0 0

−hkak −hkak −hkak 0 0 0 0

0 0 0 1 0 0 0

−hjaj 0 0 −hjaj −hjaj −hjaj 0

0 0 0 0 0 1 0

−h`a` −h`a` 0 0 0 −h`a` −h`a`


= [ 1 0 0 0 0 0 0 ] ,

(7.3)

in which duplicate columns have been removed. If there is no solution, then we proceed to a wider

T diagram. If there is a unique solution, then we use it. If there are many solutions, then we use330
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the one of least Euclidean norm. There is, in fact, one solution given by

ti,0 = 1 and ti,1 = · · · = ti,6 = 0 . (7.4)

Referring to (7.2), our next task is to find ri. Expressed as diagrams, we are interested in all the

P column diagrams that have a nontrivial overlap with the T row diagram of Figure 11. Figure 12

shows one such interaction. The result of the row-column multiplication depicted in Figure 12 will

Figure 12: The ti row diagram interacting with the pk column diagram.

be 1
3 , and this will appear as one element of the ri row diagram, referring to the equations (7.2).335

The proper node on which to write this value is the central (circle) node associated with the column

of P that participated in this interaction. Continuing, we arrive at the row diagram for ri as shown

in Figure 13 with ri,0 = 0, ri,1 = 0, ri,0 = 0, ri,2 = 1
3 , ri,3 = 0, ri,4 = 1

3 , ri,5 = 0, ri,6 = 1
3 .

The final step is to form the row diagram for si given in (7.2). It will be formed by the ri of

Figure 13 interacting with all possible A diagrams, which will be340

1

3
ak +

1

3
aj +

1

3
a` . (7.5)
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Figure 13: The row diagram for ri.

The final step in (7.2) consists merely of subtracting the row diagram of (7.5) from the row

diagram of Figure 11. The result is shown in Figure 14, where

wkj = −hk+hj3

wk` = −hk+h`3

wj` = −hj+h`3

wkj` = 1− hk+hj+h`
3 .

(7.6)

The diagram of Figure 14 looks more complicated than it really is. Node i will be at the centroid

of a triangle joining 3 circle nodes. Each of those circle nodes will be the central node for an A345

diagram. To obtain the B diagram, simply put a 1 on the square node i and then subtract 1
3

times each of the 3 circle-node A diagrams. The B diagram is the resulting row diagram. To use

the diagram of Figure 14 to compute the detail coordinates on the i square node, take each value

written on a node in the figure, multiply that value by the fine point coordinates associated with

that node, and sum up the results.350

The action of the bi row diagram of B can be interpreted as the process of reversing the

subdivision to estimate the coarse position of each of the three circle nodes adjoining a square

node, followed by applying the subdivision to these estimated coarse circle positions ( 1
3 and 1

3 and

1
3 ) to create the “subdivision version” of the introduced square node, and finally subtracting that

from the actual position of the square node. And that is, in words, the description of how the error355

associated with the square node would be produced, as we mentioned at the end of Section 6.
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Figure 14: The row diagram for B.

8. Loop and Catmull-Clark Schemes

In previous sections, we explained how to set up necessary matrices for the case of
√

3 subdivision

in details. In this section, we briefly describe how to extend the method of
√

3 subdivision for other

subdivision schemes. To show the feasibility of this task, we show the equivalent matrix for the360

system (5.1) for the case of Loop and Catmull-Clark subdivision schemes and provide the reversal

filter that is the result of solving that equation.

Using the approach of Section 5 on the Loop subdivision (see Figure 15 for Loop’s general

diagram), the corresponding matrix of (5.1) turns out to be (here for valence 7 and corresponding
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βn

8

8

88

8

8

8
8

88

8

8

8

8

Figure 15: P column diagram for the Loop subdivision.

larger versions for higher valences):365

P =



βn αn αn αn αn αn αn αn

3/8 3/8 1/8 0 0 0 0 1/8

3/8 1/8 3/8 1/8 0 0 0 0

3/8 0 1/8 3/8 1/8 0 0 0

3/8 0 0 1/8 3/8 1/8 0 0

3/8 0 0 0 1/8 3/8 1/8 0

3/8 0 0 0 0 1/8 3/8 1/8

3/8 1/8 0 0 0 0 1/8 3/8



.

The solution A filter has

a0 =
−5

3nαn − 5βn
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Figure 16: A for Loop subdivision at an extraordinary point.

and

ai =
8αn

3nαn − 5βn
, for i = 1, ..., n,

where αn is as given by Loop for the extraordinary point of valence n, and βn = 1 − nαn (see

Figure 16 for the placement of the a values for the valence 7 example).

Taking the same approach on the Catmull-Clark subdivision, the corresponding matrix of (5.1)370
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Figure 17: A for Catmull-Clark at an extraordinary point.

is (here for valence 5 and correspondingly for larger versions):

P =



A B C B C B C B C B C

3/8 3/8 1/16 1/16 0 0 0 0 0 1/16 1/16

1/4 1/4 1/4 1/4 0 0 0 0 0 0 0

3/8 1/16 1/16 3/8 1/16 1/16 0 0 0 0 0

1/4 0 0 1/4 1/4 1/4 0 0 0 0 0

3/8 0 0 1/16 1/16 3/8 1/16 1/16 0 0 0

1/4 0 0 0 0 1/4 1/4 1/4 0 0 0

3/8 0 0 0 0 1/16 1/16 3/8 1/16 1/16 0

1/4 0 0 0 0 0 0 1/4 1/4 1/4 0

3/8 1/16 0 0 0 0 0 1/16 1/16 3/8 1/16

1/4 1/4 0 0 0 0 0 0 0 1/4 1/4



,
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where A = 4n−7
4n , B = 3

2n2 , and C = 1
4n2 . The solution A filter has

a0 =
n

n− 3

and

a2i+1 =
−4

n(n− 3)
, for i = 0, 1, 2, . . .

and

a2j =
1

n(n− 3)
, for j = 1, 2, . . .

(see Figure 17 for the placement of the a values for the valence 5 example).375

9. Boundary Curves

Boundary curves are important for subdivision surfaces as they can be used to represent sharp

features, creases, and corners or handle boundaries of an open mesh. In this section, we discuss

how we can apply our proposed diagrammatic approach for boundary curves on a
√

3 subdivision

surface.380

In [3], boundary points are handled separately where coarse points on the boundary are treated

as if they were the coefficients of a cubic B-spline with uniform knots, let’s say with 3 units of

spacing per knot:

. . . 10 13 16 19 . . .

and the uniform insertion of two knots per existing knot interval is employed; that is,

. . . 10 11 12 13 14 15 16 17 18 19 . . . ,

to transform the coarse boundary points into the fine ones. This results in filters385

1

27
[1, 4, 10, 16, 19, 16, 10, 4, 1] ,

which corresponds, in our terms, to the P diagram shown in Figure 18. Figure 19 illustrates an

example of a closed sharp feature on a mesh.

Diagrams for B-splines have been developed in, for example, [13, 30]. It is straightforward to

establish the corresponding A, B and Q diagrams for the P of Figure 18.

Of course, as before, A reverses P to recover c from f . But, if the fine points are data points390

or perturbed subdivision points, g, then A produces only approximate coarse points c̄, and we
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Figure 18: The boundary P diagram.

Figure 19: The result of subdivision on a closed boundary sharp feature on a mesh.

would like to find B and Q to express error information. The appropriate A diagram is shown

in Figure 20. This diagram corresponds to recovering the location of the coarse point cκ from its

displaced image fk = f3κ as

cκ =

k+4∑
λ=k−4

aλfλ,

with the coefficient aλ standing for the fraction shown on node fλ.395

If the situation immediately above is switched from subdivision points f to data or perturbed

points g, which switches the recovered coarse points c to approximate coarse points c̄, then we need

B and Q. The appropriate B diagrams (there are two) are shown in Figure 21. The b values are

available in Appendix A.

The first diagram corresponds to computing the detail coordinates associated with g3κ−1 = gk−1400

as

dk−1 =

+4∑
λ=−7

b5−λgk+λ,

and the second diagram corresponds to computing the detail coordinates associated with g3κ+1 =
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Figure 20: Boundary A diagram.

Figure 21: Boundary B diagrams.

gk+1 as

dk+1 =

+7∑
λ=−4

b5+λgk+λ.

Finally, the appropriate Q diagrams (there are two) are shown in Figure 22. The q values are also

Figure 22: Boundary Q diagrams.

available in Appendix A.405

These Q diagrams are column diagrams, and they translate into three distinct ways of computing

the error of a fine point as follows:

1. for a displaced point, which corresponds to a circle node in Figure 22, we have, for example
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Figure 23: Applying ternary reverse subdivision on a curve.

for g3κ = gk,

ek = q1dk−2 + q4dk−1 + q4dk+1 + q1dk+2,

where the dj are the coordinates of the details on the nodes indicated by the subscripts;410

2. for an introduced point preceding a displaced point, which corresponds to a square node to

the left of a circle node in Figure 22, we have, for example for g3κ−1 = gk−1,

ek−1 = q2dk−2 + q3dk−1 + q5dk+1;

3. for an introduced point following a displaced point, which corresponds to a square node to

the right of a circle node in Figure 22, we have, for example for g3κ+1 = gk+1,

ek+1 = q5dk−1 + q3dk+1 + q2dk+2.

Figure 23 illustrates the reverse subdivision on a closed curve.415

If a boundary curve is not closed and cyclic (see Figure 24), then we should be prepared to deal

with end points. Kobbelt [3] ignores this possibility, but we have taken the trouble to provide P,

A, B and Q for all cases from 4 up to 18 coarse points, at which juncture the interior boundary

points may be treated as in figures 18 through 22. A cubic boundary curve, of course, must have

at least 4 control vertices, hence giving the starting point of our work.420

We use, as does Kobbelt, a cubic B-spline knot structure, and take

0, 0, 0, 0, 5, 8, 11, 14, . . . knots every 3 integer positions onward

for the beginning of the coarse boundary curve (and symmetrically at the end). We introduce new
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Figure 24: The result of subdivision on an open sharp feature on a mesh.

knots to obtain the knot structure

0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . . knots every integer position onward

for the fine boundary curve. The use of a quadruple knot at the beginning (and end) ensures that

the curve’s endpoints do not move in their spatial positions under the subdivision. Our choice425

of 5 as the first coarse knot thereafter, and of 1, 2, 3, 4 as the knots introduced to transit to the

sequence of fine knots, is based on trial and error to settle on what generally gave the most satisfying

results. Additional matrices of P, B, A, and Q for such boundary curves have been provided in

the supplementary material.

10. Results430

To validate our diagrammatic approach, we provide some results of the
√

3 multiresolution

framework provided in our work here. The resulting A filters for the Loop and Catmull-Clark

subdivisions are consistent with the ones previously constructed in [8, 9, 32]. To observe the result

of our
√

3 multiresolution, we have applied its filters on a toroidal polyhedron whose vertices are

obtained from sampling the parametric equation of a torus. Figure 25 illustrates the results of four435

iterations of reverse subdivisions of the toroidal polyhedron using the A mask. It is apparent that

the proposed
√

3 multiresolution framework is quite stable.

To further establish the stability of our multiresolution, we have provided an example in which

the vertices are randomly perturbed. In Figure 26, a toroidal polyhedron is once subdivided and
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Figure 25: Three iterations of our decomposition applied on a toroidal polyhedron obtained from sampling the

parametric equation of a torus.

then its vertices are randomly perturbed. As apparent in Figure 26, even when the input mesh of440

the multiresolution is not smooth, the result is quite satisfactory and stable.

Since all vertices in a toroidal polyhedron are regular, we need to examine our multiresolution

for meshes with general connectivity. Figure 27 illustrates the reversing of the pawn model that has

been subdivided twice using
√

3 subdivision. The original mesh is created by applying our reversal

A mask twice as well.445

In Figure 28, after two applications of
√

3 subdivision, we have randomly displaced some of the

vertices to observe how stable our multiresolution performs when the geometry of the mesh is not

obtained from the subdivision. We have initially decomposed the model into coarse vertices and

details using the masks provided in A and B diagrams. We then reconstructed the same models by

subdividing the coarse models and adding the necessary details using masks embedded in P and Q450

diagrams.
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Subdivision Subdivision

Vertex

Perturbation

Reverse

Subdivision
Reverse

Subdivision

Figure 26: A toroidal polyhedron is subdivided and randomly perturbed. The perturbed model is then reversely

subdivided and a mesh with the resolution of the original polyhedron is obtained.
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Figure 27: Decomposing a fine model that has been subdivided using
√

3 multiresolution twice. It is apparent that

the original model is reconstructed.

Figure 28: The act of decomposition and reconstruction on the pawn model that has been subdivided twice using
√

3 subdivision with vertices being randomly displaced.
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The above examples testify that our proposed multiresolution framework enjoys stability when

vertices are randomly and locally perturbed. However, similar to multiresolution techniques con-

structed by reversing a smooth subdivision, a local deviation from the original vertices may happen.

Here, we quantify the amount of the local deviation of our multiresolution construction. Having455

the coefficients provided by equation (5.2) and (5.3), we can relate a coarse vertex c̄k ∈ c̄ = Ag, its

correspondent high resolution vertex gk ∈ g, and its neighbors gk+λ ∈ g as follows:

c̄k =
2

2− 3αnk
gk −

αnk
n(2− 3αnk)

nk∑
λ=1

gk+λ

=
2

2− 3αnk
gk −

3αnk
2− 3αnk

Ave

= gk +
3αnk

2− 3αnk
(gk −Ave)

= gk +
3αnk

2− 3αnk
`

= gk + β`, (10.1)

where Ave =
∑
λ gk+λ
n is the centroid of 1-ring neighborhood of gk, ` = gk − Ave is the Laplacian

vector of gk, connecting Ave to gk, and β =
3αnk

2−3αnk
.

Equation (10.1) indicates that coarse vertices (c̄k) are determined by adding a vector along the460

Laplacian (`) of the fine point (Figure 29). This vector is controlled by a scalar (β =
3αnk

2−3αnk
),

which is dependent on αnk , and therefore the valence of vertex gk. This scalar (β) is multiplied by

the Laplacian (`) to finally determine the location of the coarse vertex c̄k. Figure 29 illustrates `,

gk, and c̄k, and it also shows how β changes for different valences.

Knowing the source of the local deviation, we can rearrange the multiresolution to obtain465

smoother meshes after decomposition. As explained by equation (10.1), the local deviation of

vertex c̄k is controlled by β which itself is defined based on αnk . By playing with the value of

αnk , we can define smoother decompositions. For instance, when αnk <
1
3 , only a fraction of ` is

added to g0 to compute c̄0. We should consider that when we change αnk , the values of matrices

dependent on αnk (i.e., P,A,B,Q) change accordingly. However, the structures of matrices and the470

process of reconstruction remain the same and no information is lost after reconstruction. Figure

30 illustrates how we can control the local deviation of decomposition by changing the value of αnk .
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gk+1
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k+6
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k+6k+6
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gk

ck

gk

l

Figure 29: (a) Vertex gk and its neighbors gk+λ. (b) Ave is the centroid of gk+λ (neighbors of gk), ` connects Ave

to gk. (c) c̄k which is the decomposed vertex of g0 is determined by adding β` to gk. Since gk has six neighbors, β

is one. (d) Relation between valence and β in the
√

3 subdivision; vertical axis is β and horizontal axis is valence.

Figure 30: Comparison between decompositions with αnk of the
√

3 subdivision (top) and αnk = 1
8

(bottom). It is

clear that when αnk = 1
8

, local deviation is far less.
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(a) (b) (c)

Figure 31: (a) Small perturbation on an irregular vertex with valence eight in top-left results in local deviation after

decomposing the mesh (b). Adding δ can significantly reduce this local deviation (c). Only even resolutions are

illustrated.

In addition to work with αnk to reduce the local deviation, it is possible to use a lifting scheme

through a local optimization process to reduce the local deviation after decomposition [8]. To do

so, coarse vertices (c̄k) are added by a smoothing vector δ that is found based on the details in the475

neighborhood of c̄k. Note that δ is to reduce local errors in the neighborhood of c̄k. In fact, c̄k is

relaxed by δ, minimizing error (ESub) defined as in equation (10.2) below. We define ESub based

on the 1-ring neighborhood of c̄k in a
√

3 subdivision as

ESub = ‖gk − (g̃k + (1− αnk)δ)‖2 +

∥∥∥∥gk+1 − (g̃k+1 +
1

3
δ)

∥∥∥∥2 + ...+

∥∥∥∥gk+nk − (g̃k+nk +
1

3
δ)

∥∥∥∥2
= ‖ek − (1− αnk)δ‖2 +

∥∥∥∥dk+1 −
1

3
δ

∥∥∥∥2 + ...+

∥∥∥∥dk+nk − 1

3
δ

∥∥∥∥2 ,
where the norm being used is the Euclidean norm. To find δ minimizing ESub, which is a quadratic

function, its gradient is set to zero, ∇Esub = 0 and δ is obtained as:480

δ =

3αnk
2n (1− αnk) + 1

3

(1− αnk)2 + nk
9

nk∑
λ=1

dk+λ.

Having δ, we reduce the error of c̄k. Consequently, given a mesh with
√

3 subdivision connectiv-

ity, coarse vertices are initially determined using the matrix A. These vertices are later smoothed

by adding δ to each coarse vertex c̄k. To reconstruct gk, δ is subtracted from c̄k, and the same

reconstruction process is applied. Figure 31 illustrates that adding δ to a decomposed irregular

vertex is very effective in reducing the local deviation of the decomposition process.485

We can also formulate this process similar to the lifting scheme. This way, in fact, matrix A is

modified to capture the effect of δ and can be defined as Ã = A+LB, where the matrix L captures

the coefficients of the dk+λ appearing in the δ equation. As a result of changing A, the matrix
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Figure 32: Multiresolution construction with lifting.

Decomposition Decomposition

Mesh Editing

ReconstructionReconstruction

Figure 33: Editing a high resolution mesh by decomposing it into a low resolution mesh and reconstructing the high

resolution edited mesh.

Q is modified to Q̃ = Q − PL, to compensate adding δ vectors to coarse points. This process

decomposes and reconstructs the mesh exactly the same as adding and subtracting δ from each490

coarse point. Figure 32 illustrates the whole process of lifting in the constraining wavelet approach

when δ for each point is captured by the vector ∆.

One main application of reverse subdivision is mesh editing. Since a mesh with subdivision

connectivity is usually composed of many vertices, editing such a mesh is usually a tedious task.

As a result, it is useful to decrease the resolution of the mesh, edit it, and reconstruct the high495

resolution object. Figure 33 illustrates the application of our reverse subdivision for editing a mesh.

To obtain these results, we used the ACM data structure [11, 33]. The advantage of this data

structure is that details and coarse vertices can be easily distinguished from each other and are

accessible through simple neighborhood vectors.

11. Conclusion and Future Work500

We generalized diagrammatic approaches for subdivision of a general surface with a general

connectivity that might have extraordinary points. In our proposed method, we represented the

interactions by diagrams to obtain multiresolution masks. Some linear equations were derived from
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the interactions of the diagrams satisfying the biorthogonality property of multiresolution. We

examined our diagrammatic approach for the
√

3 subdivision in addition to the Catmull-Clark and505

Loop subdivisions.

There are many directions in which this work can be extended. Exploring the connection be-

tween our proposed approach and the Discrete Fourier Transform (DCT) is particularly interesting.

Taking the same approach to find multiresolution for dual schemes such as the Doo Sabin is also of

interest. Using the proposed multiresolution for a specific application such as compression, mesh510

editing, or data transmission may also be a rewarding research path.

Appendix A. Boundary Filters

Here, we provide filter values for the boundary. Based on our discussion in Section 9, the b

values are:

b1 = − 360908824401952
6124761750733245

b2 = 821150352767744
6124761750733245

b3 = 324486832948544
6124761750733245

b4 = − 227763072235964
680529083414805

b5 = 276752921024
1311231374595

b6 = 34302231721304
680529083414805

b7 = − 149920452798584
6124761750733245

b8 = − 412135978326626
6124761750733245

b9 = 276003571289944
6124761750733245

b10 = − 1740361028
513090537885

b11 = − 4404178928
513090537885

b12 = 1935707674
513090537885 .

(A.1)
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The q values are also listed as515

q1 = 11710197
17758786

q2 = 13321692
8879393

q3 = 1

q4 = 11774114
8879393

q5 = − 39839315
17758786 .

(A.2)
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