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Abstract

Textures composed of individual discrete elements are found
in everything from human-made glass-tilings to forests and
tropical coral. Previous work in discrete element texture syn-
thesis has been limited to synthesizing scenes composed of one
discrete element texture. We propose an interactive sketch-
based system for synthesizing scenes composed of many dis-
crete element textures. Our main idea is an example-palette,
where a user can use our sketch-based tools to create and
combine discrete element textures before painting them into
a scene. Our interactive sketch-based tools use a new and fast
region-growing algorithm that iteratively synthesizes new ele-
ments derived from the example-palette. We demonstrate the
application of our system for building virtual worlds (such as
for video games) and sketch-based modeling. We achieve re-
sults that are not possible with state-of-the-art techniques.

1 Introduction

Our world is filled with repeating and semi-repeating arrange-
ments of discrete elements. Some are simple, like cobblestone
pathways, while others are elaborate and intricate, like glass
tilings.

Consider the problem of building a hypothetical bunny-
planet for a children’s fantasy computer game (Figure 1).
Gravity pulls one to the surface of the bunny-planet. Our
bunny-planet is covered in forests, crops, meadows, villages
and even mushroom gardens. Cobblestone pathways weave
across its surface. We introduce an interactive, sketch-based
system for synthesizing virtual worlds and objects composed
of multiple discrete element textures.

In example-based discrete element texture synthesis, the
user provides a small example of how the cobblestone in a
pathway is arranged. An algorithm uses the example to syn-
thesize locally similar non-repeating output. Previous tech-
niques in example-based discrete element texture synthesis
are limited to a single example, so something like our bunny-
planet is impossible with them. Furthermore, for synthesizing
virtual worlds, it is critical to keep the human in the loop to
guide synthesis but to remove the tedious task of manual ele-
ment placement. These are the main problems we set out to
solve.

Our key idea is an interactive, sketch-based, example-
palette for discrete element texture synthesis (Figure 2). In
our bunny-planet example, we created an example-palette,
using our sketch-based tools, with discrete element textures
for the forest, the cobblestone pathways, the village houses,

and mushroom gardens. One selects a texture, such as the
mushrooms (or even a combination of textures), and with our
sketch-based tools, sketches the mushroom texture into the
scene. As the user sketches, our fast region-growing algo-
rithm is synthesizing elements along the brush path in real-
time. Just like mixing paint in a palette to create new colors,
one can quickly and interactively sketch new textures into
the example-palette derived from other textures (Figure 9).
With our interactive system, one can create complicated and
intricate virtual worlds and objects with little effort.

Our contributions are the following:

• An interactive sketch-based example-palette for syn-
thesizing virtual worlds and objects composed of multiple
discrete element textures (Section 5.2).

• A fast, novel, region-growing algorithm that itera-
tively synthesizes new elements based on previously syn-
thesized elements (Section 5). We introduce a method to
keep the active-problem size small (Section 5.1).

• Our sketch-based tools (Section 5.5) guide our region-
growing algorithm to synthesize new elements. We
demonstrate applications for sketch-based modeling.

• We synthesize elements directly on 3D surfaces (Sec-
tion 5.7). Our method allows the user to sketch directly
on a surface without having to worry about surface pa-
rameterization or texture mapping.

Our method enables us to synthesize virtual worlds and
objects not possible with previous methods—for example, our
glass-tiled bottle (Figure 11) or our bunny-planet (Figure 1).
We analyze our method in comparison to previous methods
in Section 6.1.

2 Related work

Our work belongs to the area of example-based discrete el-
ement texture synthesis. Discrete element textures are an
extension of the image texture synthesis idea to discrete ele-
ments. Our work is also related to geometry synthesis, model
synthesis, statistical synthesis and procedural modeling.

In example-based texture synthesis a 2D example im-
age is used to synthesize a large scale texture [1]. Pixel-based
approaches commonly choose pixels to add based upon neigh-
borhood comparisons between the previously synthesized pix-
els and example pixels (Efros and Leung [2] and Wei and
Levoy [3]). Wei and Levoy [4] synthesize textures over ar-
bitrary manifold surfaces. Later works reduced the number
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Figure 1: This hypothetical bunny-planet, that one might find in a children’s computer game, was interactively synthesized
with our system. We designed the discrete element textures in the example-palette (left) and applied them to the Standford
bunny mesh using our sketch-based generative tools. (top right) A whole view of the bunny-planet. The supplementary
material contains a video of the bunny-planet design (filename: bunny planet.mp4).

1. Example-palette selection
2. Sketching

3. Region growing

Example-palette

Figure 2: Interactive synthesis of a mushroom garden. 1) The
user selects a mushroom garden discrete element texture from
the example-palette. 2) The user sketches the garden onto
the surface. 3) Our fast region-growing algorithm iteratively
synthesizes new elements in the highlighed area as the user
sketches.

of neighborhood comparisons making synthesis much faster
(Ashikhmin [5] and Tong et al. [6]). Kwatra et al. [7] reframe
the problem of texture synthesis as one of energy minimiza-
tion, while Han et al. [8] build on this with a fast and discrete
solver. Cohen et al. [9] use Wang tiles as a fast way to syn-
thesize large non-repeating textures composed of related tiles.
Recently Li and Wand [10] achieve real-time texture synthesis
with generative neural networks. Texture synthesis has been
applied for multi-scale synthesis [11, 12].

Discrete element texture synthesis is similar to

example-based texture synthesis, with the additional compli-
cation of where to place elements (we are no longer synthesiz-
ing pixels on a convenient regular grid). Many methods for
discrete element texture synthesis also use the neighborhood
comparison ideas developed in image texture synthesis. Ijiri
et al. [13] synthesize 2D arrangements of elements by incre-
mentally growing a network of interconnected elements and
is closely related to Barla et al. [14]’s method for synthesiz-
ing stroke patterns. Ma et al. [15] extend Kwatra et al.’s [7]
expectation maximization framework to discrete element tex-
tures. Ma et al. [16] synthesize dynamic swimming schools of
fish. Xing et al. [17] apply discrete element texture synthesis
for drawing autocompletion [17]. Roveri et al. [18] reframe
discrete element texture synthesis as a continuous problem for
repetitive 3D structure synthesis.

Our region-growing algorithm is related to the fast and in-
teractive region-growing algorithm in Ijiri et al.’s [13] work.
However, their system only supports a single example texture.
Furthermore, we achieve new results (such as the coral in Fig-
ure 3 or the glass tilings in Figure 11) that are impossible with
their method (Section 4.1).

We build on the work of Ma et al. [15], in particular, their
optimization framework and neighborhood comparisons with
the addition of our fast region-growing algorithm. In con-
trast to their method, we support multiple example textures,
an interactive sketch-based interface, and a dramatic increase
in the rate of synthesis. We also demonstrate that region-
growing can synthesize textures not possible with Ma et al.’s
method (Section 6.1).

Related to discrete element texture synthesis, statisti-
cal synthesis synthesizes elements randomly to fit example
distributions—often represented as histograms. Hurtut et al.
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[19] consider the bounding boxes of elements during synthesis,
while Landes et al. [20] improve on this with a shape-aware
model. Roveri et al. [21] synthesize point distributions with
adaptive density and correlations. Recently, Emilien et al.
[22] and Gain et al. [23] use sketch-based tools for synthesiz-
ing element distributions for building virtual worlds.

The example-palette and sketch-based tools of Emilien
et al. [22] are powerful worldbuilding tools. However, the
variety of element arrangements that can be synthesized with
statistical synthesis methods like this are limited—for exam-
ple, our glass tilings (Figure 11) would be difficult to achieve
with this method. Therefore, we propose the example-palette
for discrete element texture synthesis as another set of tools
in the virtual-world-builder’s toolbox.

Geometry Synthesis, Model Synthesis and Proce-
dural Modelling Bhat et al. [24] introduce the idea of
example-based synthesis for geometric textures on 3D sur-
faces. Zhou et al. [25] took this a step further and generated
quilted surface geometries. This idea was refined by Yuksel
et al.’s [26] multi-stage pipeline based on stitch meshes. 3D
procedural models have been synthesized based on example
models (Merrell and Manocha [27] and Peytavie et al. [28]).
Bokeloh et al. [29] build a shape grammar by analyzing an
input model for symmetric regions. The shape grammar is
used to semi-manually or automatically generate 3D models.
Synthesizing structured patterns with space colonization al-
gorithms have been used for modeling trees (Runions et al.
[30]). Palubicki et al. [31] use sketch-based interfaces to gen-
erate trees. Li et al. [32] guide the growth of grammars across
a surface with a user defined-tensor field. More recently,
an example-based system for sketching structured decorative
patterns was developed by Lu et al. [33]. Finally, Guerrero et
al. [34] synthesize patterns with a tool that explores pattern
variations.

3 Overview of our approach

In this section, we provide an overview of our approach and its
major components: the example-palette, region-growing and
optimization, surface mapping and sketch-based interaction.

An artist uses a paint-palette to combine paint colors be-
fore applying them to canvas; A user of our system paints
with discrete element textures into a scene or onto an object.
In our system, a user creates discrete element textures in the
example-palette. Those textures can be selected and then ap-
plied to virtual worlds and objects with a generative sketch-
based brush—we also support other tools, such as erasers and
filler tools. Furthermore, the generative brush can be used
to create new textures in the example-palette derived from
other discrete element textures in the example-palette (Fig-
ure 3), just like an artist mixing paint on a paint-palette. Our
generative tools are based on a new fast region-growing algo-
rithm for discrete element texture synthesis. An interleaved
optimization step further improves previously synthesized el-
ement arrangements.

brush-stroke

(a) Generative-Brush A randomly selected patch from the example-
palette selection is copied to the output at the first brush point to seed
region-growing along the rest of the brush points in B.

(b) The output domain after synthesizing elements along the brush-
stroke in Figure 3a.

fill-point

(c) Filler Tool The empty region is filled with elements starting at the
fill-point.

brush-stroke

(d) Eraser Removing elements along the brush stroke (orange dashed-
line).

Figure 3: Some of our sketch-based tools.

3.1 Sketch-based tools and the example-
palette

We support various sketch-based tools for synthesizing dis-
crete element textures. The generative-brush (Figure 3a and
3b) synthesizes new elements in a small region along the brush
path. The generative-brush can also be applied to previously
synthesized results, in which case it will optimize their appear-
ance relative to a texture selected from the example-palette.
For example, one can use this method to repair undesired
arrangements on a cobblestone road or even to transform a
cobblestone road into a mushroom garden. With the filler
tool (Figure 3c) the user sets a fill point where there are no
elements, and then we synthesize new elements until there is
no more room to do so (or the user tells us to stop). Finally,
the eraser (Figure 3d) removes elements within a certain dis-
tance from along a brush path. These tools work on the scene
(for example, the bunny-planet) and the example-palette.

The example-palette can be built through manual element
placement and attribute assignment. Copy-paste operations
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may also be applied. However, a more exciting possibility
enabled by our system is to design the example-palette tex-
tures using our sketch-based tools and textures selected from
elsewhere in the example-palette (Figure 9(a-e)).

3.2 Discrete element texture synthesis

Our texture synthesis method has two interleaved steps. A
generation step uses a region-growing algorithm to iter-
atively synthesize new elements (Section 5). The region-
growing algorithm synthesizes elements based on an example
discrete element texture selected from the example palette.
An optimization step relaxes the arrangement of newly syn-
thesized elements relative to the example palette selection
(Section 5.3).

One of our main challenge is deciding if and where new ele-
ments can be synthesized. We track where new elements can
be synthesized with so-called free-space points (Section 5.1).
We derive free-space points from analysis on the example-
palette. We use free-space points as an efficient method to
keep the active problem size small, achieving high rates of
synthesis as a result.

Region-growing is well suited for sketch-based tools. New
elements are synthesized in a region-growing front at each
iteration of the algorithm. To synthesize elements along a
path, we seed region-growing at the start with a small ex-
ample copied from the example-palette. Region-growing then
iteratively adds new elements—so long as they are within a
certain distance of the path—until it reaches the end of the
path.

It is possible to use region-growing alone to synthesize ele-
ments. However, the local and greedy way that we synthesize
new elements can lead to artifacts, such as gaps in the out-
put. To solve this, we took inspiration from Kwatra et al.
[7] and Ma et al. [15], and interleave an optimization step to
reduce these artifacts. We compare region-growing alone to
region-growing with optimization, in our results and analysis
(Section 6.1).

We adapt our generation and optimization steps to 3D sur-
faces through the use of a mapping function (Section 5.7).
We compose a local mapping function wherever we want to
generate new elements; the function maps from a Cartesian
grid to an orientation field over the surface. The orientation
field is generated automatically before we start synthesizing
elements. The user also has the option to interactively design
it by placing singularities, as described by Crane et al. [35].

4 Discrete element texture synthesis

The goal of image texture synthesis is to generate image tex-
tures which are maximally similar around every pixel in the
output to pixels in the example (Efros and Leung [2]). With
discrete element textures, the goal is the same, except we
are comparing element positions and attributes in a neigh-
borhood, instead of pixel colors (Ma et al. [15]).

In our system, the user makes a selection from the example-
palette, and our goal is to generate element arrangements that
are similar to the selected texture. Elements are synthesized
using a region-growing algorithm that uses the selected tex-
ture as an example of what to synthesize. New elements are it-

eratively synthesized next to previously synthesized elements
in such a way that they are maximally perceptually-close with
the example texture. We calculate neighbourhood distance be-
tween the example and output neighborhoods from the rela-
tive position and attributes of elements in the two neighbor-
hoods. We use neighborhood distance to find elements from
the example to copy to the output.

4.1 Neighbourhood Similarity

Let e ∈ E be an element in the example-palette and let o ∈ O
be an element in our output domain. The output domain
is the region, typically a surface, where elements from the
example-palette will be synthesized. Every element has a po-
sition pe ∈ R3, various attributes captured in a vector ae (such
as shape, color or type) and a bounding radius re ∈ R. The
position and radius define a bounding sphere that can be used
to check for element overlaps quickly. The trees and rocks in
our bunny-planet have significantly different sizes (Figure 1).
Therefore, the bounding sphere is customizable for each ele-
ment.

The selection S is a subset of the example-palette, S ⊂ E .
We synthesize new elements using the selection as an exam-
ple. We do not differentiate between textures in the example
palette, the elements of those textures all belong to the same
set E . For example, the trees, mushrooms, and cobblestone in
the bunny-planet example-palette all belong to the same set E
(Figure 1). Synthesis is based on what subset of the example-
palette is selected. Our system is flexible because the user
can select portions of a texture with a desired arrangement,
a whole texture, or even multiple textures (Figure 9(a-e)).

In texture synthesis applications, the similarity between an
exemplar and synthesized elements is commonly based on a
neighborhood distance function. The goal of this function is
to determine how perceptually distant two different neighbor-
hoods are. This function has a low value when two neighbor-
hoods are similar.

We require our function to have two properties: 1) it must
measure differences between output and exemplar neighbor-
hoods and 2) it must identify exemplar elements to copy to
the output domain during the region-growing step.

align

Figure 4: The similarity between two neighborhoods is found
by first aligning those neighborhoods at their centroids e and
o. Then, the distance between pairs of elements is summed
and the attributes of those elements compared (in this case
shape-type, as given by stars, circles and squares).

To measure how distant two element neighbourhoods are,
we align the centroids of two neighbourhoods and compare
the distance between pairs of points as illustrated in Figure
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4. Let e′ ∈ n(e) (where n(e) ⊂ E) be an element in the geo-
metric neighbourhood of e around pe. The geometric neigh-
bourhood n(e) of e are all those elements in E within a neigh-
bourhood radius r̄o of pe. The customizable element radius
re and the customizable neihbourhood radius r̄o allow us to
synthesize discrete element textures with different scales (the
cobblestone pathways and the trees in Figure 1 have different
element and neighbourhood radii). The distance between an
output neighbourhood n(o) and an example neighbourhood
n(e) is given by:

|n(o)−n(e)| =
∑

o′∈n(o)

|(po′ −po)− (pe′ −pe)|2 +ω(o′, e′). (1)

ω is a function that compares the attributes of two ele-
ments. o′ is an element in the neighbourhood n(o), the pair
for that element in n(e) is denoted with e′.

alignment pair assignment

Figure 5: In finding the pairings between two neighbourhoods
n(o) and n(e) we align the two neighbourhoods at their cen-
troids. Next, we find the full pairings between elements that
are close enough pairsf (n(o), n(e)) and the leftover partial
pairings pairsl(n(o), n(e)), pairsr(n(o), n(e)).

Our generation and optimization steps rely on the notion
of full and partial assignment of pairs of points between two
neighbourhoods n(e) and n(o) (Figure 5). A partial assign-
ment occurs when we cannot form pairs between all of the
elements in n(e) and n(o). There are two sets of partial pair-
ings, the left-partial pairings pairsl(n(o), n(e)) with the form
{(o′,0)}) and the right-partial pairings pairsr(n(o), n(e)) of
the form {(0, e′)}). The set of full pairings is pairsf .

We use a greedy pair assignment algorithm. First, we align
the input and output neighborhood. For each element in the
output neighborhood, we find the nearest input element that
has the same attributes. We do not pair elements that are
too far apart.

In detail, for two neighbourhoods n(o) and n(e) aligned at
po and pe, we sort the elements in the output neighbourhood
by distance from po. Then, for each sorted element o′ ∈ n(o)
in the neighbourhood of the output element, we find the clos-
est element e′ ∈ n(e). If this element is within a certain
threshold distance c, where |(po′ − po)− (pe′ − pe)|2 ≤ c, then
we form the full-pair (o′, e′) and remove e′ from further consid-
eration. Otherwise, we form the left-partial pair (o′,0). The
remaining elements in the exemplar neighbourhood e′ ∈ n(e)
form the right-partial pairs {(0, e′)}.

In our implementation, we construct a k-d tree for the out-
put O and input E domains. During pair assignment the cost
to find the nearest element e′ ∈ n(e) to an output element
o′ ∈ n(o) is an O(log n) operation in the size of E . The cost

of our pair assignment algorithm is O(m log n), where m is
the largest neighbourhood size in O or E .

5 Region-Growing and Optimization
for
Discrete Element Texture Synthe-
sis

Our goal is to minimize the energy (Kwatra et al. [7] and Ma
et al. [15]) of neighborhoods in the output O relative to the
most similar neighborhoods in the example-palette selection
S:

E(O,S) =
∑
o∈O
|n(o)− n(e)|, e ∈ S. (2)

We approach this problem by greedily generating new ele-
ments that minimize Equation 2. Next, we relax elements in
the horizon through re-assignment of positions and attributes.
Our region-growing algorithm consists of three main steps: 1)
seed selection and generation , 2) optimization, and 3) free
space updating.

For interactive applications, fast texture synthesis is criti-
cal. Therefore, we reduce the difficulty of the synthesis prob-
lem by considering a small subset of the output domain, the
horizon H ⊂ O. The horizon is a region containing recently
synthesized elements.

We generate new elements around so-called seed elements
(Figure 6a). Seed elements are a small subset of previously
synthesized elements in the horizon H that can generate new
elements. We can quickly determine if a seed can generate
new elements by checking if it has nearby free-space points.

During generation (Figure 6b), we visit each seed in the
horizon and search the example-palette selection for a neigh-
borhood that is maximally similar to the seed’s neighborhood.
If any of the elements in the exemplar neighborhood overlap
with a free-space point, we copy the elements to the output.

During optimization (Figure 6c), we visit each element
in the horizon and find the most similar neighbourhood in
the example-palette selection. The example neighborhoods
are aligned with the output neighborhoods, and the element
pairings between them found. The difference in positions and
attributes between pairs of elements are used by an optimiza-
tion step to adjust the output to look more like the example-
palette selection.

Finally, we update the free-space points (Figure 6d). We
add new free-space points, derived from an analysis prepro-
cessing step on the exemplar, to the output around the newly
synthesized elements. Then, we remove the free-space points
that now overlap with the newly synthesized elements. If any
of the output elements are not nearby a free-space point, they
are removed from the horizon. The next iteration of our al-
gorithm starts back at the seed-selection step.

5.1 Generation and free-space

In the generation step, we find a set of seed elements Seeds ⊂
H that will generate new elements that overlap with nearby
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output element horizon element
free-space point

exemplar element
seed point prediction vector

exemplar output

(a) Seed Selection A set of seed elements are selected from the horizon
(in this example there is only one) such that the seeds also have free-
space points nearby.

exemplar output

(b) Generation For each seed element, the most similar neighbourhood
in the example-palette selection is found whose elements overlap with the
free-space points. Those overlapping elements are copied into the output
domain and added to the horizon. The free-space points are removed.

exemplar output

(c) Optimization For each element in the horizon, the most similar
neighbourhood in the example-palette selection is found and aligned with
the horizon (here only one aligned neighbourhood is shown). After pair-
ing the elements in the horizon, the difference is positions between the
pairs (arrows) are used by the optimization to adjust the positions of
the horizon elements.

exemplar output

(d) Free-Space Updating The output domain after generation and
optimization. Elements are pruned from the horizon and new free-space
points are found.

Figure 6: An example of one round of element generation
and subsequent optimization. The objective is to expand the
elements to the right, past the light-gray dotted line. A legend
appears at the top.

free-space points. Seeds are selected so that each seed is sep-
arated from its neighbors by some minimum distance d.

We track where to generate new elements with a set of
free-space points F . A free space point v ∈ F has a bounding
radius rv and a position pv. For each seed s ∈ Seeds, we find
the most similar example element se such that n(se) contains
elements that overlap with a free-space point, that is ∃e′ ∈
n(se) that overlaps with a free space point v ∈ F . Next, we
copy each of those overlapping elements to the horizon as oe′

and remove v from F . Intuitively, the new position of oe′

is found by transforming the neighbourhood of se to align
with s and assigning oe′ that transformed position. The new
position of oe′ is ps′e = mps

(pse − pe′) + ps. Here, mps
is a

mapping at ps that can be used to map example space onto
a 3D surface at that point.

Sometimes, the most similar neighborhood that can gen-
erate elements is not the best one to pick—we need to ig-
nore bad suggestions. If we do not, we can introduce arti-
facts that are difficult to correct with optimization or sub-
sequent rounds of region-growing. If e0 has the most simi-
lar neighborhood to a seed s but does not generate any el-
ements and ei is another element whose neighborhood does
then we compare the similarity of those two neighborhoods. If
|n(o)−n(e0)|/|n(o)−n(ei)| > c for some constant c we aban-
don the seed element without adding the found elements.

To keep the size of the optimization and generation prob-
lems small, we prune the horizon of all those elements that
cannot predict new elements at the start of the generation
step. An element h ∈ H in the horizon is pruned when there
is no free-space point in F that overlaps with a bounding
sphere around ph of radius r̄h.

Rather than using brute-force search of E to find the most
similar example element to an output element, we take ad-
vantage of the properties of Markov Random Field textures,
namely coherence and locality (Efros and Leung [2]). Locality
states that the position and attributes of an element relative
to other elements depend only on nearby elements. Station-
arity states that locality is independent of element position.
The locality property implies that elements that are together
in the exemplar will also tend to be together in the output
domain, which is coherence (Ashikhmin [5] and Tong et al.
[6]). As in Ma et al. [15], we use the idea of k-coherence
search to reduce the size of the search space to a user-defined
k (typically between 2 and 5).

For each example element e ∈ E , k-coherence search caches
the k most similar examples to e as co(e). The example ele-
ment that was used to generate a particular output element
o is oe. During synthesis, instead of a brute-force search of E
for the most similar example element to o we can just search
through co(oe). The idea is to exploit the coherence of ele-
ments in the output domain. A major benefit of k-coherence
search is that increasing the number of elements in an example
does not decrease the rate of synthesis.

Before deciding what element to copy to the output, we
must decide if and where an element might be placed. We
accelerate this decision with free-space points. The idea is to
reduce the number of example-palette neighbourhoods that
generation has to search through. In a pre-processing step,
we perform clustering on the neighborhoods in co(e) for each
example-palette element e to reduce the set to a single set
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of free-space points. This set of free-space points describes
where elements might be synthesized in the output for output
elements derived from that element. We use free-space points
to search for where elements can be generated, but also to
efficiently prune elements from the horizon.

Free-space points are generated by a pre-processing step
on the example-palette that exploits the concept of coher-
ence. We consider each example element e in turn, then for
each c ∈ co(e) we take all of the positions of the elements
in the neighbourhoods of each n(c) to get the set of vectors
free(e) = {pc′ − pc|c′ ∈ n(c) and c ∈ co(e)}. To reduce the
number of vectors in free(e) we use density based cluster-
ing, replacing the points with the centroids of each resulting
cluster.

After the optimization step, we need to update the free-
space points relative to all the output elements. We derive
the free-space points from the relative offset of the free-space
vectors from their respective elements. We re-build the set of
all free space positions F in the output domain by offsetting
all of the free space vectors for all elements by the position of
those elements:

F = {mpo(v) + po|v ∈ free(oe) and o ∈ O}. (3)

If a free-space point v ∈ F overlaps with an element at pv
we remove v from F . As an implementation detail, we keep
track of free space positions in a k-d tree to enable efficient
queries.

5.2 Example-palette

The example-palette is a set of elements. The user can manu-
ally design element arrangements or use our interactive tools
to synthesize elements from the example-palette back into
the example-palette. We take the user’s selection from the
example-palette and pass it as input to our region-growing
algorithm to synthesize new elements.

Scenes composed of elements are often composed of ele-
ments at different scales, for example, the groves of trees and
stone walkways in Figure 1. Therefore, we capture these dif-
ferent scales by allowing different element arrangements to
use different neighborhood radii. If the neighborhood radius
is too small, it will not capture the features of an element
arrangement. Likewise, if it is too large, it can lead to slow
rates of synthesis.

Each element e ∈ E has a neighbourhood radius attribute
r̄e. When designing an example arrangement, the user can as-
sign the neighborhood radius to each element in the arrange-
ment. For example, the cobble-stone and trees in Figure 1
have different neighborhood sizes.

The synthesized elements must derive from the example-
palette selection. Therefore, the neighborhoods that we
search through for new elements must be limited to the
example-palette selection. Therefore, we recalculate the k-
coherent neighborhoods of elements in an example-palette se-
lection every time it changes.

The user can select elements from multiple textures in the
example-palette. The user can even select subsets of elements
from different textures. This makes the example-palette se-
lection a versatile tool for combining features from different
discrete element textures into a new texture.

5.3 Optimization

The optimization step (Figure 6c) reduces the energy of pre-
viously synthesized elements in the horizon relative to the
example-palette selection E(H,S). The goal is to arrange
the elements in H so that the neighborhood of each horizon
element aligns as closely as possible with the similar example-
palette selection neighborhoods. Each of these corresponding
exemplar neighborhoods provides predicted positions for the
elements in the output domain. Each element in the horizon
will have multiple predictions. Inspired by Ma et al. [15], we
find new positions for the elements in the horizon from their
predictions using a least-squares method.

For each h ∈ H we find the nearest example-palette selec-
tion element e = nearest(h,S). The full pair assignments
pairsf (h, e) = {(h′, e′)} provide us with a direction vector
p̂(h, h′) = pe′ − pe. This direction vector, is the direction be-
tween h′ and h as predicted by the exemplar neighbourhood.

exemplar output

matching exemplar

Figure 7: In this example, the nearest exemplar selection ele-
ment to o1 is found to be e1 and the nearest exemplar selection
element to o3 is e3. Therefore, we have the following pair-
ings: pairsf (o1, e1) = {(o0, e0), (o3, e3)} and pairsf (o3, e3) =
{(o2, e2), (o1, e1)}.

We motivate the formation of a system of equations for
optimizing element arrangements with the example in Fig-
ure 7. We can form a system of equations from the pair-
ings pairsf (o1, e1) = {(o0, e0), (o3, e3)} and pairsf (o3, e3) =
{(o2, e2), (o1, e1)} between the example and output neigh-
bourhoods:

Ax = b
po,0 − po,1 = pe,0 − pe,1

po,3 − po,1 = pe,3 − pe,1

po,2 − po,3 = pe,2 − pe,3

po,1 − po,3 = pe,1 − pe,3.

(4)

The right side of the system of equations forms a vec-
tor b. The left side forms a matrix A and unknowns x =
(po,0, po,1, po,2, po,3)T . The system A x = b for an out-
put domain and exemplar is a positive definite sparse linear
system that can be solved quickly with a Sparse Cholesky
Decomposition—we use an implementation from the Eigen
matrix library (Guennebaud et al. [36]).
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5.4 Prediction vectors

A tug-of-war occurs when two neighborhoods provide two dif-
ferent prediction vectors for the position of an element. Both
predictions will have equal weights in the system of equations,
and we will end up with a position that is the average of the
two. Ma et al. [15] solve this problem by weighting the pre-
diction vectors by their length, so predictions closer to the
original position will have more weight. The disadvantage of
this approach is that very long prediction vectors will have a
low weight in the system of equations (even if they are a good
prediction). It will take more optimizations steps to move
those elements to a minimized position.

predicted positions
original element

multivariate Gaussian

principal component
vectors of predicted
positions

Figure 8: Prediction vectors for an element are weighted by a
multivariate Gaussian distribution (the gray function in the
background) for the set of predictions. The basis for this
Gaussian function is found through principal component anal-
ysis on the set of prediction vectors.

We solve this problem by considering the distribution of
prediction vectors in the neighborhood of h ∈ H (Figure 8).
Principal component analysis on the prediction vectors in a
neighborhood gives us three orthogonal vectors that along
with the center of the distribution, we can use to weight the
prediction vectors. Specifically, we use a multivariate Gaus-
sian function to weight the prediction vectors in a neighbor-
hood. If X̄ is the mean of the prediction vectors for h and
C = X̄T × X̄ ∗ 1/m, the weight given to a prediction vector p̄
is

exp(
p̄T × C−1 × p̄

−2
). (5)

Since we do optimization on the horizon and not on the
entire output domain, we have to be careful to maintain co-
herence with output elements that are not in the horizon.
Therefore, in the linear optimization problem, we give low
weight to predicted positions for elements not in the horizon
while also giving their previous positions a high weight. This
allows for old elements some movement but otherwise con-
strains the prediction vectors to work on horizon elements.

5.5 Sketch-based modelling

The generative-brush generates element arrangements in a ra-
dius around the brush-points of a brush-path. We represent
brush-strokes across a 3D surface in our system as a series
of brush-points composed of a position and radius (bpi, bri).
The user controls the brush radius with a slider. We use ray-
casting to map the brush-points from screen-space onto the
surface.

The generative-brush adds brush-points to a set B. This set
constrains the generation step (Figure 6b) to nearby brush-
points (Figure 3a). To limit generation to the brush strokes,
we discard free-space points that do not overlap with any of
the brush-points in B. This has the effect of limiting gen-
eration to the area around the brush point. If there are no
elements near the first brush-point, a random patch from the
example-palette selection is copied to the output domain to
seed synthesis. We remove brush points when there are no
free-space points that overlap with it. The eraser tool does
the opposite; it removes overlapping brush-points from B and
any nearby overlapping elements (Figure 3d).

We also use the generative-brush an optimization tool to
improve the appearance of the output domain after synthesis
relative to the example-palette selection (Figure 3a). Rather
than creating new elements, the overlapping elements are re-
turned to the horizon, where the next optimization step will
affect them. The tool also has exciting applications for de-
signing new textures in the example-palette (Figure 9e).

The filler tool triggers region-growing to synthesize new el-
ements at a point selected by the user (Figure 3d). It does
this by removing all brush-points from B and disabling the
free-space overlap checks with elements in B. If there are
no elements nearby the selected point a random patch of el-
ements from the example-palette selection is copied to the
output domain at that point to seed generation.

In Figure 9, we demonstrate some of the geometry and
texture synthesis applications of our system with a stretch-
tool. The stretch tool deforms the underlying geometry and
removes any affected elements. Next, we use the filler tool to
synthesize the affected region of the surface with the current
example-palette selection.

5.6 Filling voids in the exemplar

Many arrangements that one might reproduce with our sys-
tem may contain voids. However, our region-growing algo-
rithm will often select elements to fill those empty spaces.
Our solution is to fill space in the example-palette with in-
visible elements. The benefit of this idea is that it can reuse
the existing machinery for element synthesis while giving the
user fine-grained control over what should and should not be
empty in the example.

To fill space in the exemplar, the user places invisible ele-
ments. The user can use manual placement or the generative-
brush with a source texture of invisible elements. During this
process, we toggle invisible elements to a visible state.

5.7 Surface synthesis

In planar synthesis, prediction vectors tell us where to place
a given element on the plane, but in surface synthesis, the
prediction vectors tell us in which direction to ‘walk’ on the
surface of a mesh.

We use Crane et al. [35] to find an orientation for the output
domain mesh. Crane et al.’s method is closely related to Ray
et al.’s [37]. The orientation field can be automatically com-
puted, or the user can design it by placing singularity points
on the mesh as described by Crane et al. [35]. Once the orien-
tation field has been created (one second or less), the user can
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(f) coral bunny (g) geometry editing (h) regenerated elements (i) sketch-based editing(i) sketch-based editing

(a) (b) (c) (d) (e)
fill tool geometry

tool
automatic
refill

synthesis
tool

example palette design

stre
tch

Figure 9: (a) Example-palette design: a small example arrangement is created by manually placing elements. (b) The
example-palette selection together with the generative-brush is used to generate a new more complicated texture indicated
by the arrows. (c) A new arrangement is introduced. (d) The new arrangement is used to fill in the gaps. (f) The filler tool
is applied to the Stanford bunny whose ear is subsequently stretched (g), erasing the affected elements. (h) The elements
on the ear are regenerated. (i) The eraser and generative-brush are used to replace the ear elements with white elements
from the example-palette (e). The supplementary material contains a video showing the interactive design of the bunny
(filename:sketching.mp4).

start generating discrete element textures for that surface.

For an element h ∈ H and a prediction vector p̄ in its
neighbourhood, ph is already on the surface of the mesh. We
look up the orientation at that point o(ph) and walk along
the integral curve on the surface passing through ph and in
the world direction o(ph)× p̄ until we have travelled |p̄| units
along that curve.

To compare an exemplar and output neighborhood, the ex-
emplar neighborhood positions are mapped onto the surface
using an integral curve mapping, as described above. The
pairing process and distance metric work the same as before,
using the mapped positions.

Like Wei and Levoy [4], we perform synthesis directly over
an arbitrary manifold surface, avoiding discontinuities. Unlike
Wei et al., we do not compute the orientation field as we go.
Instead, we allow the user to design it first (if they choose)
by placing a few singularity points.

5.8 View based synthesis

In a 3D scene, many of the components of that scene may
be occluded from view (Figure 10). Therefore, during syn-
thesis, we focus on just those regions that are visible. We
maintain two queues, one with elements visible to the camera
and another with elements occluded by geometry in the scene.
We prioritize synthesis to elements in the visible queue. In
our implementation, we make use of the GPU’s depth buffer
to test whether a free space point is occluded or not. If a
free-space point is not visible, the generation step can skip

generating a new element from that free-space point (Section
5.1).

Figure 10: Elements that are not occluded are generated with
priority over those that are occluded. Here one can see the
backside of the bunny in the mirror does not have many ele-
ments generated yet.

However, if all of the visible free-space points have gener-
ated elements, then we can take advantage of the freed up
CPU resources to generate elements for occluded free-space
points. If the camera changes its vantage point, then this
scheme may have already generated elements for those newly
revealed regions.
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6 Results and Discussion

Previous offline processes Ma et al. [15] and Landes et al.
[20] can generate hundreds of elements with running times in
the minutes. Our method can generate thousands of elements
per second. Furthermore, we demonstrate results that are not
possible with Ma et al.’s patch initialization scheme (Section
6.1).

Ijiri et al. [13] employ a fast region-growing method that
relies on regularity in the topology of a network of ele-
ments (found through Delaunay triangulation). However,
their method is limited to textures expressible with 1-ring
neighborhoods and that has the required topological regular-
ity. In contrast, we do not rely on regularity in the example
texture nor do we try to maintain a network topology on
the generated elements. Instead, we use geometric neighbor-
hoods of arbitrary size and a closest-point algorithm to find
pairs of elements between the example and output neighbor-
hoods (this avoids the need for topological regularity and a
network of elements). As such, we support textures that can
only be expressed with greater than 1-ring neighborhoods.
We demonstrate synthesis with 3-ring neighborhoods —larger
neighborhoods can be used but at the cost of interactive rates
of synthesis.

(a)

(b)

(c) (d) (e)

Figure 11: (a) Photograph of glass tilings on a bottle. (b) Ma
et al. [15] use their system to adjust element properties on a
manullay created arrangement of elements. (e) We fully re-
produce the photo from (a) using our interactive sketch based
system. We used the example-palette in (c). (d) an under
construction view.

Emilien et al. [22] have a similar example-palette idea for
synthesizing distributions of elements on virtual-world ter-

rains. However, they apply techniques from statistical synthe-
sis rather than example-based texture synthesis. Their system
learns the spatial distribution of points with a histogram and
uses Metropolis-Hastings sampling (Geyer and Møller [38] and
Hurtut et al. [19]) together with the histogram to synthesize
new distributions. For example, this method is well suited
for synthesizing distributions with varying density. However,
the histogram is insufficient for capturing semantic relation-
ships between elements. In contrast, our method is based on
discrete element texture synthesis and can synthesize discrete
element textures with structure and semantic relationships
between elements in the exemplar. For example, synthesizing
the glass tilings in Figure 11 would be impossible with Emi-
lien et al.’s statistical synthesis method. Our method is not
intended for only synthesizing stochastic arrangements of ele-
ments, but also discrete element textures that have structure
and patterns—such as we commonly find in human creations.
We imagine that a hybrid system with both discrete element
texture synthesis and statistical synthesis would complement
the strengths and weaknesses of either approach for construct-
ing virtual worlds.

Our system has applications for the design of virtual worlds,
such as those used in film or video games. We have designed
a scenario with a large example-palette and a large world.
Our bunny-planet is composed of 30 element types (Figure
1). In the final scene, there are 24,063 elements, which took
45 minutes to design. Rates of synthesis vary between 2,050
elements/s (the groves of trees) to 3,200 elements/s (stone
walk-way). To accommodate differences in scale—such as be-
tween trees and flowers—we use different element neighbor-
hood radii (r̂e).

Glass tilings are one of the many examples of element ar-
rangements found in our world. Ma et al. [15] demonstrate
how their method could be used to change the attributes of an
intricate glass tiling inspired by a photograph (Figure 11a).
However, with evidence from Section 6.1 we suspect that their
method (using patch-initialization) cannot be used to produce
the initial arrangement of elements inspired by that photo.
We have reproduced all of the different element arrangements
in that photo using our interactive tools (Figure 11). Our bot-
tle contains 21,806 elements synthesized at an average rate of
1,100 elements/s. It took about 30 minutes to design our
glass-tiled bottle. We capture the circle patterns using 3-ring
neighborhoods. There are 1,061 elements in the example-
palette.

Our system also has application for modeling. We demon-
strate this with a Stanford coral-bunny (Figure 9). An artist
may deform the mesh, such as by stretching the bunny ears.
We search through the affected triangles and gather all of
the elements on those triangles. We discard those elements
and regenerate free-space points for the neighboring elements,
which triggers region-growing in the affected region. We use
2-ring neighborhoods and achieve about 2,100 elements/s. In
this example, we also demonstrate example-palette design us-
ing the generative brush.

6.1 Analysis

In this section we explore the impact that different optimiza-
tion and generation schemes have on the empirical quality
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Figure 12: A comparison of Ma et al.’s Ma et al. [15] patch-initialization as implemented in our system versus global, local and
no optimization with region-growing. The exemplar for each row is given on the left, and a plot of the average neighborhood
similarity (Equation 6.1) for each row is given in the right column. In the bottom of each screenshot, we give the final number
of elements generated along with how long generation took or how long the algorithm was given to run, in the case of patch
initialization. Lower values in the plot are better; lower values mean that the output is more similar to the exemplar.

of the generated output domain (Figure 12). In general, we
find that region-growing alone generates results superior to
Ma et al.’s [15] patch-initialization. When coupled with lo-
cal optimization of horizon elements or global optimization
on all elements, the empirical quality of the results is further
improved.

To evaluate our method against Ma et al. [15]’s, we im-
plemented their patch-initialization scheme in our system but
used our optimization step. Patch-initialization as described
by Ma et al. [15] divides the example-palette and output do-
main into a grid of fixed size cells. Cells are selected randomly
from the example-palette and copied to the empty cells in the
output domain. Our goal with this evaluation is to determine
what impact region-growing and-or optimization has on the
quality of the output.

To measure the empirical quality of an output arrangement
of elements relative to an example-palette, we track average
neighborhood distance:∑

o∈O |n(o)− n(e)|
|O|

. (6)

In a perfect system, we expect the average neighborhood
distance to remain constant and not to increase with the
addition of the elements. Tracking average neighborhood
similarity with respect to time, allows us to compare patch-
initialization (where all elements are generated beforehand) to
region-growing (where elements are generated incrementally
over time).

In our experimental setup, we compare patch-initialization,
region-growing with global optimization, region-growing with
local optimization and region-growing without any optimiza-
tion on three different exemplars. We restrict each output
domain to a fixed region. We terminate the region-growing
variants when the supplied region is filled. Patch-initialization
is given as much time to run as the longest-running region-
growing variant.

We choose the three exemplars in Figure 12 to include a
complex semi-repeating arrangement of elements (the glass
tilings in Figure 12a) to a more stochastic arrangement of
elements derived from an example by Ma et al. [15] (the
apple’s in Figure 12c). Artifacts are left present in all of the
following results for comparison purposes—however, these can
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be easily corrected using our sketch-based tools.

We found that for each exemplar, patch-initialization starts
with a high average neighborhood distance that improves and
levels off. In all cases, the final average neighborhood distance
is significantly higher than the region-growing variants. We
attribute this to the way in which optimization works; it is
essentially a blending of greedy predictions that can get stuck
in local optima. Therefore, a good starting configuration is
essential to achieve a low final average neighborhood distance.
Patch-initialization can make abysmal choices (random) that
are impossible for the optimization steps to correct (it gets
stuck in local optima). Furthermore, patch-initialization is
very sensitive to the size of cells dividing the exemplar and
the output domain. We use regular grids, which cannot cap-
ture the underlying patterns found in many of our exemplars.
Perhaps irregular cells could achieve this, but then, so can
our simple region-growing scheme.

Meanwhile, region-growing adds new elements before each
optimization step, using greedy choices. Therefore, the start-
ing configuration for optimization is better (it is not random),
and so the local minima that optimization converges on should
also be better. In all of the region-growing variants, the av-
erage neighborhood distance starts at zero and increases over
time as new elements are added.

Initially, region-growing can make some perfect decisions.
The first perfect decision is to copy a small seed patch from the
exemplar, the average neighborhood distance of that neigh-
borhood is zero. For a perfectly regular exemplar, we would
expect to continue finding perfect choices. However, for the
exemplars that we choose we eventually run out of perfect
choices and so the average neighborhood distance increases.
The dips in average neighborhood distance are the result of
local choices in the region-growing step. Some sort of gen-
eration algorithm that made global choices could avoid this
problem.

In the examples that we explored, we observe that the av-
erage neighborhood distance for region-growing (without op-
timization) had not leveled off yet (the orange plots in Figure
12). Poor choices accumulate, eventually the coherence be-
tween neighboring elements becomes low, and so the choices
as found by neighborhood matching alone become poor. For
other settings (with optimization) an equilibrium was even-
tually found sooner, and the average neighborhood distance
leveled off.

Optimization helps prevent the accumulation of poor
choices and prevents a loss in coherence between neighbor-
ing elements. We see this in the leveling off of the local and
global optimization curves. However, as we observe in Fig-
ure 12a and 12b, local optimization leads to higher average
neighborhood similarities than does global optimization. We
attribute this to ‘shearing’ artifacts between the horizon ele-
ments and ‘frozen’ elements, where predictions are only gen-
erated for the horizon elements, and their positions as a whole
are shifted relative to the frozen elements. To combat this,
we include frozen elements within a constant distance of the
horizon elements, in the optimization problem.

The last exemplar (Figure 12c) is interesting. Local op-
timization produced the lowest final average neighborhood
distance. We suspect that global optimization was overfitting
to a single region of the example-palette. Indeed, in some of

our experiments, we found that letting global optimization
run for too long can produce very long straight artifacts run-
ning through the entire output domain. From the narrow and
greedy view of the optimization problem, those long straight
neighborhoods are the best fit in many situations.

Our conclusion from this analysis is that patch-
initialization can produce poor initial configurations that are
impossible for our optimization step to recover. Furthermore,
patch-initialization must be aligned to features in the exem-
plar, which is not possible with all exemplars (such as in
Figure 12). An interleaved region-growing and optimization
strategy consistently produces arrangements that have good
average neighborhood distance. This analysis demonstrates
a significant improvement in quality over Ma et al. [15] with
our interleaved generation and optimization method.

We demonstrate the performance and the quality of our
method in comparison to patch-based initialization with
global optimization in Figure 12. To obtain these results,
we added a random patch-copy initialization scheme as de-
scribed in Ma et al. [15] to our implementation. Next, we
compare the results achieved by our method using region-
growing alone, region-growing with global optimization on all
elements synthesized so far, and region-growing with horizon-
based optimization.

7 Conclusion and future work

Our interactive discrete element texture palettes enable the
construction of both stochastic and structured element ar-
rangements. We demonstrate results that are a significant
improvement over previous results but also results that are
not possible with those systems (Ijiri et al. [13], Ma et al.
[15]). While Ma et al. [15] measure their results with hundreds
of elements per minute, we measure our results in thousands
of elements per second. These speeds for discrete element
textures are comparable to other state-of-the-art techniques
for statistical synthesis [22]. Our example-palette enables the
construction of scenes composed of a variety of element ar-
rangements. Our fast region-growing algorithm enables inter-
active rates of synthesis suitable for sketch-based modeling.
The key to our interactive rates of synthesis is a technique for
efficient pruning of the region-growing horizon.

We have implemented a variety of sketch-based tools, in-
cluding our generative-brush that can be used for both syn-
thesizing new elements but also for relaxing previously syn-
thesized results. However, there are many more tools that we
would like to develop, such as a context-aware eraser to easily
erase around structures in an element arrangement.

Nevertheless, there are some limitations with our system.
For example, significant differences in element size are not
supported by our neighborhood matching scheme. A multi-
scale approach would be required to reconcile elements and
arrangements at different scales.

A limitation with neighborhood matching is complexity.
The more elements there are in a neighborhood, the more ex-
pensive the computation. We demonstrate up to 3-ring neigh-
borhoods in Figure 11, but beyond this, our system would lose
interactivity.

Our system is limited to generating structured element ar-
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rangements that can be captured by the radius used dur-
ing neighborhood matching. However, there are many struc-
tured arrangements with much more extensive features that
we would like to synthesize.

We suspect that pair-wise similarity measures are perhaps
an insufficient measure for element arrangement similarity. In
our framework, there are issues when pairs cannot be found,
or an over the assignment of pairings is possible. Pair-wise
similarity does not capture the perceptual similarity of ele-
ment arrangements in an intuitive way. Therefore, we think
there is promise in addressing some of the limitations in re-
cent approaches, such as Roveri et al. [18] that reconsider
element arrangements in a continuous domain.

Finally, we applied a local strategy for generating elements.
A global strategy for generating new elements could avoid
some of the artifacts that arose in our results from local de-
cisions made by our region-growing algorithm.
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