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Abstract

Subdivision surfaces have been widely adopted in
modeling in part because they introduce a separation
between the surface and the underlying basis functions.
Such a separation allows for simple schemes that work
on general topology surfaces. Multiresolution represen-
tations based on subdivision, however, incongruently
return to continuous functional spaces in their con-
struction and analysis. In this paper, we investigate a
discrete approach to multiresolution construction for a
variety of subdivision schemes, based only on the sub-
division rules. Noting that a compact representation
can only afford to store a subset of the detail infor-
mation, our construction enforces a constraint between
locally adjacent detail terms. In this way, all detail in-
formation is recoverable for reconstruction, and a de-
composition approach is implied by the constraint. The
construction is demonstrated with case studies in Dyn-
Levin-Gregory curves and Catmull-Clark surfaces, each
of which our method produces results as good as earlier
methods. It is further shown that our construction can
be interpreted as biorthogonal wavelet systems.

1 Introduction

Multiresolution (MR) methods have become a stan-
dard paradigm for curve and surface editing, allowing
a transition between different resolutions while main-
taining geometric details between edits. Subdivision
curves and surfaces are supported by many popular
geometric modeling programs, fitting naturally into an
iterative, multi-scale design process. Since subdivision
techniques naturally create a hierarchy of different res-
olutions, most MR approaches require the connectivity
structure imposed by subdivision.

An important factor in the adoption of subdivision
over parametric approaches is the simplicity that comes
from the absence of basis functions: high-quality sur-
faces can be modeled without any direct functional

evaluations. Clean, simple, affine operations are the
only necessary background to learn and implement sub-
division. However, the underlying theory of subdivision
is based on the refinement of scaling functions [27],
and the wavelet theory behind most MR schemes is
similarly grounded in functional spaces. An important
recent movement is focused on analyzing subdivision
surfaces based only on discrete operations, without ex-
plicit use of continuous functions [31].

MR settings based on wavelets have been proposed
for many curve and surface subdivision types – B-
splines [12], Doo-Sabin [24], Loop [2, 18, 22], and
Catmull-Clark [3, 14] surfaces. So while wavelet-
based approaches can indeed be used to construct MR
systems, several related questions have not been ad-
dressed. Is it possible to construct the full MR repre-
sentation of a subdivision scheme only from its discrete
description? Is it necessary to use continuous functions
(wavelets and scalings) to create a discrete MR system?
Like many problems in computer graphics, it is perhaps
more natural to employ a discrete approach rather than
delving into the “labyrinth of the continuum” [17].

In this paper, we present a discrete method for con-
structing compact and efficient multiresolution settings
for a variety of subdivision schemes directly from the
subdivision rules, without any direct use of basis func-
tions (scaling or wavelets). Our construction, described
in Sec. 4, is demonstrated with case studies in Dyn-
Levin-Gregory curves (Sec. 5) and Catmull-Clark sur-
faces (Sec. 6), which are shown to offer competitively
low approximation error.

2 Related Work

Much of the work in multiresolution is based on the
theory of wavelets, although it should be noted that
the two are not the same thing. Wavelets are a tool for
“hierarchically decomposing functions” [26] into com-
plementary bases; one basis, the coarse scaling func-
tions, encode an approximation of the function, while
the wavelet basis encodes the missing details. They



are often used in geometric modeling because of their
natural fit to the scaling function refinement caused by
subdivision. That is, wavelet analysis undoes the scal-
ing function refinement, and can be used to derive a hi-
erarchical multiresolution representation for curves and
surfaces [11, 20]. Since our paper seeks to diverge from
the wavelet approach, we’ll refer the curious reader to
the book of Stollnitz et al. [27] for further details.

Samavati and Bartels [23, 24] investigated an alter-
native to wavelets for subdivision curves and Doo sur-
faces, constructing multiresolution systems by revers-
ing subdivision rules. The methodology is based on dis-
crete least-squares and can be considered to be wavelet-
free, but the construction is not easily extended to gen-
eral topology surfaces.

More recent multiresolution approaches for general-
topology surfaces follow Sweldens’ lifting method [28],
a two-stage process for constructing so-called second-
generation wavelet systems. First an initial “lazy”
wavelet with poor fitting properties is selected. It is
then improved with respect to some criteria (eg. fit-
ting quality or support) by one or more lifting stages.
Instances of the lifting method include work on Loop
[2, 18] and Catmull-Clark surfaces [3, 14].

Each of these methods requires a semi-regular input
surface, i.e. one with subdivision connectivity. This
is not a particularly restrictive condition in model-
ing, save for surfaces extracted from range or point-
set data. Several remeshing methods have been pro-
posed [11, 16, 19, 4] to make semi-regular meshes from
irregular ones. Remeshing comes at the expense of pre-
cision and complexity, as a remeshed surface often has
more vertices and contains error relative to the origi-
nal. If the original surface must be maintained, Valette
and Prost [30] proposed a multiresolution method for
irregular meshes, but the lack of stationary subdivision
rules hampers the run-time efficiency.

Some common applications of multiresolution sys-
tems are surface editing [33] and compression [13, 3].
Many other representations have been considered for
surface editing, such as displacement volumes [5],
Laplacian encodings [25], mean value coordinates [15],
and coupled prisms [6].

3 Notation

Let V = {v1, . . . , vn} denote a set of vertices defining
an object. For a curve, V represents a piecewise-linear
approximation of a (usually smooth) curve. A poly-
gon mesh M can be defined as M = {V, F}, where V
defines the geometry, and F is a set of faces defining
the topology. The valence n of a vertex is the number
of incident edges, while the valence nf of a face is the

number of sides in the face.
To represent relative positioning in a subdivision se-

quence or multiresolution hierarchy, a superscript k is
used. Thus, subdivision is a process for computing a
set of fine vertices V k+1 from coarse vertices V k. The
topological information F k+1 must be constructed ac-
cording to F k and the subdivision rules.

A key property of subdivision is that the subdivided
position of a vertex results from a linear combination of
a local neighborhood of vertices, implying that subdi-
vision can be implemented in linear time with discrete
operations. Typically a matrix P is used to capture
all vertex interactions during subdivision, such that
V k+1 = PV k.

Decomposition is a process for converting fine data
V k+1 to a coarse approximation V k plus some details
Dk. This should also be a linear process – let A and
B be the associated matrices for which V k = AV k+1

and Dk = BV k+1. Together V k and Dk should be
enough to reconstruct V k+1, i.e. for some matrix Q,
V k+1 = PV k + QDk. A biorthogonal MR system is
one that satisfies[

A
B

]
[P|Q] = I .

In other words, decomposition and reconstruction are
inverse processes.

Though both reconstruction and decomposition can
be expressed with matrices, each matrix is sparse (due
to the locality of each operation) and exhibits regular-
ity within the columns or rows (because the same lin-
ear weights are applied to each vertex neighborhood).
Thus the notion of filters (for curves) or masks (for
surfaces) is useful for expressing the regular entries
in a matrix. The P and Q matrices contain regu-
lar columns, each shifted downward by two elements
from the previous column. Let p = {p0, p±1, p±2, . . .}
and q = {q0, q±1, q±2, . . .} represent the non-zero en-
tries of a regular column in P and Q, respectively; call
these reconstruction filters. Similarly, A and B are
characterized by regular entries across the rows, de-
noted by the decomposition filters, a = {a0, a±1, . . .}
and b = {b0, b±1, . . .}.

4 Method Overview

Our approach to constructing MR systems is based
on the observation that all subdivisions impose a par-
ticular structure. New vertices are created, old ver-
tices are (possibly) displaced, and in the mesh case,
the face structure is changed (eg. one triangle split
into four). Common terminology – descended from the
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Figure 1. (a) When a surface is decomposed,
some vertices are coarsened and others are re-
placed with detail vectors; (b) If the details at
even vertices can be computed from adjacent odd
details, then a compact MR is possible.

indexing of 1D subdivision curves – refers to new ver-
tices as odd and old vertices as even, a notation which
we will use. (For vertex-splitting schemes such as Doo-
Sabin [9], one split vertex can be classified as even, the
remaining as odd.)

This inherent structure recommends a decomposi-
tion strategy: even vertices are a natural choice for
coarse vertices, and the, to have a compact represen-
tation, only odd vertices can be replaced with details.
Notice that in addition to compactness, this approach
naturally fits to the structure of subdivision.

Our method is as follows. First, we define a detail
constraint that expresses even details in terms of adja-
cent odd details, and then use the subdivision rules to
find an initial (or trial) decomposition mask that sat-
isfies this constraint. To improve the fitting behavior,
we then compute a refinement of the coarse surface by
a local optimization step.

An important question is, how can we fully recon-
struct a surface if only some of the details are stored?
Our idea is to place a constraint on the details. Specif-
ically, the coarse surface is chosen such that the associ-
ated details satisfy a particular relationship, implicitly
defining the missing details. Consider Fig. 1: if vk is
chosen such that its associated detail dk is a linear com-
bination of adjacent details – eg. dk = α(dk

l + dk
r ) –

then dk need not be stored explicitly.
In the surface case, this idea can be generalized to:

choose the coarse position of even vertices such that the

associated detail vector is a linear combination of the
details from adjacent odd vertices. For uniform subdi-
visions, it is sensible for adjacent details of the same
type to contribute equally to an even-vertex detail, i.e.
have the same weight. Therefore, the detail constraint
has a general form of

de = α
∑

do
j , (1)

where de and do denote even and odd details respec-
tively, and j enumerates the odd details adjacent to
de.

The initial masks that arise from satisfying the de-
tail constraint represent the equivalent of a lazy wavelet
decomposition. They typically have narrow support,
which can lead to poor fitting performance. To in-
crease the fitting quality, we consider a refinement of
each coarse vertex vk

i , in the form of a per-vertex dis-
placement vector δi: vk

i ← vk
i + δi.

The optimal value of δi depends on details adjacent
to vk

i , which in turn depend on their local neighbor-
hood of original data, and so the refinement process is
equivalent to widening the support of the decomposi-
tion mask. If ∆ is a vector of all such refinements, then
∆ = RDk for some sparse matrix R. It was noted ear-
lier that refinement is equivalent to widening the mask
support. In fact, it is equivalent to lifting, because
V k = AV k+1 + RDk = (A + RB)V k+1, exactly as in
lifting.

Since the initial decomposition mask reverses the
subdivision rules, and the size of V k and Dk together
equals the size of V k+1, the initial masks are biorthog-
onal. According to the lifting theory, any matrix R
preserves biorthogonality. Therefore, the MR systems
produced by our construction are biorthogonal.

This construction is best illustrated with an exam-
ple. First we consider a simple curve subdivision pro-
posed by Dyn et al. (Sec. 5). We then present a more
complex surface subdivision example in Sec. 6.

5 Dyn-Levin-Gregory Subdivision

Dyn et al. [10] describe an interpolating subdivision
scheme based on a 4-point filter for odd points (even
points are not moved), which will be referred to as DLG
subdivision. Their construction contains a parameter
w that relates to the smoothness of the limit curve; we
use the nominal value of w = 1

16 . In this case, the DLG
filters are:

vk+1
2i = vk

i

vk+1
2i+1 =

9
16

(vk
i + vk

i+1)−
1
16

(vk
i−1 + vk

i+2) .

See Fig. 2 for an illustration.
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Figure 2. The DLG subdivision filter for odd
vertices, with w = 1

16 . Even vertices are un-
moved: vk+1

2i = vk
i .

5.1 Trial Filter

For an interpolating scheme, there is an obvious
choice for the initial filter. Since even vertices are not
displaced by subdivision, a multiresolution setting can
be attained by simply retaining the even vertices in
V k+1 to form V k, and replacing the odd vertices with
details. That is, replace even vertices with

ṽk
i = vk+1

2i ,

and replace odd vertices with details:

dk
i+1 = vk+1

2i+1 −
(

9
16

(ṽk
i + ṽk

i+1)−
1
16

(ṽk
i−1 + ṽk

i+2)
)

. (2)

The details at even vertices are dk
i = 0 (i.e. α = 0

in Eqn. 1). In this case, the detail constraint is not
needed to derive an initial decomposition filter.

5.2 Refinement

As Bartels and Samavati note [1], in the general case
the fine data V k+1 will have non-zero details. In such
cases, we may be able to achieve lower approximation
error by choosing a non-trivial decomposition filter.

Our approach is to improve the trial filter by a re-
finement step, with the goal of reducing the local error,
call it E, at each vertex vk

i ∈ V k. Based on a three-
point neighborhood around vk

i , the local error is given
by the size of the local details. In particular, recalling
that dk

i = 0, we have

E = ‖dk
i−1‖2 + ‖dk

i+1‖2 .

In a poor approximation, the details, and therefore the
error, will be large.

After refinement, ṽk
i will be replaced by vk

i = ṽk
i +δi.

This has an impact on the local error of vk
i and neigh-

boring vertices: dk
i becomes −δi, and dk

i+1 becomes
dk

i+1− 9
16δi by Eqn. 2. Thus, after refinement the local

error becomes

E(δ) = ‖ − δi‖2 + ‖dk
i−1 −

9
16

δi‖2 + ‖dk
i+1 −

9
16

δi‖2 .

We should choose δi to minimize this error.
After a bit of algebraic manipulation, E(δ) becomes

E(δ) =
209
128
‖δi‖2 −

(
9
8
(dk

i−1 + dk
i+1)

)
· δi + E

= a‖δi‖2 − g · δi + E .

A minimal solution occurs where the derivate equals 0,
or

2aδi − g = 0→ δi =
a−1

2
g .

Therefore, an optimal displacement for vertex vk
i is

δi =
72
209

(dk
i−1 + dk

i+1) . (3)

The refinement step can be incorporated into a
closed-form filter by expressing dk in terms of elements
from V k+1.

vk
i = ṽk

i + δi

= fk+1
2i +

72
209

(dk
i−1 + dk

i+1)

=
128
209

vk+1
2i +

72
209

vk+1
2i±1 −

36
209

vk+1
2i±2 +

9
418

vk+1
2i±4 .

Our MR setting for DLG subdivision can be sum-
marized by the following filters:

a =
{

128
209

,
72
209

,− 36
209

, 0,
9

418

}
,

b =
{

1,− 9
16

, 0,
1
16

}
, and

q =
{

128
209

,− 72
209

,− 36
209

, 0,
9

418

}
.

The q filter given above results from refining the trivial
q filter (q = {1, 0, . . . , 0}). That is, Q ← Q − PR
where R is the refinement matrix defined by Eqn. 3.
This set of filters allows for perfect reconstruction of a
decomposed curve.

5.3 Results

To evaluate our MR construction, the work of Sama-
vati and Bartels [1] is used as a comparison. Their local
least-squares approach yields the following optimal de-
composition filter:

aopt =
{

107
161

,
48
161

,− 24
161

, 0,
3

161

}
.

Based on the width of the filter and the relative mag-
nitude of the weights, we note that our DLG filter is
very close to optimal.
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Figure 3. Curves used to evaluate the DLG fil-
ters: (a) face; (b) car; (c) tree; (d) wolf. The
original curve is shown in black, and the curve
approximated by our refined filter in red. Nu-
meric results are listed in Table 1.

Error, L
Model k Trial Refined Optimal
Coast 6 382.8 327.9 326.0
Face 2 66.8 50.4 49.1
Car 2 47.9 41.4 41.2
Tree 2 121.1 94.0 93.1
Wolf 1 46.4 41.1 40.9

Table 1. L2 error relative to the original curve
for the trial, refined, and optimal DLG filters; k
indicates the number of decompositions applied.

Results from a number of curves (shown in Fig. 3
and 4) are listed in Table 1. For each curve V k, the de-
composition filter is applied k times to get a coarse ap-
proximation V 0 of the original curve; the difference be-
tween the approximation P kV 0 and the original gives
an error measure L = ‖V k − P kV 0‖2 for comparing
different filters. In each case, our refined filter is a
substantial improvement over the trial and virtually
identical to the optimal result.

To illustrate the better fitting behaviour of the re-
fined filter relative to the trial filter, consider the coast-
line data depicted in Fig. 4. At the southwest tip of the
island, for instance, the refined filter (c) is able to ap-
proximate the original data more closely than the trial
filter (b). This makes the refined filter more suitable
for compression applications.

Trial

Refined

Figure 4. Comparison of our 4-point filters on
real coastline data (from [21]). The original data
(4096 points) is decomposed six times to obtain a
64-point approximation, which is then subdivided
to the original resolution. The refined filter is able
to better approximate the original data (numeric
results given in Table 1).

vertex

edge

face

Figure 5. An iteration of Catmull-Clark subdivi-
sion creates new vertices at each face (f) and edge
(e), while displacing old vertices (v), to create a
smooth surface in the limit.

6 Catmull-Clark Subdivision

Catmull-Clark subdivision [7, 32] is a popular
scheme [8] for manifold surfaces of arbitrary topology.
It produces a quadrilateral mesh from any base mesh
by adding vertices at each edge and face, then inserting
edges from each edge vertex to adjacent face vertices;
see Fig. 5. The subdivision masks are given by:

fk+1
i =

1

nf
i

vk + ek
i + ek

i+1 +
∑

j

fk
i,j

 , (4)

ek+1
i =

1
4
(
vk + ek

i + fk+1
i−1 + fk+1

i

)
, (5)

vk+1 =
n− 2

n
vk +

1
n2

∑
i

ek
i +

1
n2

∑
i

fk+1
i , (6)
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Figure 6. Notation for the neighborhood of ver-
tex vk. The 1-ring of vk consists of edge neighbors
ek
i and face neighbors fk

i,j . After subdivision, the
1-ring of vk+1 contains edge neighbors ek+1

i and
face neighbors fk+1

i .

according to the notation illustrated in Fig. 6 (indices
are computed modulo n).

The general form of the detail constraint (Eqn. 1)
has only one free parameter. For Catmull-Clark sur-
faces, the heterogeneity of odd vertices necessitates two
free parameters: αe for edge-vertex details, and αf for
face-vertex details. The detail constraint is then

dv = αe

∑
de

i + αf

∑
df

i , i = 1, . . . , n , (7)

where dv, de, and df represent the details of vertex-,
edge-, and face-vertices respectively.

6.1 Trial Mask

The vertex subdivision mask (Eqn. 6) can be rewrit-
ten as vk+1 = n−3

n vk+ 4
n2

∑
i ek+1

i − 1
n2

∑
i fk+1

i . Then,
the vertex-, edge- and face-details are given by

dv = vk+1 −

(
n− 3

n
vk +

4
n2

∑
i

ẽk+1
i − 1

n2

∑
i

f̃k+1
i

)
,

de
i = ek+1

i − ẽk+1
i , and,

df
i = fk+1

i − f̃k+1
i ,

where ẽk+1
i and f̃k+1

i represent the approximations of
ek+1
i and fk+1

i (i.e. subdivision of the coarse approxi-
mation).

To determine αe and αf , we compare the left and
right sides of Eqn. 7:

∑
i ẽk+1

i and
∑

i f̃k+1
i appear on

both sides, with respective weights of 4
n2 and − 1

n2 on
the left, and αe and αf on the right side. By setting
αe = 4

n2 and αf = − 1
n2 , those terms are eliminated,

leaving

vk+1 − n− 3
n

vk =
4
n2

∑
i

ek+1
i − 1

n2

∑
i

fk+1
i .

Thus, the detail constraint is satisfied if this relation-
ship holds, or equivalently, if

vk =
1

n− 3

(
nvk+1 − 4

n

∑
i

ek+1
i +

1
n

∑
i

fk+1
i

)
. (8)

That is, all even vertices vk+1 should be decomposed
to vk according to Eqn. 8.

Note that this represents an inversion of the vertex
subdivision mask (Eqn. 6). That is, if a surface is the
product of subdivision, then decomposition with this
mask will produce a zero-error coarse approximation.

fa

fb

e vnv kvn
kv

Figure 7. Valence-3 vertices must be handled
with special-case masks.

The decomposition (Eqn. 8) is undefined for valence-
3 vertices. Fortunately, a decomposition mask that
works for most valence-3 vertices can be found by an
alternate method.

Consider a valence-3 vertex v with at least one non-
valence-3 coarse neighbor vn (see Fig. 7). Furthermore,
let e be the edge vertex between v and vn, and fa and fb

be the face-vertices adjacent to e. According to Eqn. 5,
these vertices are related by e ≈ 1

4

(
vk + vk

n + fa + fb

)
.

Since vn is not valence-3, it can be decomposed via
Eqn. 8 to vk

n, leaving vk as the only unknown. There-
fore,

vk ≈ 4e− vk
n − fa − fb . (9)

Although it was assumed that vn is not valence-3,
Eqn. 9 allows v to be decomposed as long as vn has
already been decomposed, regardless of vn’s valence.
Therefore, isolated valence-3 vertices can be decom-
posed by cascading inwards from non-valence-3 ver-
tices.

One downside to this approach is that the detail
constraint is not satisfied, meaning that a detail term



must be explicitly stored for each of these vertices.
Another drawback is that the position of vk does not
depend on vk+1; in cases where vk+1 deviates largely
from a smooth position, Eqn. 9 will produce a poor
approximation. To alleviate this issue somewhat, each
already-decomposed neighbor of vk+1 (a maximum of
3) can nominate a “candidate” position for vk based
on Eqn. 9. The final position of vk is then taken to be
the average of all candidates.

6.2 Refinement

The initial decomposition mask has small support:
a coarse vertex depends on only one level of vertex
neighbors. Multiresolution systems generally exhibit
greater stability and better fitting properties when the
decomposition mask has wider support [1].

We address the stability and fitting properties from
another direction, noting the geometric interpretation
of detail vectors: a detail vector captures the difference
between a surface and the subdivision of the coarse
approximation, i.e the error in the coarse surface. The
larger the error, the larger the magnitude of the detail
vectors.

We can look at error on local and global scales. Since
efficiency is a primary concern in our construction, we
restrict ourselves to a local examination. If the local
error can be reduced everywhere in a mesh, then the
global error is also reduced. The local error of a vertex
is represented by the magnitude of a k-ring of details.
Here we consider the 1-ring, in which case the local
error of vk is

E = ‖dv‖2 +
∑
‖de

i‖2 +
∑
‖df

i ‖
2 .

If the error is non-zero, there should be a vector δ
for which vk + δ is a more optimal position than vk.
To find δ – recalling that the error is a measure of how
far a subdivided surface is from the original – we must
determine how the displacement of vk impacts ṽk+1,
ẽk+1
i , and f̃k+1

i .
From the subdivision rules, it can be seen that the

weight applied to vk is r for ṽk+1, si for ẽk+1
i , and ti

for f̃k+1
i , where

r =
n− 2

n
+

1
n2

∑
i

1

nf
i

,

si =
1
4

(
1 +

1

nf
i

+
1

nf
i−1

)
, and

ti =
1

nf
i

.

When vk is displaced, the error changes. For instance,
ṽk+1 becomes ṽk+1+rδ, and therefore dv = vk+1−ṽk+1

becomes vk+1− (ṽk+1 +rδ) = dv−rδ; similarly, de
i and

df
i are impacted according to si and ti. Thus, after

displacement the local error becomes

E(δ) = ‖dv − rδ‖2 +
∑
‖de

i − siδ‖2 −
∑
‖df

i − tiδ‖2 .

This expression expands to

E(δ) = a‖δ‖2 − g · δ + E , (10)

where

a = r2 +
∑

i

s2
i +

∑
i

t2i , and

g = 2

(
rdv +

∑
i

sid
e
i +

∑
i

tid
f
i

)
.

Equation 10 is quadratic in δ, so the minimizing
value can be found analytically by differentiating and
finding a zero-crossing.

E′(δ) = 2aδ − g = 0 → δ =
g
2a

.

This is a minimum, because E′′(δ) = 2a > 0. Therefore

δ =
g
2a

=
∑

(rαe + si)de
i +

∑
(rαf + ti)d

f
i

r2 +
∑

s2
i +

∑
t2i

,

where the detail constraint (Eqn. 7) is used to replace
the dv term. (Because the detail constraint does not
apply to valence-3 vertices, the dv term should be re-
tained when refining them.)

Due to the interrelationships between vertices (eg.
coarse vertices sharing an edge each contribute to the
edge vertex), this refinement is only optimal when ap-
plied to a single vertex. That is, if a neighbor of vk

has been displaced by refinement, the details of any
shared face- and edge-vertices have already been re-
duced, leading to an over-refinement of vk.

We have observed [22] that scaling the displacements
by the central weight of the subdivision mask ade-
quately accounts for these interrelationships. Here, the
central weight (i.e. the contribution of vk to vk+1) is
r. Scaling δ by r yields

δ =
∑

r(rαe + si)de
i +

∑
r(rαf + ti)d

f
i

r2 +
∑

s2
i +

∑
t2i

. (11)

Because Catmull-Clark surfaces are a generalization
of cubic B-spline curves, curve subdivision is used along
boundary vertices and edges [8]. Sharp features can
also be accommodated with boundary masks, increas-
ing the versatility of the representation. Analogously,
a multiresolution system can employ a B-spline curve
multiresolution [12, 23, 22] along boundaries and sharp
features. See Fig. 8 and Fig. 10 for examples.



Figure 8. Sharp features can be handled with B-
spline curve masks, providing a better fit (mid-
dle) to the original (left) than the regular mask
(right).

Figure 9. Decomposition of a double torus with
the refined masks, from level 4 (top) to level 1
(bottom).

6.3 Results

To evaluate the fitting quality of our construction,
we use a similar approach as the previous section. Each
of the models in Figs. 8–11 was decomposed k times,
then subdivided without details back to the original
resolution. For comparison purposes, the Catmull-
Clark MR system described by Bertram et al. [3] was
implemented.

Table 2 summarizes the L2-norm error of the ap-
proximation relative to the original. The approxima-
tion error introduced by our method is comparable to
Bertram’s method; in some instances ours outperforms
theirs and vice versa, depending on the characteristics
of the particular model. Based on visual inspection
and the numeric results, our method provides good fit-
ting behavior suitable for use in compression and mesh

Error, L
Model k Refined Bertram
Terrain 2 1.589 1.226
Dog 2 1.507 2.350
Bullet 2 1.690 1.460
Double torus 3 3.20 0.67

Table 2. L2 error relative to the original surface.

Reconstruction time (s)
Model M1 M2 M3 M4

Double torus 0.62 0.63 1.47 3.50
Terrain 0.15 0.31 0.36 1.21
Bullet 0.10 0.15 0.17 –
Dog 0.17 0.53 1.22 –

Table 3. Time required to reconstruct a surface
from the previous level, i.e. level 1 refers to the
reconstruction of level 1 from level 0 (reported in
seconds).

editing applications.
A benefit of subdivision-based multiresolution sys-

tems is their run-time efficiency; decomposition and re-
construction are linear, if designed well. For the models
in Figs. 8–11, we measured the time required to recon-
struct the model from the lowest resolution (level 0) to
the highest; these results are summarized in Table 3.
The system was implemented in a high-level language
(C#), so performance is less than optimal. Despite the
overhead, however, the efficiency is suitable for inter-
active editing of complex surfaces.

For a visual analysis of the fitting quality, consider
Fig. 12. One level of decomposition reduces the geo-
metric complexity by a factor of 4, yet has very lit-
tle effect on the visual quality of the object. Further
decomposition results in a surface with 1/16th of the
complexity, yet the coarse model is still a faithful rep-
resentation of the original.

7 Conclusion

We have proposed a wavelet-free multiresolution
construction that is applicable to a variety of subdi-
vision surfaces. By constraining the details and then
choosing the coarse surface to satisfy a detail con-
straint, it is possible to store only a subset of the detail
terms and compute the rest. To have high fitting qual-
ity, it is necessary to perform a local optimization on
the coarse surface.

Though our construction can be viewed through the
lens of wavelet analysis, and in fact is an instance of



Figure 10. Decomposition of a terrain section, from level 3 (left) to level 0 (right). (Data from [29].)

decompose−→ edit−→ reconstruct−→

Figure 11. Multiresolution editing: geometric details are retained after performing an edit at a lower resolu-
tion. The base mesh is shown on the bottom.

the lifting method, no knowledge of wavelets or scal-
ing functions is required to understand or apply the
method. Thus, the simplicity of subdivision is carried
over to multiresolution systems, in both description
and implementation.

Our construction was illustrated by constructing
MR systems for Dyn-Levin-Gregory subdivision curves
and Catmull-Clark surfaces, including a consideration
of boundary masks. The resulting systems are stable
and provide fitting behavior that is comparable to other
methods, showing that our constructions are suitable
for editing and compression applications.
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