Single Camera Flexible Projection

Faramarz F. Samavati
University of Calgary

John Brosz *
University of Calgary

Abstract

We introduce a flexible projection framework that is capable of
modeling a wide variety of linear, nonlinear, and hand-tailored
artistic projections with a single camera. This framework intro-
duces a unified geometry for all of these types of projections us-
ing the concept of a flexible viewing volume. With a parametric
representation of the viewing volume, we obtain the ability to cre-
ate curvy volumes, curvy near and far clipping surfaces, and curvy
projectors. Through a description of the framework’s geometry, we
illustrate its capabilities to recreate existing projections and reveal
new projection variations. Further, we apply two techniques for
rendering the framework’s projections: ray casting, and a limited
GPU based scanline algorithm that achieves real-time results.

CR Categories: 1.3.3 [Computer Graphics]: Image Generation—
Viewing Algorithms

Keywords: projection, parametric modeling, non-photorealistic
rendering, nonlinear ray casting.

1 Introduction

Projection is fundamental to computer graphics since all three-
dimensional scenes must be projected in some manner onto two-
dimensional displays. In addition to the standard parallel and per-
spective projections, there have been a number of alternate projec-
tion models proposed, such as fish-eye, telephoto, and hand-tailored
artistic projections. However, in spite of the increased awareness of
such alternatives, the standard projections remain commonly used
because they fit within a well understood geometric framework
[Carlbom and Paciorek 1978] that is readily implementable.

As research into the space of possible projection variations expands,
an increasing number of viable individual solutions have been dis-
covered. Also, a number of specific frameworks that describe a
family of related projections have been proposed. We continue
to expand in this latter direction, proposing a generalized, single
camera, flexible projection framework (SCFPF) that incorporates
previous individual solutions and existing smaller sub-frameworks.
SCFPF provides the following features:

* A coherent general geometric framework that can reproduce
all single camera 3D to 2D projections that we have encoun-
tered. Additionally, without resorting to additional cameras,
this framework can reproduce some projections previously
created from several cameras as well as reveal new projection
possibilities.

*e-mail: brosz@cpsc.ucalgary.ca
Te-mail:samavati @cpsc.ucalgary.ca
*e-mail:sheelagh@cpsc.ucalgary.ca
$e-mail:mario @cpsc.ucalgary.ca

M. Sheelagh T. Carpendale *

Mario Costa Sousa *
University of Calgary

University of Calgary

Figure 1: A projection that uses nonlinear projectors created with
our interface. A diagram of the projection and the 3D setup are
shown top left and right respectively. The resulting projected image
is shown at the bottom. This projection allows us to see almost en-
tirely around the car. Qg, Q1, and Q> mark the parametric surfaces
used to defined the viewing volume.

* SCFPF geometric models more readily support experiment-
ing with as well as comparing and contrasting different pro-
jections.

e The given cohesive geometric descriptions supports sub-
categorization identifying families within the 3D to 2D pro-
jection space that can be supported by our given implementa-
tion methods.

* Having a single descriptive camera model provides the ba-
sis for offering more comprehensible user access to greater
freedoms in projection effects and is a better fit with our daily
experience (through use of a single camera as opposed to mul-
tiple cameras).

There are many situations where non-standard projections have
been useful or effective. Some projections, such as fish-eye and
cylindrical panoramic projections, can capture more of the scene
than is possible in standard projections. Aurtistically, projections
have frequently been varied from the standard perspective to im-
prove legibility, convey expression [Willats and Durand 2005], cre-
ate abstraction, assist in shape depiction, and provide impact. To
mention just a couple of examples of unique perspective, Cubism
images can contain multiple variant perspective views as in Pi-
casso’s portrait of Daniel-Henry Kahnweller (1910), or blend vary-
ing perspective as in Saint Severin No. 1 by Delaunay (1909). Much
more recently, the artistic impact of the animation Ryan [Coleman
and Singh 2004], a significant part of which uses blended alternate
perspective, has been received with much acclaim.

Although clearly desirable for expanding the capabilities of graphic
expression, these non-standard projections are seldom seen in com-
puter generated images. At least in part, this absence may be be-
cause non-standard projections tend to be difficult to integrate into
the traditional graphics pipeline. The reason for this difficulty is
that unlike the standard projections, non-standard projections are
often nonlinear in nature and, consequently, are not representable
as linear transformations in projection space. When this is the
case we categorize it as a nonlinear projection as suggested by Sa-
lomon [2006]. Another reason for non-standard projections’ lack of
representation in computer graphics is that previously no common
framework existed that was capable of creating all of these different
projections. Non-standard projection implementations still tend to
be individually hand-tailored. This not only makes it time consum-
ing and expensive to experiment with alternative projections, but
makes it nearly impossible for people not familiar with the neces-
sary mathematical background.

Our framework introduces a unified geometry for a wide variety
of projections including linear, nonlinear, and artistic projections.
This unification makes modeling and rendering of projections eas-
ier and assists conceptually in understanding the interplay between
the scene, the projection, and the resulting image. Additionally, our
system is underlaid by a relatively simple mathematical foundation
and does not rely on compositing of individual projections into a
single image. In addition to introducing SCFPF, we discuss our im-
plementation choices, including two rendering algorithms: one is
based on ray casting; the other uses scanline rendering to achieve
realtime performance for a subset of our framework’s possible pro-
jections.

In the next section, we review a variety of projection techniques
that have been proposed in computer graphics. Section 3 defines
and describes our framework. Section 4 provides the details of our
implementation choices and of rendering SCFPF projections. In
Section 5, we show results and discuss how projections from exist-
ing works can be reproduced with SCFPF. Lastly, Section 6 presents
our conclusions and directions for future work.

2 Related Work

2.1 Single Camera Projections

Wyvill and McNaughton [1990] present Optical Models, a tech-
nique for creating projections by mapping an image plane, RZ, to
a set of rays originating from an image surface, ®° (three coordi-
nates and two angles). The definition of the mapping is left to the
implementation. This technique is capable of reproducing typical
camera based projections, such as fish-eye projection, as well as
handling curved image planes. Similarly, Glassner [2000; 2004]
creates cubist style projections. Like Optical Models, this system
is also suited to ray tracing; however, in this system the rays are
defined by two NURBS surfaces.

Levene’s non-realistic projections [1998] extends Inakage’s [1991]
non-linear perspective projections and provides the capability to
create a variety of artistic projections. This framework uses several
parameterized functions that allow users to control the shape of the
projection surfaces and the shape of convergence and divergence of
orthogonals.

Kolb et al. [1995] developed a technique of reproducing assorted
photographic projections by physically simulating lens and camera
behaviors. These lens techniques rely on simulating light and con-
sequently use a ray tracing approach.

Most recently, Wang et al. [Wang et al. 2005] presented a volume
lens technique using ray casting. The rays are refracted at the image

plane based on the specific type of lens selected. A GPU pixel
shader then steps through the 3D texture compositing a fragment
color based on texels encountered along the ray.

The General Linear Camera (GLC) model described by Yu and
McMillan [2004b] is able to reproduce a wide variety of linear pro-
jections including perspective, orthogonal, push-broom [Gupta and
Hartley 1997], and crossed-slits [Zomet et al. 2003] projections.
GLCs are described by three rays. Affine combinations of these
defining rays are used to create the rays that sample the scene.

Salomon’s book on projections [2006] provides mathematical
derivations of a wide variety of linear and nonlinear projections.
Wood et al. [1997] and Rademacher and Bishop [1998] have devel-
oped systems of creating images that combine more than one view-
point with a single camera. In Wood et al.’s work, camera paths are
used to create a single panoramic image where local areas of the im-
age have the appearance of a perspective projection. Rademacher
and Bishop’s multiple-center-of-projection images can be described
as the result of moving a slit camera along a path through a scene.
Mei et al. [2005] introduced the occlusion camera. The projection
produced by this camera reveals occluded areas of a 3D objects to
assist in image based rendering.

It is important to note that none of these single camera systems is
capable of reproducing all of the other single camera systems. In
Section 5 we will discuss and demonstrate how these techniques
can be created within our framework.

2.2 Composite Projections

There is a rapidly growing body of work that deals with images
created by blending the results of two or more cameras’ projections
together. We refer to these projections as composite projections.
Works that make use of composite projections include Agrawala et
al. [2000], Singh [2002], and Coleman and Singh [2004]. Addition-
ally Popescu et al.’s sampled-based cameras for rendering reflec-
tions by blending together many linear camera’s projections can be
viewed as producing a type of composite projection [2006]. Lev-
ene’s non-realistic projections [1998], previously mentioned, also
includes support for simple composite projections. In general these
techniques use multiple cameras positioned throughout the scene.
These cameras produce images using linear projections (usually
perspective or orthographic) and the main effort of these works lies
in blending the images together to produce a coherent composite
image as a result. This involves control of the blending process,
possibly setting culling distance to keep far-away objects from de-
forming into the scene, and imposing constraints to maintain geom-
etry.

Singh and Balakrishanan [2004] introduce a projection where local
areas of magnification are created by deforming the scene with a
FFD deformation lattice. The deformed geometry is then projected
to an image.

A variation of composite projection is shown in works by Agarwala
et al. [2006], Collomosse and Hall [2003], and Claus and Fitzgib-
bon [2005]. In these systems, photographs from cameras with un-
registered positions and orientations are blended together to create:
long images with a variety of vanishing points; non-photorealistic
rendering of cubist style paintings; and remove radial distortion,
respectively.

Another particular type of composite projection is encompassed
by Yu and McMillan’s Framework for Multiperspective Rendering
[2004a]. In this work the final image is created from a patchwork
of tiles; each tile created by a different GLC. By controlling the
types and parameters of cameras whose tiles neighbor one another
Cp continuity in the resulting image is guaranteed.

In our system, we have chosen to concentrate on creating projec-
tions with a single camera. This avoids the difficult process of
blending images together. It also yields an easily visualizable view-
ing volume that assists in understanding the projection and fits well
into our daily experience. Despite using a single camera our frame-
work can reproduce some composite projection effects by bending
or splitting the image plane as is shown in Section 5.

3 Projection Framework

The current techniques for specifying projections in computer
graphics involve deriving unique matrices from the type of projec-
tion (i.e., parallel or perspective) and the camera specification (i.e.,
viewing angle, position of clipping planes, etc).

‘We propose a new technique for specifying projections in which the
user models the geometry of the viewing volume. One can think of
our framework’s camera as starting with an orthogonal projection’s
viewing volume (Figure 2) made from an elastic material. This
viewing volume can then be deformed and manipulated to create
the desired volume and projection (Figure 3). The end result can
be a curvy volume, with curvy near and far clipping surfaces and
curvy projectors. Projectors are defined as curves (or lines) starting
at the image plane (or image surface) and ending at the far plane
(or surface), passing through all points in the scene that could be
projected onto the projector’s starting position.

depth Qf

g

Figure 2: Viewing volume of an orthogonal projection. We can
imagine this as the starting point for SCFPF viewing volumes that
can be deformed into various shapes. As will be standard through-
out, projectors are shown as blue lines while surfaces within the
viewing volume are green. Qy and Q label the near and far planes

of the volume.
/ Qn

=

Qf

Re-parameterization

Image

Projection Geometry

Figure 3: A complex projection’s geometry with nonlinear projec-
tors. Re-parameterization provides a map between Q, and an im-
age.

To accomplish this curvy result, we represent a projection’s viewing
volume as a parametric volume:

x(u,v,1) uy <u<u
Qu,v,t) = | y(u,wt) |, vo<v<y
z(u,v,t) 0<t<1

The parameter ¢ corresponds to depth within the projection’s view-

ing volume while u# and v identify position within the remaining
dimensions (and eventually also the position in the resulting im-

age).

To illustrate Q(u,v,t) let us begin with the orthographic projec-
tion shown in Figure 2 and abstract it to a more general setting.
For orthogonal projections, the viewing volume is a rectangular
prism. From this volume, we can extract two important paramet-
ric surfaces, the near plane, O, = Q(«,v,0), and the far plane,
Qr= O(u,v,1). These planes become generalized as surfaces and
are parameterized by u and v. Projectors within the orthogonal
viewing volume become parallel lines that run between and are or-
thogonal to the near and far planes. If given an arbitrary point p
within this volume, we determine its projection by identifying the
u,v coordinates of the projector that intersects p.

Each projector py,(t) = Q(u,v,t) within the volume originates at
On(u,v) and ends at Qr(u,v). When creating camera-like projec-
tions (e.g., perspective, orthogonal, fish-eye) projectors are linear,
composed of rays defined by the two points: O, (,v) and Q (u,v).
We discuss linear projections further in Section 3.2. To allow full
control over all three dimensions of our parameterization, we also
allow for nonlinear projectors. That is, projectors that follow a
curved path through the 3D scene. The reasons for and effects of
allowing this freedom are further discussed in Subsection 3.3. Fig-
ure 3 shows an example of a viewing volume with these nonlinear
projectors.

One remaining issue is that after we have deformed the viewing
volume, our surfaces O, and Qy may no longer be planar. Con-
sequently we may no longer have a concrete viewing plane within
the volume. In these cases we use an extra step, that we call re-
parameterization, to map projected points from Qy(u,v) to a view-
ing plane (see Figure 3). Re-parameterization is described in Sub-
section 3.4.

To render a given point p = (x,y,z) within the viewing volume we
calculate its parametric representation (u,v,t). To accomplish this,
we identify the u,v coordinates of the projector that intersects p
and then determine its depth along the projector. This step can be
expensive in the general case, however there are important cases
that lead to simple computations; we will discuss this in Section 4.

In Figure 4, we introduce a diagrammatic representation of the
viewing volume. In these diagrams, we present orthogonal views
of the viewing volume with attention to the key surfaces, Q,, and
Qy, that can be used to identify the characteristics and behavior of
the projection. In addition, represented as blue lines, are a sam-
pling of the viewing volume’s projectors. By following the projec-
tors through the volume we can identify where points in the scene
will be projected in the image. The surfaces in these diagrams are
shown in green and the projectors in blue. Additionally, we will
show the camera setup in perspective 3D when we wish to ensure
that the original shape of the models is understood and to assist in
describing some projections that are not easily described with an
orthographic projection (such as the projection shown in Figure 7).

3.1 Relation to Volume Deformation

At this point, our parameterization of the camera’s viewing volume
might be seen as merely an extension of volume representation or
deformation such as free-form deformation (FFD) [Sederberg and
Parry 1986] or extended free-form deformation (EFFD) [Coquillart
1990]. To show otherwise we ask you to consider an analogy: the
geometry of a pyramid was understood long before it was applied
to create the perspective viewing system in traditional art. This de-
velopment, first scientifically analyzed during the Renaissance con-
stituted a breakthrough for viewing systems. With this in mind, our

Figure 4: Creating perspective (left), orthogonal (center), and in-
verted perspective projections (right). The diagram of the setup of
each projection is shown on the left while resulting image is shown
on the right.

goal has been to present the idea of accomplishing projection by
deforming the viewing volume. Notice that our goal is not to ob-
tain (or see) deformed objects in the scene; rather it is to observe
what happens to the objects after projection (in a nonlinear fashion)
to a 2D surface. This creates a variety of new possibilities for cre-
ating projections. It is also worthwhile to note that these volume
deformation techniques begin with a regular volume, determine the
3D parameterization of objects, and then find the objects’ location
in the deformed volume. SCFPF is the dual, with the reverse task
of determining the objects’ parameterization in the deformed vol-
ume so the object can be shown within a regular volume (i.e., the
viewbox).

3.2 Projection with Linear Projectors

When dealing with linear projectors it is possible to define the entire
volume by specifying the two parametric surfaces 0, and Qy. It is
important to note that these surfaces need not be rectangles or even
planes. The volume between these surfaces becomes the viewing
volume of the projection. We represent this parametrically as:

O(u,v,t) = (1 —1)Qn(u,v) +1Q5(u,v)

te [0,117 ue [u07u1}7 ve [VOvvl]

where ug,u1, vy, and v represent the lower and upper bounds of the
parameters used for 0, and Q.

We construct projectors leading from @, to Qr. The definition of
the projector that originates at Q,, (ug, vg) becomes:

Gug,vo (1) = (1 =1)Qu(uo,v0) +1Qr(uo,v0) t €[0,1].

Points on a particular projector that are at a depth (¢) greater than
one or less than zero are not included in the image. This provides a
far and near clipping distance for each projector.

Now we will show that a perspective projection created by our
framework is indeed the perspective projection we are familiar with
in computer graphics. In Figure 4 we created the perspective pro-
jection using two square patches with normals parallel to the z-axis.
Our surface @y is a small square and our surface Qy is a larger
square. The center of each square is aligned. These parametric
squares are defined as:

X cx+lu
y =] ¢g+lv
z c;

where ¢ = (cx, ¢y, c) is the center of the square and [is half the
width of the square. In our projection we set ¢, = (0,0,1) and
cy =(0,0,2), I, =1, and Iy = 2. With Q, and Qy defined, our
viewing volume is:

O(u,v,t) = (1—=1)[cp, + (1,0,0)u+ (0,1,0)v]+

tley +(2,0,0)u+(0,2,0)v].

From this we get:

X (1 —1)u+2tu
y | =] (I1=t)v+2tv
z (1—1)+2¢

We solve for p* = (u,v,t) and find:

] T E
o]

z
t z

Let us now look at how we can produce some common projec-
tions. By using two square, parallel planes it is simple to reproduce
perspective, orthogonal, and inverse perspective projections as is
shown in Figure 4. Let us examine our definition of a perspective
projection within SCFPF a little more closely. Our surface Q,, is
a small parametric rectangle while Qy is a larger rectangle. In the
perspective projection shown in Figure 4 the center of each rectan-
gle is aligned, although this is not always necessary. However, to
create a perspective projection, the ratios of width to height of these
two rectangles must be the same and the surfaces must be parallel
to one another. This ensures that the projectors converge to a sin-
gle viewing point. By varying the sizes of O, and Qy, as well as
their centers, while ensuring that the projectors converge to a single
point, we can recreate all possible perspective projections.

It is worth noticing that by shifting O, or O and changing their
width to height ratios in ways to cause the projectors to no longer
converge, we can create entirely new, but somehow related projec-
tions. In Figure 5, we present an irregular perspective projection
that removes the distortion that is created in the columns perpen-
dicular to the near plane in a wide angle perspective projection.
This brief example begins to convey the flexibility and power of
our framework’s ability to create, modify, and explore the space of
possible projections.

One last, pertinent point is in our linear perspective projection,
depth of a point in the viewbox, p = (x,y,z), parameterized as
_p=Onluy)
Or(uy)=0u(uy)"
This is contrary to most 3D graphics applications [Watt 2000]
where linear perspective projection’s depth is calculated as:

= f%df where f, d, and z are the distances from the center of

projection (COP) to the far plane, near plane, and p respectively.
This difference can be corrected with a re-parameterization of the
depth coordinate ¢ to linear perspective depth 7.

(u,v,t) is t. Parameter ¢ can be calculated as r =

Nonlinear Projections

It is also possible to use linear projectors to create nonlinear projec-
tions by creating viewing volumes where Q, or Q are curvy sur-
faces. For example, by using a small circle (or small hemisphere)
as O, and a hemisphere centered at that point as Oy we achieve
an angular fish-eye projection [Salomon 2006] (Figure 8). Another
popular nonlinear projection is the cylindrical panoramic projec-
tion. This is formed by placing one cylinder, Q,, within another
larger cylinder, Q (Figure 6).

B

Figure 6: A cylindrical panorama projection can be created with two nested cylinders.

(I

Figure 5: Comparison between perspective and irregular perspec-
tive projections. From left to right the top row of diagrams present
the side view of both projections, the top view of perspective, and
the top view of irregular perspective. In the middle and bottom rows
we present the 3D volume and the results of perspective (left) and
irregular perspective (right) projections respectively. Notice that
the odd looking distortion of the columns in the perspective result
is almost entirely absent in the irregular perspective result.

The major advantage of this geometric technique for composing
projections is that it becomes much easier to visualize, create, and
adjust created projections. Rather than dealing with the underly-
ing math, parameters in equations, projections are created through
manipulating these relatively simple surfaces and projectors.

3.3 Nonlinear Projectors

By allowing projectors to assume curvy paths between O, and Oy,
we can greatly increase the diversity of projections made possible
by our framework. Nonlinear projectors allow the nature of the
projection to be changed, based on the depth within the viewing
volume. The nonlinear projectors are parametric curves, gy, (f)
for any fixed (ug,vo).

In Figure 7, we show an example of the difference in control over
the projection made possible by using nonlinear projectors. Nonlin-
ear projectors not only allow more control over the position where
a projector intersects an object, but also provide control over the
angle at which the projector intersects the object. This is important
in creating complicated projections such as those in Figures 11 and
13.

Qr Qn
Qn

Figure 7: Comparison of a linear twist projection (left) to a non-
linear projection (right).

3.4 Re-parameterization

With the viewing volume Q(u,v,f) and a given point in the scene
p = (x,y,z) we calculate the projection by finding p’s parameteriza-
tion, p = (u,v,t). Once we have projected all the points, we need to
map (u,v,t) to an image. We call this operation re-parameterization.
This operation can be visualized as mapping Q,(u,v) to a viewing
surface (screen). Most often this viewing surface will be a plane,
but for special applications other surfaces may prove useful. For
example, if we had a curved monitor, we could map to the moni-
tor’s particular curved shape. When Q,,(u,v) is a parametric surface
patch, the re-parameterization is as easy as interpreting (u,v) as the
width and height specifications of pixels in the image. However, if
we happen to use parametric surfaces based on polar coordinates
(e.g., a circle, sphere, or hemisphere) a map from polar coordinates
to a rectangular shape in Cartesian coordinates is necessary.

Aside from achieving a flat, rectangular image, re-parameterization
can be used to produce other useful effects by resampling the pa-
rameterization. A wide variety of possible distortions exist; such
distortions can be taken from practically any image space distor-
tion technique such as magic lenses [Yang et al. 2005], or distor-
tion viewing [Carpendale and Montagnese 2001]. One possibility
is magnifying a specific local area of the image to produce a mag-
nifying lens effect. Another would be in creating a global distortion
that changes an angular fish-eye projection into a lens-like fish-eye.
In this distortion, shown in Figure 8, objects nearest the center of
the circle appear larger while objects further from the center be-
come compressed.

4 Implementation and Interface

When previously discussing nonlinear projectors, we have left the
method for specifying the shape of these curves open. In this sec-

Figure 8: The top two images present a diagram and the 3D setup
of the angular fish-eye projection. In the bottom row, from left
to right are the results of an angular fish-eye projection, a pic-
ture taken with a fish-eye camera lens ©[Dargaud 2007], and a
re-parameterization of the angular fish-eye projection to achieve a
lens-like effect.

tion, we describe one possible technique that helps users to con-
trol the flexible viewing volume. This is discussed in subsection
4.1. To render our framework’s projections we propose two tech-
niques. The first, presented in subsection 4.2 is for linear projec-
tors and subsection 4.3 for nonlinear projectors is a ray casting
approach. Subsection 4.4 presents a scanline rendering algorithm
where polygonal coordinates are changed with a vertex shader to
positions within the viewbox. This operation achieves realtime re-
sults.

4.1 Nonlinear Projector Interface

There are many alternatives for defining our viewing volume, some
noteworthy options include implicit definitions and EFFD lattices
[Coquillart 1990]. For our implementation, we decided to define
our nonlinear projectors as Bezier curves and define the volume
with a set of parametric control surfaces. This use of Bezier curves
enforces interpolation of Q,, and Q f so that 0, (u,v) = Q(u,v,0) and
Qf(u,v) = Q(u,v,1) hold true, and allows us to control the projec-
tor curves with control points. Alternatively, B-Spline or NURBS
curve schemes could have be used in a similar fashion.

We begin specifying Q(u,v,t) by defining Q, and Q. This pro-
vides an initial and final control point for each projector. However,
this leaves the remainder of the curve undefined. To provide defi-
nition, we first impose the restriction that all curves have the same
order and thus the same number of control points. The other con-
trol points are provided by creating intermediate control surfaces,
an extra surface for each necessary extra control point. To sim-
plify indexing, we now label our surfaces as Qg,Q1,..., O, Where
On = Qo and Q¢ = Oy and m+ 1 is the number of control points
required for each projector. These new control surfaces should not
be confused with surfaces in the volume; that is Q1 (u, v) is not nec-
essarily equal to Q(u,v, %) With these control surfaces providing
control points, our projector curves are:
m
qu,v([) = ZBi,m([)Qi(Mvv)v te [07 H

i=0

where B; ;,(t) are Bernstein polynomials. Consequently, our view-

ing volume becomes:

m

O(u,v,t) = ZBi7m(t)Q,~(u,v) u € [ug,uy], v € [vo,v1], t €[0,1].
i=0

With this implementation the user first decides upon the desired
type of projectors, determining the appropriate number of control
surfaces. These surfaces can come from a list of predefined para-
metric surfaces (including common options such as a hemisphere,
cylinder, bilinear surface, Bezier patch, point, etc) and then have
their parameters, positions, and orientations adjusted to create the
desired viewing volume. By displaying a few projectors within the
volume (as in Figure 1) the viewing volume becomes clearly de-
fined. From this visualization it also becomes relatively easy to
predict the behavior of the projection.

If we specify our control surfaces as FFD (or EFFD) control lat-
tices, our use of Bezier curve projectors will cause our entire vol-
ume to be parameterized in the same manner as an FFD or EFFD
volume. In general, we did not wish to force our control surfaces
to be control lattices. The reason for this is that use of non-lattice
control surfaces, such as hemispheres and cylinders, allows us to
analytically perform ray casting and scanline rendering and avoid
resorting to solving with Newton’s root finding or similar methods
as in [Coquillart 1990].

4.2 Ray Casting

For projections using linear projectors, the implementation is sim-
ply that of an ordinary ray caster. The first intersection of rays
and objects produces the output image. The projection framework
is merely used to create the rays that sample the scene. To trace
an individual ray, we first select the image space coordinate (x,y).
Next, re-parameterization is used to map these pixel coordinates to
our surface coordinates (u,v). The ray that originates at (u,v) is
defined by the projector:

Guy(t) = (1 =1)0n(u,v) +1Q(u,v).

Intersection tests occur in the same manner as in conventional ray
tracers where 7 € [0, 1] denotes valid intersections occurring within
the viewing volume. Lighting, anti-aliasing, acceleration tech-
niques, and other operations, if desired, remain the same as in con-
ventional ray casters.

4.3 Nonlinear Projector Casting

For projections with nonlinear projectors, a more involved approach
is necessary. It is clear that the problem of nonlinear projector-
object intersection can be much harder than linear projector-object
intersection. However, for the class of quadratic and cubic pro-
jectors, it is still relatively inexpensive to find these intersections
analytically. In this analytical implementation, we have limited our
projectors to quadratic curves. Although, this results in projections
that are less complex than those with higher order projectors, we
have found that quadratics are powerful enough to create a wide
variety of projector curves.

The alternative implementation is to use ray segments to approx-
imate the nonlinear projectors. This approach is similar to that
of various existing nonlinear ray tracing techniques [Groller 1995;
Weiskopf 2000; Weiskopf et al. 2004]. For this type of implemen-
tation, Q(u,v,t) can provide a vector field to control the direction
of ray segments. Naturally this approach is useful and most ac-
curate when the nonlinear projectors do not deviate greatly from
linear projectors. Highly curved projectors however, require a large
number of ray segments to approximate in a useful fashion, and

consequently may require higher computational costs to achieve ac-
curacy.

A difference between our nonlinear projector casting and ray cast-
ing is the question of how to deal with specular highlights when
performing Phong lighting calculations. Specular highlights are de-
termined by (R-V)" where V is the direction to the viewer, R is the
light reflection vector, and n denotes the specular power. The prob-
lematic term here is V. In our projections, we do not necessarily
have a view location or a straight projector (as is the case in Figure
1) to provide this term. Our approach is to use an estimate of the
projector’s tangent at the point of intersection. This is a reasonable
approach as it takes into account the path of the projector at the
point in space where it intersects the object.

4.4 Scanline Rendering Algorithm

Our scanline rendering algorithm makes use of the rendering
pipeline to produce realtime SCFPF projections. In its current state,
this algorithm is only capable of rendering a subset of the projec-
tions within our framework.

In this algorithm, we render scenes through our projections with the
help of vertex shaders. We use vertex shaders to move vertices from
their position in the original geometry to their projected position in
the viewbox. Then the existing hardware scanline rendering system
renders the triangles of the model. This algorithm is extremely fast
although the scanline rendering of triangles can result in inaccura-
cies in rendering and clipping when coarse models are used. This
is due to projection of vertices, rather than all points of each trian-
gle. This problem can be alleviated by subdividing the models in
the scene.

The primary task of our scanline algorithm is, for each vertex of the
scene, to change its spatial representation (x,y,z) to a parametric
representation (u,v,t). Re-parameterization requires an additional
step where the u and v values are changed based on the specified
re-parameterization mapping.

To solve for (u,v,t), let us start by assuming that for a given
p = (x,3,2), t =1t is known where ¢’ is the particular depth value
of the vertex within the projection volume (we describe how ¢’ is
calculated shortly). The step here is to solve for # and v. Hav-
ing the description of the volume Q(u,v,), we are able to find the
iso-surface O} (u,v) = Q(u,v,t’) that p is located on. Next we for
the u and v coordinates for p on Q, (u,v). The exact details of this
solution depends on the definition of Qy (u,v).

As we are solving for two unknowns (u and v) with three known
equations (the parametric equations for x, y, and z that define
Qy (u,v)) this algorithm is generally limited to projection geome-
try where Oy (u,v) can be defined by first degree equations. Once
we have solved for u and v, we then perform the re-parameterization
mapping on (u,v).

To complete the calculation of (u,v,t) from (x,y,z), we need to find
t = t'. Therefore, the parameter ¢ must be calculable with knowl-
edge of Q(u,v,t) and p. Simple examples of where this is possi-
ble are the linear projections shown in Figure 4. For these projec-
tions, ¢ can be calculated by the ratio of the distance of p to Q, to
the distance between Q, and Q. Other projections for which this
algorithm can be used, have all of their u,v iso-surfaces (that is,
Q¢ (u,v)) parallel to one another. We can further extend this to pro-
jections with parametric surfaces that are equally distant from one
another at all points (i.e., as in the case of nested spheres or cylin-
ders). Examples of possible projections include projections with
nonlinear projectors like those in Figures 7 and 9. Figure 1 pro-
vides an example of a projection where estimating ¢ is not possible
and thus cannot implemented with our scanline technique. Another

example of a situation where scanline rendering is not possible is
projections where a point (x,y,z) can be mapped to more than one
(u,v,t) coordinate.

Our description to this point has been applied to our single camera
flexible projection framework in general; however with our spe-
cific implementation (using control surfaces) there are some ad-
ditional considerations. Firstly, if the control surfaces are all the
same type of parametric surface, then Q(u,v) is easily extracted
from Q(u,v,t) as a surface of this same type. The second consider-
ation is that since vertex shaders cannot be overly complex, due to
hardware considerations, each type of parametric surface requires a
different vertex shader to be implemented to solve for (u,v) given
p on the surface.

5 Reproducing Various Projections

Now that we have presented our framework and its implementation
we discuss how a variety of projections can be reproduced. We re-
produce these projections by discussing how to recreate the geome-
try of the projections. In some cases additional re-parameterization
may be necessary to achieve accurate depth values in the projected
coordinates.

When working with linear projectors and without re-
parameterization, our framework behaves in the same manner as
Optical Models [1990]. Similarly we can reproduce Glassner’s
Digital Cubism [2000; 2004] by defining our viewing volume
through NURBS surfaces. Figures 4, 6, and 8 demonstrate projec-
tions that are commonly reproducible by Optical Models, Digital
Cubism, and SCFPF. Our technique introduces improvement over
these related techniques in three areas. The first is that we introduce
nonlinear projectors. These projectors allow the projection to
change its characteristics through the depth of the viewing volume.
The second is the re-parameterization step that allows the resulting
image to be resampled as desired. For example, in Figure 8 it
allows us to resample our angular fish-eye to better resemble
the photographic fish-eye image. Lastly our technique features a
scanline algorithm (albeit a limited one).

As opposed to Kolb et al.’s physical simulation [1995], our goal
is not to reproduce all the physical effects present in the camera
such as focus, chromatic aberration, etc; but instead to provide a
unified method of creating projections. We have shown that we
can approximately reproduce a camera’s fish-eye projection (Figure
8). Other lens simulations are reproducible with linear projectors
that collect the scene’s light onto a surface representing the shape
of the lens and an appropriate mapping function applied for re-
parameterization that mimics the lens’ reorganization of light onto
the film surface.

In Magic Volumes [Wang et al. 2005] three different projections
using linear projectors are described. The first, called the magnifi-
cation lens, changes the direction of a subset rays to point toward a
single point on the far plane, instead of being directed orthogonally.
This single point is surrounded by a transition region where the ray
direction is pointed slightly toward this single, magnification point.
With SCFPF this effect can be produced by using a linear, planar,
B-Spline patch with a fine resolution of control points. The magni-
fication point can be created by collapsing several neighboring con-
trol points to a single position and by moving surrounding control
points closer to this location. The second projection, the sample-
rate-based lens, is produced by changing the sampling of the im-
age plane to produce areas of magnification. This is easily accom-
plished with SCFPF by using an appropriate re-parameterization
mapping. Lastly, we have already shown production of the fish-eye
lenses that are the third projection presented for Magic Volumes.

In regards to Levene’s framework [1998], we have already shown
the ability to control convergence and divergence of parallel lines
in Figure 4. We can also produce curved convergence of parallel
lines as is shown in Figure 9. One particular drawback of Levene’s
framework is that it is unable to reproduce projections that use a
curved projection surface (such as a fish-eye projection).

xlz—'v Q;

Q;

Figure 9: A projection that uses nonlinear projectors to create
curved convergence of parallel lines.

Next, we would like to show that our framework can reproduce Yu
and McMillan’s General Linear Cameras (GLC) [2004b]. A GLC
is defined by three rays that intersect the image plane at z = 0 and
another plane at z = 1. The rays pass through z = 0 at (&;,v;,0)
for i = [1,2,3] and the z = 1 at (s;,#i,1). Consequently, each ray
can be parameterized in 4D by (s;,#;,u;,v;). The GLC produces an
image by collecting measurements from the affine combinations of
the rays:

r=a(si,t,ur,vi)+B(s2,0,u2,v2) + (1 — a — B)(s3,13,u3,v3).

Since o and 8 simultaneously parameterize both the z=0and z =1
planes, we can use @ and f3 as the u and v terms per our framework’s
volume Q(u,v,t). Qp and Q become the planes that bound this
volume and, since rays are linear, we use a linear term for ¢ as:

Q(M,VJ) = (1 *l)Q,KM,V)‘I»l‘Qf(M,V).

Since GLCs can reproduce a variety of linear cameras, this means
that SCFPF can produce these cameras as well. Additionally it is
clear that GLCs cannot produce nonlinear projectors as any affine
combination of linear rays (the rays defining the camera) produces
linear rays.

The moving slit camera used in Rademacher and Bishop’s [1998]
multiple-center-of-projection (MCOP) images can be reproduced
using projection with linear projectors. The surface O, takes the
form of a general cylinder that follows the MCOP path of the cam-
era, while Q¢ can be piecewise defined based on the MCOP cam-
era parameters, described as (C;, O;,U;,V;) for each column of the
MCOP image. MCOP projections cannot produce our SCFP as
MCOPs’ image plane can only curve in one direction due to the
use of the slit camera. Additionally MCOP projections do not uti-
lize curved projectors.

The occlusion camera [Mei et al. 2005] can also be reproduced
with our flexible projection. This projection uses piecewise linear
projectors. These projectors are defined by three control surfaces.
The first, Qg is a point at the camera position. The second, Q;
is the plane that Mei et al. refer to as the near distortion plane.
The third surface is Q3 (u,v) = PPHC((u,v,zr) where PPHC is the
occlusion camera’s projection function for the camera defined by
(40,v0,2n,2f,dn,dr) [Mei et al. 2005]. Figure 10 shows a visual-
ization of an occlusion camera.

In our experiments, we observed that we can also reproduce some
kinds of composite projections using our single camera projections.

Figure 10: An occlusion camera [Mei et al. 2005].

For example, we can start with a regular perspective volume, and
adjust the parameterization of Q and Q» to direct projectors to
approximate separate cameras (Figure 11 presents an example of
this). The advantage of this approach is that the nonlinear projectors
provide automatic blending between the two cameras.

Figure 11 was create to produce a long street panorama in the spirit
of those created by Agarwala et al. [2006]. This image follows a
street across the cityscape and, in the result that utilizes nonlinear
projectors, is able to present two different perspective views down
the regions marked A and B. This example also indicates how a
multiperspective panorama by Wood et al. [1997] can be produced.
To create even more dramatic multiperspective images Q, could
be changed to follow a curved route through the scene much like
MCOP images [Radmacher and Bishop 1998]. Additionally Qs’s
height could also be varied to produce areas of differing zoom.

Another composite projection that our framework can produce is
Yu and McMillan’s Multiperspective Framework (MPF) [Yu and
McMillan 2004a]. This is done as follows. For each tile i of the
MPF image, we can construct the corresponding GLC with a SCFP
volume defined with linear projectors by Oy, and Q.. Our volume
for the entire MPF projection is then described by the piecewise
control surfaces QO and Q r where each piece of surfaces correspond
to the appropriate piece Oy, and Q..

Let us consider that there is a space of all possible non-composite
projections. The related work that we have mentioned covers dis-
joint subsets and individual solutions within this space. We argue
that our framework covers this entire space; not only can we re-
produce these individual solutions; but, we can also interpolate be-
tween individual solutions and extrapolate to new projections from
existing ones. Interpolation is shown in Figure 12 where the created
projection is similar to an orthogonal projection at QO but becomes
a perspective projection as it approaches Q. One can imagine this
projection as being useful in a scenario where orthogonal viewing
is desired in the area of focus (i.e., near the camera), but displaying
the context of the surrounding scene via perspective depth cueing
is also wanted. Extrapolation, among other places, is particularly
shown in the irregular perspective projection portrayed in Figure 5
where we produce a projection that shares many aspects of perspec-
tive projection but is beyond existing projections. Our deformation
of the viewing volume is a continuous operation that allows cre-
ation of an infinite set of possible projections that includes many
undiscovered projections.

In Figure 13, we have attempted to use SCFPF to recreate the pro-
jection that M. C. Escher has created in Study for House of Stairs,
Pencil and Ink, 1951 [Locker 2000]. Although there are differences
between our image and his, this example shows that SCFPF pro-
vides the capability of recreating customized artistic projections.

6 Conclusion

We have presented a framework that allows creation of linear, non-
linear, and artistic projections. We have shown that our system is
capable of reproducing projections from a variety of existing com-
puter graphics projection techniques.

Figure 11: Effects of nonlinear projectors. At the top we show
the construction of two projections, one with linear projectors (left)
the other with nonlinear projectors (right). The resulting images
produced by these projections are shown in the middle and bottom
images. The nonlinear projectors have been used to create perspec-
tive viewpoints in areas A and B. Orange ellipses mark the areas of
change.

z

yl—v Q

Figure 12: A projection with nonlinear projectors that is a blend of
an orthogonal and a perspective projection.

‘We have also introduced nonlinear projectors. While nonlinear pro-
jectors have been used in other works, our control of the projectors
is the first to not require ray integration (in contrast to nonlinear ray
tracing by Groller [1995] and Weiskopf et al. [2004]). Nonlinear
projectors are a key element of allowing control over where and at
what angle projectors intersect objects.

The most important aspect of this framework is that it allows users
to create projections in a geometric and unified fashion. This geo-
metric modeling of projections draws on previous computer model-
ing experiences and avoids tricky, mathematical, hand-tailored pro-
jections. The unified aspect of this system enables us to conceptu-
alize and use a variety of projections in the same way. It is therefore
easier to compare and contrast projections with one another.

Lastly, we have described two different rendering implementations:
one that makes use of graphics hardware to achieve real time per-
formance, the other based on ray casting.

Qr Qf

Il

Figure 13: Recreating the projection used in Study for House of
Stairs, Pencil and Ink, 1951 by M. C. Escher [Locker 2000] using
SCFPF. On the left we show the details of the setup and result of a
perspective projection. On the right we present our designed imita-
tion projection.

6.1 Limitations and Future Work

A key limitation of our method lies in efficiency. Although we can
reproduce a wide variety of projections, including some composite
projections, the generality of the framework makes efficient pro-
jection difficult. E.g., in MCOP images [Radmacher and Bishop
1998] their composite viewing volume is produced by varying the
parameters of strip camera as it follows a path through the scene.
However, since a SCFPF control surface may have any shape (and
since projectors may be curved) we cannot simply change the para-
meters of a linear camera across the image. Consequently we rely
on ray casting, aside from special cases where scanline rendering is
possible.

Our current GPU implementation is limited; creating a less restric-
tive interactive technique is a major goal in our future work. The
casting algorithm also presents interesting challenges. One chal-
lenge is adapting ray-based acceleration techniques, such as use
of the spatial subdivision, to nonlinear projector intersection tests.
Another idea to be addressed is in extending nonlinear projector
casting to nonlinear projector tracing; handling of reflections and
refraction in a predictable and coherent manner is a key concern. It
is our intuition that the distortion of the view volume does not dis-
tort the scene’s actual geometry and consequently reflections and
refractions should be calculated using rays, rather than nonlinear
projectors.

Another key area in future work is to examine useful interfaces for
creating these projections. Our experience has shown that an inter-
face capable of taking a sketched user input of direction and angle
of intersection to create the parameterized viewing volume would
greatly assist in creating projections with nonlinear projectors.

Lastly, there should be more work done to directly compare the
capabilities of SCFPF and composite projections. Although SCFPF
is capable of creating some composite projections (see Figure 11) it
is not clear to what extent the two techniques overlap one another.
It is likely that the most complete projection system would employ
composition of SCFPF projections.

Acknowledgements

We are grateful to Katayoon Etemad for her modeling assistance, to
Ruth Hart-Budd and Mark Hancock for their assistance in editing,
and the referees for insightful and helpful reviews. The support
of the Natural Sciences Research Council of Canada and iCore is
appreciatively acknowledged.

References

AGARWALA, A., AGRAWALA, M., COHEN, M., SALESIN, D.,
AND SZELISKI, R. 2006. Photographing long scenes with multi-
viewpoint panoramas. ACM Transactions on Graphics 25, 3,
853-861.

AGRAWALA, M., ZORIN, D., AND MUNZNER, T. 2000. Artistic
multiprojection rendering. In Proceedings of the Eurographics
Workshop on Rendering Techniques 2000, Springer-Verlag, 125—
136.

CARLBOM, I., AND PACIOREK, J. 1978. Planar geometric pro-
jections and viewing transformations. ACM Comput. Surv. 10, 4,
465-502.

CARPENDALE, M. S. T., AND MONTAGNESE, C. 2001. A frame-
work for unifying presentation space. In UIST "01: Proceedings
of the 14th annual ACM symposium on User interface software
and technology, ACM Press, 61-70.

CLAUS, D., AND FITZGIBBON, A. W. 2005. A rational func-
tion lens distortion model for general cameras. In Proc. of the
2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), IEEE Computer Society,
vol. 1,213-219.

COLEMAN, P., AND SINGH, K. 2004. Ryan: rendering your an-
imation nonlinearly projected. In NPAR ’04: Proceedings of
the 3rd international symposium on Non-photorealistic anima-
tion and rendering, ACM Press, 129-156.

COLLOMOSSE, J. P., AND HALL, P. M. 2003. Cubist style render-
ing from photographs. IEEE Transactions on Visualization and
Computer Graphics 9, 4, 443-453.

COQUILLART, S. 1990. Extended free-form deformation: a culp-
turing tool for 3d geometric modeling. Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 90) 24, 4, 187-196.

DARGAUD, G. 2007. Fisheye photography.
http://www.gdargaud.net/Photo/Fisheye.html, January.

GLASSNER, A. S. 2000. Cubism and cameras: Free-form optics
for computer graphics. Tech. Rep. MSR-TR-2000-05, Microsoft.

GLASSNER, A. S. 2004. Digital cubism. IEEE Computer Graphics
and Applications 24, 3 (May-Jun), 82-90.

GROLLER, E. 1995. Nonlinear ray tracing: Visualizing strange
worlds. The Visual Computer 11, 5 (May), 263-274.

GUPTA, R., AND HARTLEY, R. I. 1997. Linear pushbroom cam-
eras. IEEE Trans. Pattern Anal. Mach. Intell. 19,9, 963-975.

INAKAGE, M. 1991. Non-linear perspective projections. In Mod-
eling in Computer Graphics (Proceedings of the IFIP WG 5.10),
203-215.

KoLB, C., MITCHELL, D., AND HANRAHAN, P. 1995. A realistic
camera model for computer graphics. In Proceedings of ACM
SIGGRAPH 95, ACM Press / ACM SIGGRAPH, 317-324.

LEVENE, J. 1998. A framework for non-realistic projections. Mas-
ter’s thesis, Massachusetts Institute of Technology.

LOCKER, J. L. 2000. The Magic of M. C. Escher. Harry N. Abrams
Inc., New York.

MEI, C., POPESCU, V., AND SACKS, E. 2005. The occlusion
camera. Computer Graphics Forum 24, 3, 335-342.

PoPEScU, V., SACKS, E., AND MEI, C. 2006. Sample-based cam-
eras for feed forward reflection rendering. IEEE Transactions on
Visualization and Computer Graphics 12, 6, 1590-1600.

RADMACHER, P., AND BisHOP, G. 1998. Multiple-center-of-
projection images. In Proceedings of ACM SIGGRAPH 98,
ACM Press / ACM SIGGRAPH, 199-206.

SALOMON, D. 2006. Transformations and Projections in Com-
puter Graphics. Springer-Verlag.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 86), 20, 4, ACM Press, 151-160.

SINGH, K., AND BALAKRISHNAN, R. 2004. Visualizing 3d scenes
using non-linear projections and data mining of previous cam-
era movements. In AFRIGRAPH ’04: Proceedings of the 3rd
international conference on Computer graphics, virtual reality,
visualisation and interaction in Africa, ACM Press, 41-48.

SINGH, K. 2002. A fresh perspective. In Graphics Interface, 17—
24.

WANG, L., ZHAO, Y., MUELLER, K., AND KAUFMAN, A. 2005.
The magic volume lens: An interactive focus+context technique
for volume rendering. VIS 00, 47.

WATT, A. 2000. 3D Computer Graphics, third ed. Addison-Wesley
Publishing Company Inc.

WEISKOPF, D., SCHAFHITZEL, T., AND ERTL, T. 2004. Gpu-
based nonlinear ray tracing. Computer Graphics Forum 23, 3,
625-633.

WEISKOPF, D. 2000. Four-dimensional non-linear ray tracing as a
visualization tool for gravitational physics. VIS 00, 12.

WILLATS, J., AND DURAND, F. 2005. Defining pictorial style:
Lessons from linguistics and computer graphics. Axiomathes 15,
319-351(33).

WoobD, D. N., FINKELSTEIN, A., HUGHES, J. F., THAYER,
C. E., AND SALESIN, D. H. 1997. Multiperspective panora-
mas for cel animation. In Proceedings of ACM SIGGRAPH 97,
ACM Press / ACM SIGGRAPH, 243-250.

WyYVILL, G., AND MCNAUGHTON, C. 1990. Optical mod-
els. In Proceedings of the eighth international conference of the
Computer Graphics Society on CG International *90: computer
graphics around the world, Springer-Verlag, 83-93.

YANG, Y., CHEN, J. X., AND BEHESHTI, M. 2005. Nonlinear
perspective projections and magic lenses: 3d view deformation.
IEEE Computer Graphics and Applications 25, 1, 76-84.

Yu, J., AND MCMILLAN, L. 2004. A framework for multiper-
spective rendering. In I5th Eurographics Symposium on Ren-
dering (EGSR04), 61-68.

YU, J., AND MCMILLAN, L. 2004. General linear cameras. In
Computer Vision - ECCV 2004, Springer Berlin / Heidelberg,
vol. 2, 14-27.

ZOMET, A., FELDMAN, D., PELEG, S., AND WEINSHALL, D.
2003. Mosaicing new views: The crossed-slits projection. /[EEE
Transactions on Pattern Analysis and Machine Intelligence 25,
6, 741-754.

