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Abstract

Hierarchical grids appear in various applications in computer graphics
such as subdivision and multiresolution surfaces, and terrain models. Since
the different grid types perform better at different tasks, it is desired to
switch between regular grids to take advantages of these grids. Based on a
2D domain obtained from the connectivity information of a mesh, we can
define simple conversions to switch between regular grids. In this paper,
we introduce a general framework that can be used to convert a given grid
to another and we discuss the properties of these refinements such as their
transformations. This framework is hierarchical meaning that it provides
conversions between meshes at different level of refinement. To describe the
use of this framework, we define new regular and near-regular refinements
with good properties such as small factors. We also describe how grid con-
version enables us to use patch-based data structures for hexagonal cells
and near-regular refinements. To do so, meshes are converted to a set of
quadrilateral patches that can be stored in simple structures. Near-regular
refinements are also supported by defining two sets of neighborhood vectors
that connect a vertex to its neighbors and are useful to address connectivity
queries.

Keywords: Refinements, Grid Conversion, Patch-based Data Structures,
Transformations, Semiregular, Subdivision

1. Introduction

Triangular, quadrilateral, and hexagonal grids appear in many applica-
tions in computer graphics such as finite elements, subdivision and multires-
olution surfaces, and terrain rendering. Triangular grids are common due to
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Figure 1: Semiregular hexagonal and triangular models ((a) and (b) at the bottom) are
created by hexagonal and triangular refinements ((a) and (b) at the top). Using conversions
such as pairing ((c) at the top), or dual ((d) at the top), we can use simple quadrilateral
hierarchical shapes and efficient data structures for packing models in (a) and (b) at the
bottom into quadrilateral patches ((c) and (d) at the bottom).
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their application in many fundamental algorithms such as Delaunay triangu-
lation and Loop subdivision [1, 2], and they are also optimized for processing
on modern hardware. The simple parametric form of quadrilateral grids
can be readily applied to tensor product surfaces, NURBS, B-Spline, and
Catmull-Clark patches [3, 4]. Furthermore, quadtrees [5] exploit the sim-
ple boundaries of quadrilateral grids and their straightforward hierarchical
shape. Hexagonal grids provide the best sampling of surfaces as they provide
less bias towards edges (they are more circular) in comparison with squares
and triangles, support uniform neighborhood, and provide a reduced quanti-
zation error over other alternatives [6]. As a result, hexagonal grids appear in
applications such as hierarchical representation of the Earth and subdivision
surfaces [7, 8].

In this paper, we provide hierarchical grid conversions between triangular,
quadrilateral and hexagonal grids. These conversions are basically simple
modifications in the connectivity of vertices that convert a type of grid to
another. Using these conversions, we can switch between the grids as the
need dictates (see Figure 1). For example, hierarchical shapes resulting from
a refinement of quads are very simple as opposed to hexagons that are not
congruent (this means that it is not possible to completely cover a hexagon
by a set of complete and disjoint smaller hexagons). As a result, we can
convert hexagonal grids to quadrilaterals to design an efficient data structure
for hexagonal grids and benefit from the simple hierarchical shape of quads
and convert them back when cells with better sampling rate or a uniform
neighborhood definition is desired.

Hierarchy among the cells is typically provided by refinements. Refine-
ments introduce more cells and vertices into a model. When a refinement is
applied to a cell with area A, it divides the cell into some smaller cells with
area A

i
. Such a refinement is called 1-to-i refinement or a refinement with the

factor of i [9]. Refinements are useful when i is an integer number since after
two levels of subdivision the cells are simply scaled by an integer number (al-
though lattices may not be aligned). However, these refinements are typically
specified for a particular grid. For instance, quadrilateral 1-to-3 refinement
has not been defined while triangular 1-to-3 refinement has been successfully
employed in

√
3 subdivision. Using hierarchical grid conversions, we propose

a framework to define such refinements and study their properties.
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Contributions

Our main contribution is to present hierarchical conversions between reg-
ular grids. To demonstrate the usefulness of these conversions, we use them
to define new near-regular and regular refinements for grids and extend an
existing patch-based hierarchical data structure - Atlas of Connectivity Maps
(ACM)- [10, 11] to support hexagonal grids and more variety of regular and
near-regular refinements.

2. Related work

As we present hierarchical grid conversions in this paper and use them
to define new refinements and hierarchical data structures, we can catego-
rize the work related to our method into three groups: conversions between
regular grids, refinement and subdivision, and data structures proposed to
support multiresolution (hierarchy) of semiregular models. In the following,
we provide prior work of each group.

2.1. Conversion between Regular Grids

Grid conversion is already well explored within the Computer Graph-
ics community, under the topic of remeshing. Triangulation [12, 13] and
quadrangulation [14] convert arbitrary meshes to those with cells, of trian-
gles and quadrilaterals respectively. This remeshing may improve rendering
time, mesh quality, or fulfill geometric or aesthetic constraints. Hexagonal
remeshing occurs for architectural reasons or to better represent features on
the mesh due to the better sampling property [15, 16, 17, 18]. Alternatively,
conversions can occur through duality remeshing to achieve a specific cell
type [8], or improve smoothness [19].

These cell conversions mostly take complicated geometric properties (e.g
Gaussian curvature) into consideration for converting one type of grid to
another as their applications need to satisfy a specific geometric property
[14]. However, we convert the grids on 2D domains by simple operations
that only change the connectivity of vertices. Some of these conversions are
very straightforward. However, we combine them with refinements to define
new refinements and design efficient hierarchical data structures.
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2.2. Refinements

Regular refinements in surface modeling are the process of splitting faces
into a set of smaller faces. After refinements, more faces and vertices are
created and a higher resolution model is obtained. As a result, refinements
can create a hierarchy of objects at different resolutions (i.e. the level of
refinement). Regular refinements have many usages in computer graphics
such as subdivision in which faces are initially split by a regular refinement
and then vertices are geometrically modified to obtain a smooth surface.

Regular refinements are defined differently in literature. Guskov et al.
[20] consider only the dyadic refinement as a regular quadrilateral refinement
in which a face is split into four faces (Figure 2 (b)). Weiss and De Floriani
[9] also consider the same definition for triangular faces. This type of refine-
ment is the most common refinement as it is employed in designing popular
subdivision methods such as Catmull-Clark and Loop [4, 2] and useful data
structures such as quadtrees [5].

Velho in [21] defines regular refinements for quadrilateral meshes as a
process that produces a finer set of similar faces that are only scaled. He then
categorizes regular refinements as primal and dual. In a primal subdivision,
the vertices of the coarse tessellation are preserved and old edges are divided
and reconnected while in a dual subdivision, new vertices are inserted in
the interior of faces and the old vertices and edges are discarded. With this
definition Doo-Sabin refinement is a regular dual refinement (Figure 2 (c)).
However, there still exists some regular refinements that are not included in
this definition. Simplest refinement [22] in which new vertices are inserted at
edges and the old vertices and edges are discarded is an example of a regular
refinement that does not cover by Velho’s definition (Figure 2 (d)).

(a) (b) (c) (d)

Figure 2: (a) A set of coarse points. (b) Dyadic refinement. (c) Doo-Sabin refinement.
(d) Simplest refinement.

Alexa [23] defines the regular refinements using 2D regular triangular
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meshes. He considers a coordinate system for triangle meshes using two
edges of an equilateral triangle. To study the behavior of refinements, he
establishes the hierarchical relationship between the coordinate system of
triangular meshes before and after refinements.

As noted by Ivrissimtzis et al. [24], the definition of Alexa for 2D tri-
angular meshes can be rephrased as 2D triangular lattices. If a 2D regular
triangular lattice is named L0, after an application of a regular refinement,
a higher resolution lattice L1 is created, and after r applications of a regu-
lar refinement Lr is made. Regular refinements studied by Alexa have three
conditions as the following:

• All the lattices are similar (all triangles are equilateral).

• Lattice Ln+1 can be obtained using a transformation in the Euclidean
plane and the scale of the transformation is called arity of the refine-
ment.

• Point sets of a lattice with higher resolution is the superset of the point
set of a lower resolution (i.e. L0 ⊂ L1 ⊂ L2... ⊂ Ln).

Ivrissimtzis et al. [24] use the same concept for categorizing refinements
for regular quadrilateral lattices. However, the third condition in the Alexa’s
definition excludes dual refinements such as Doo-Sabin since in such a refine-
ment the old vertices are discarded (Lr 6⊂ Lr+1). As a result, they replace the
third condition with a looser one in which they consider both center-faces,
and the vertices of Lr+1, as valid locations for the points of the coarser lattice
Lr.

The usefulness of these refinements is later examined through a set of
heuristics by Dodgson in [25]. Destelle et al. [26] also defined a set of subdivi-
sion operators. Using these operators, some regular and irregular refinements
can be produced. However, there exists an intermediate set of refinements
that are not completely irregular but they are not also regular. An example
of such a refinement is the 1-to-2 refinement employed in 4-8 subdivision
which carries good properties such as C4 continuity at regular vertices. In
this paper, we introduce new regular and near-regular refinements by propos-
ing a simple framework and study some of their properties. We hope that
these refinements can later provide useful smooth subdivision schemes al-
though subdivision schemes are not the only application of refinements. An
alternative example of the refinements’ application is Earth representation in
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which a hierarchical model is created by combining refinement and spherical
projection [27, 7, 28].

2.3. Multiresolution Data Structures

Multiresolution surfaces have applications in mesh editing, compression,
and morphing. One approach to construct multiresolution is to use surface
subdivision (or refinement) [29, 30]. Various data structures support subdi-
vision and multiresolution surfaces [9], with the most common keeping the
connectivity information of vertices and faces into each edge [31, 32]. Unfor-
tunately, these data structures require an excessive amount of memory and
time to represent and maintain high resolution objects and their hierarchy.

To support subdivision and multiresolution surfaces, hierarchical data
structures such as quadtrees are more useful [5]. In order to make quadtrees
more efficient, indexing methods in which a unique index is assigned to each
node have been proposed. Connectivity queries are then handled using a
defined algebra on the indices themselves [5, 33, 34]. Hierarchical indexing
methods can be efficient in terms of both space and time.

In some multiresolution frameworks, meshes have to be semiregular or
they must have subdivision connectivity [14, 30, 35]. These models are ob-
tained by applying repetitive refinement on a mesh with an arbitrary topol-
ogy. The result of this operation is a model composed of a set of connected
regular cells. A patch usually refers to an m × n block of quads (possibly
m 6= n) connected to each other. By this definition, all the internal vertices
are regular, all vertices along the boundary edges have valence three except
four vertices at the corners that have valence two. Patches can be defined
similarly for triangular and hexagonal patches. The only difference is the
valence of internal boundary and corner vertices. For example, an internal
vertex in a triangular patch has valence six while corner vertices have valence
two or three and boundary vertices have valence four. Recently, Mahdavi-
Amiri and Samavati proposed an Atlas of Connectivity Maps (ACM) an
indexing method to support semiregular quadrilateral and triangular mul-
tiresolution objects [36, 11]. Using conversions between regular grids, we can
adapt ACM to additionally support hexagonal models. Conversions between
grids not only enable us to adapt ACM but we can also adapt other index-
ing methods defined for quadtrees or similar structures featuring different
properties to support all regular grids.
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3. Conversion between Regular Grid Systems

By changing the connectivity of cells or applying simple operations, we
can convert one type of a regular grid to another. These conversions can be
then used to define novel refinements or extend hierarchical data structures
to support cells with complicated hierarchy definitions such as hexagons.

An important property of a regular grid is that the connectivity of cells
and vertices are implicit and there is no need to explicitly store the connection
of cells or vertices. Each cell has a corresponding face with 3D vertices that
can be obtained by mapping φ. φ can be defined via numerous sources such
as Bspline surfaces, subdivision masks, or explicitly storing the location of
vertices. A patch is a 2D regular grid mapped onto a 3D surface (see Figure
3). Similar to the coordinate systems of lattices [24], we define the coordinate
systems on the regular grids (2D domains) by taking one vertex as the origin
and two incident edges to be the coordinate axes [24, 23]. This coordinate
system provides an integer indexing that can be used within a data structure
to address a 2D array storing the 3D locations of each vertex (acting as φ).

(0,0) (8,0)

(8,8)(0,8)

Φ

Figure 3: An eight by eight 3D patch on a mesh that is mapped to a 2D grid.

Grid Gi, i ∈ {t, q, h} denotes triangular, quadrilateral, or hexagonal when
i is t, q, or h respectively. Given a grid Gi, we can convert it to grid Gj j ∈
{t, q, h} by conversion Ci→j. Ci→j is an operation applied on the connectivity
of a given mesh by inserting new vertices or edges or removing the existing
ones. These conversions are defined on the 2D domain of the mesh that
are obtained by mapping vertices to a set of 2D coordinates with integer
indices. In these 2D domains, Gi and Gj have their own coordinate systems
(Oi, Ui, Vi) and (Oj, Uj, Vj). In these coordinate systems, O is the origin
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chosen as one of the vertices on the 2D domain and U and V are two edges
chosen as the main axes of the coordinate system. Having such coordinate
systems, it is possible to find a transformation T i→j mapping (Oi, Ui, Vi)
to (Oj, Uj, Vj) (Figure 4). T i→j is found through an algebraic relationship
between axes of (Oi, Ui, Vi) and (Oj, Uj, Vj). Using T i→j, the coordinate of
any point in the coordinate system of Gi can be found in Gj. In this paper,
we derive some important transformation as examples. Although choosing
coordinate systems on 2D domains can be arbitrary, the method for finding
the transformation is the same while the resulting transformations may be
slightly different. In the following sections, we introduce some conversions as
well as the notations used throughout the paper. These simple conversions
enable one to switch between regular grids to benefit from the advantages
offered by different grids.

3.1. Pairing Conversion

This conversion is basically a simple pairing triangles and denoted by
Ct→q
P as the subscript refers to the name of conversion (pairing) and the

superscript denotes that it converts triangular grids to quadrilaterals. Here,
we first define the notation and then provide the conversion.

Gt Gq

C
t->q

T
t->q

Ot Ut

Vt

Oq Uq

Vq

P

Figure 4: Grid Gt is converted to Gq by conversion Ct→q
P and (Ot, Ut, Vt) is mapped to

(Oq, Uq, Vq) by T t→q.

A quadrilateral grid Gq consists of a set Cq of quad cells with four vertices
(Figure 5). A vertex O of Gq is chosen as the origin and edges Uq and Vq
incident with Oq form axes of Gq. To distinguish between indexing cells and
vertices, we use q(a, b) as the index of a vertex and q[a, b] as the index of a
cell. A vertex v in Gq has index q(a, b) where (a, b) is the integer coordinate
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of v in (Oq, Uq, Vq). A quad cell has index q[a, b] if its vertices have indices
q(a, b), q(a+ 1, b), q(a, b+ 1), and q(a+ 1, b+ 1).

(a) (b) (c)

Uq

Vq

q(0,0) q(1,0)

q(1,1)q(0,1)

Ut

Vt

Vt

Ut

(d)
t(0,0) t(1,0)

t(1,1)t(0,1)
t[0,0]

0

t[0,0]
1

q[0,0]
Oq

Ot

Figure 5: (a) A quadrilateral grid, its origin O, and two axes Uq and Vq. (b) Indices of
vertices of a quadrilateral cell q[0, 0]. (c) A triangular grid and its origin O. (d) Top: two
axes Ut and Vt with 60◦ difference. Bottom: Ut and Vt with 120◦ difference, and indices
correspondent to these axes for cells and vertices. Green and orange cells have indices
t[0, 0]0 and t[0, 0]1 respectively.

Similarly, to define a coordinate system for a triangular gridGt, (Ot, Ut, Vt)
illustrated in Figure 5 (d) is used. There exist two triangular cells associ-
ated with vertex t(a, b). Hence, we add a superscript to differentiate between
them: t[a, b]0 and t[a, b]1 illustrated in Figure 5. Using this notation, two
triangular cells t[a, b]0 and t[a, b]1 can be paired to a quad q[a, b] if the edge
connecting t(a, b), and t(a+ 1, b+ 1) is removed (Figure 5 (d)). This conver-
sion from triangular cells to quads is called the pairing conversion.

When a mesh is closed, a complete pairing of triangles is possible and
is computable in O(Mlog4M) where M is the number of triangles [37, 38].
However, if the mesh has boundary, we may have some isolated triangles.
Based on the application, different treatments can be applied on such trian-
gles, we can add a dummy vertex to quadrangulate isolated triangles, if the
mesh has to be pure quad (e.g. quadrilateral refinements) or we can keep
them as isolated triangles but distinguish them by a flag when pairing is
only needed to pack triangles for efficiency (e.g. designing an efficient data
structure).

3.2. Unpairing Conversion

Unpairing conversion Cq→t
U is the inverse of Ct→q

P . Given quadrilateral
grid Gq, connect all vertices q(a, b) to q(a+ 1, b+ 1) and obtain a triangular
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grid Gt. We can also define this conversion by connecting vertices along
q(a + 1, b) to q(a, b + 1). We refer to the first case by referring to Cq→t

U

unless otherwise is indicated. The unpairing conversion can be applied on
any quadrilateral mesh as each quad can be split into two triangles. The
unpairing conversion must be compatible with the pairing conversion if we
want to have unpairing conversion as the inverse of the pairing conversion.
This means that if vertices at the diagonal in triangle pairs have indices
q(a, b) to q(a + 1, b + 1) in pairing conversion, in the unpairing conversion,
the same vertices must be connected to each other.

3.3. Dual Conversion

Hexagonal grids have also applications in parametrization, Earth repre-
sentation, and surface modeling. A simple way to obtain hexagonal grids is
taking the dual of triangular grids Ct→h

D . To index hexagonal cells, we use
the hexagonal coordinate system [39, 40] (Figure 6 (a)). The origin Oh is
chosen as the midpoint of an arbitrary hexagonal cell h and axes Uh and Vh
have 120◦ difference connecting Oh to the midpoints of two neighboring cells.

A hexagonal cell gets index h[a, b], if its midpoint is a and b steps from Oh

along Uh and Vv respectively. Using (Oh, Uh, Vh) to index vertices does not
provide our desired integer indices. Therefore, a second coordinate system
for hexagonal vertices is defined (see Figure 6 (b)). Note that coordinate
systems provided in Figure 6 (a) and (b) can be simply converted to each
other. We use subscripts A and B to distinguish coordinates of two systems
illustrated in Figure 6 (a) and (b) respectively. As illustrated in Figure
6 (c), (1,−1)B = (1, 0)A and (1, 2)B = (0, 1)A. As a result, mapping M that
transforms arbitrary coordinates (ω, λ)B to (Ω,Λ)A can be found by solving

the system M( 1 1
−1 2 ) = ( 1 0

0 1 ). Solving this system results M = (
2
3
− 1

3
1
3

1
3

).

To convert hexagonal grid Gh to a triangular grid Gt (Ch→t
D ), we trian-

gulate the hexagonal cells by forming edges between the midpoints of all
adjacent hexagons (Figure 7 (a)). Similarly, to define Ct→h

D , the midpoints of
triangular cells - are taken to be the vertices of the hexagonal cells, and edges
are constructed by connecting the midpoints of adjacent triangles. Note that
two iterations of dual conversion is identity. Assume that we have chosen co-
ordinate system of Figure 6 (b) to index the vertices. We take the average of
coordinates to find the midpoints. Figure 7 (b) shows that averaging points
on the hexagon with vertices h(1, 1), h(1, 0), h(0, 1), h(−1, 0), h(−1,−1), and
h(0,−1) results in vertices on triangles (t(0, 0) and averaging vertices of tri-
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angles returns back the vertices of hexagons (e.g. ( t(1,2)+t(0,0)+t(2,1)
3

= h(1, 1)).
After finding Gt from Gh by the dual conversion, one can pair the triangles
and obtain a quadrilateral grid (Figure 7 (c)).

h[-1,-1]

h[0,-1]

h[0,1]

h[-1,0] h[1,1]

h[2,2]

h[2,1]

h[2,0]

(a)

Uh

Vh

h[1,0]

oh

(b)

h(1,0)

h(0,1) h(1,1)

h(0,-1)h(-1,-1)

oh

h(-1,0)

(c)

(0,1)
B

(1,0)
A
=(1,-1)

B

(0,1)
A
=(1,2)

B

Figure 6: (a) Hexagonal coordinate system and its corresponding indices for hexagonal
cells. (b) Coordinate system to index vertices and its corresponding indices. (c) Equality
of vectors in coordinate systems of (a) and (b).

q(a,b)

q(a+1,b+1)

q(a,b+1)

(c)

q(a,b)

q(a+1,b+1)

q(a,b)

q(a+1,b+1)q(a+1,b+1)q(a+1,b+1)

(a)

Ut
ot

Vt

q(a+1,b)

Uq

Vq

t(0,0)

t(1,2)

h(1,0)

h(0,-1)h(-1,-1)

h(-1,0)

h(0,1) h(1,1) t(2,1)

t(0,0)

t(2,1)t(2,1)t(2,1)h(1,1)

(b)

Duality
t(1,2)

Figure 7: (a) Dual conversion of hexagons to triangles. (b) Duality conversion between
triangles and hexagons. (c) A quad corresponding to hexagonal grids, its axes and indices
of its vertices.

In the dual conversion, the coordinates of cells in Gh correspond to the
coordinate of vertices in Gt (Figure 8). In other words, for any vertex t(a, b)
inGt, there exists a hexagonal cell with index h[a, b] inGh. As each triangular
cell in Gt corresponds to a vertex in Gh, vertices of hexagonal cells can be
indexed using the indices of six triangular cells (Figure 8 (d)). As a result,
we employ the coordinate system in Figure 6 (a) to index hexagonal cells
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and triangular vertices that are the dual of each other. Using the index
of triangular vertices, we can index triangular cells similar to the case of
unpairing conversion in Figure 5 (d). Finally, using the index of triangular
cells, we have indexed hexagonal cells using the duality (Figure 8).

(a) (b) (c)

h[a,b]

h[a,b+1]

h[a,b-1]

h[a+1,b]

h[a+1,b+1]

h[a-1,b-1]

h[a-1,b]
t(a,b)

t(a+1,b)

t(a+1,b+1)

t(a,b+1)

t(a,b-1)

t(a-1,b-1)

t(a-1,b)

t[a,b]
0

t[a,b]
1

t[a,b-1]
0

t[a-1,b-1]
0

t[a-1,b]
1

t[a-1,b-1]
1

(d)

h(a,b)
0h(a-1,b)

1

h(a,b)
1

h(a,b-1)
0

h(a-1,b-1)
1

h(a-1,b-1)
0

Figure 8: (a) Indices of hexagonal cells shown by h[]. (b) Triangular grid of (a) obtained
by dual conversion and the indices of its vertices shown by t(). (c) Indices of the same
triangular cells in (b) shown by t[]. (d) Indices of vertices of the hexagonal cell h[a, b]
shown by h().

We can apply dual conversion on any mesh. For example, the dual con-
version of a regular quadrilateral mesh (Cq→q

D ) is a translated regular quadri-
lateral mesh. We should just note that irregular vertices on a triangular
mesh would be non-hexagonal faces in the dual mesh with sides equal to
the valence of vertices. Non-hexagonal faces also become extraordinary ver-
tices when the dual conversion is applied on a hexagonal mesh. Note that
faces at the boundary of a hexagonal mesh become boundary vertices in the
triangular mesh after applying dual conversion on a triangular mesh.

4. Hierarchical Grid Conversion

Various refinements can be applied to an object in order to obtain a more
detailed or smoother object. To benefit from each grid at different levels
of refinement, we combine conversions and refinements within the hierarchi-
cal grid conversion (Figure 9). Conversions and refinements may impose a
transformation on the grid coordinates. Therefore, a total transformation
T exists for the hierarchical grid conversion that is the composition of all
involved transformations (T = T a→bi ◦ T nR ◦ T b→cj ).

Using this framework, we can define useful operations and concepts. For
instance, we can obtain new conversions, refinements, hierarchies, and data
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Ga Gb G’
b G’

c

C
i

a->b

R
n

(a)

C
j

b->c
T

i

a->b

T
R

n T
j

b->c

T
(b)

Figure 9: (a) General framework of having conversions and refinements. (b) Having a
defined coordinate system for a grid, transformations are imposed by grid conversions and
refinements. R is the refinement and T is the composition of all transformations.

structures for grids. In the following, we discuss usability and applications
of this framework and provide some examples.

4.1. Split and Aggregation Conversion

Our hierarchical grid conversions can be a base to define new conversions.
In this section, we derive another conversion called split conversion (Ch→t

S )
(Figure 10). To define this conversion, first Gh is converted to Gt by dual
conversion Ch→t

D and then a 1-to-3 refinement is applied to Gt to get a higher
resolution grid (Ǵt), (see Appendix B). Note that the last conversion is iden-
tity (I) to show that it is compatible with the multiresolution framework
(see Figure 10 (d)). The whole process converting Gh to Ǵt is split conver-
sion. In fact, the set of all midpoints and vertices of Gh are triangulated by
connecting the midpoint of each hexagonal cell to its vertices (Figure 11). It
is possible to derive the transformation T imposed by the hierarchical grid
conversion. Here, we derive the transformation imposed by Ch→t

S . Ǵt has
the same origin as Gh and can take Ut and Vt as the basis vectors. We can
find transformation mapping these grid coordinate systems by finding the
equality of axes of each coordinate system. In this case, Uh = Ut − Vt and
Vh = Ut + 2Vt (Figure 11 (c)). Then, a hexagonal cell with index h[a, b] has
a midpoint on vertex t(c, d) in Ǵt where (c, d) = ( 1 2

1 −1 )( ab ) = (a+ b, 2b− a).
Other transformations could be defined similarly.

We can also define aggregation conversion denoted by Ct→h
A that reduces

the resolution by replacing triangular cells sharing a common vertex into one
cell. Vertices of h are found by adding six vectors as shown in Figure 12(b).
Note that choosing different origins in Ǵt results in different Gh available
in three distinct configurations as illustrated in Figure 12 (c). One of these
variations of aggregation conversion is the inverse of the split conversion. In
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(a) (b)

G
h

G
t

G’

t
G’

t

C
D

h->t

1-to-3 I

C
S

h->t

(c) (d)

Figure 10: (a) Hexagonal grid Gh and triangular grid Gt obtained from dual conversion
Ch→t

D . (b) 1-to-3 refinement applied on Gt to obtain Ǵt. (c) Split conversion Ch→t
S . (d)

Ch→t
S is made using the multiresolution framework.

Uh

Vh

Ut

Vt

(a) (b) (c) (d)

t[c,d]
0

t[c,d-1]
0

t[c,d]
1

Figure 11: (a) Part of a hexagonal grid Gh. (b) Triangulation of (a) by split conversion
to get Ǵt. (c) Coordinate systems of Gh, and Ǵt illustrated by black and red arrows
respectively. (d) A hexagonal cell is converted into six triangular cells. Indices of some
triangular cells are shown.

Figure 12 (c), if we choose the red vertex as the origin of the aggregation
conversion, we can define the inverse of split conversion. Choosing other ver-
tices as the origin has also application in finding new hexagonal refinements
that we describe later in the paper.

We can apply split and aggregation conversion on any mesh. Irregular
vertices in a triangular mesh would be non-hexagonal faces in the aggre-
gated mesh with sides equal to the valence of vertices. Non-hexagonal faces
also become extraordinary vertices when the split conversion is applied on a
hexagonal mesh.

4.2. New Refinements

Refinements are generally defined for a specific type of grid. However,
using hierarchical grid conversion, we can define new refinements for grid Ga
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(a) (b) (c)

Ut

Vt Ga Gb G’
b G’

a

C
i

a->b

Rb
C

j

b->a

Ra

(d)

Figure 12: (a) Gt, its origin and coordinate system. (b) Vectors chosen to aggregate a
hexagonal cell in Gt. (c) Midpoints of hexagonal grids cover the entire vertices of Gt.
There are three possibilities to choose the origin of the aggregation conversion illustrated
by red, orange, and blue points. (d) Defining refinement Ra for Ga using refinement Rb

defined for Gb. Note that this definition follows the general multiresolution framework
that has been introduced earlier.

using the existing refinement for grid Gb. This happens when Ga is converted
to Gb by Ca→b

i , Gb is refined and Ǵa obtained by conversion Cb→a
j . The whole

process to convert Ga to Ǵa is a refinement Ra defined for Ga (see Figure 12
(d)). Note that transformation Ra is the combination of all transformations
Ca→b
i , Rb, and Cb→a

j . In the following, we discuss how to obtain refinements
for grids using known regular refinements for a specific type of grid.

4.2.1. Quadrilateral Refinements

A variety of refinements have been proposed for quadrilateral grids. 1-
to-4 refinement applied in Catmull-Clark subdivision is the most common
one. However, 1-to-2 refinement used in

√
2 subdivision (see Appendix A) as

well as 1-to-5 refinement has also been proposed for quadrilateral grids (see
Appendix C) [41, 42]. It is possible to extend the variety of quadrilateral
refinements using defined refinements of other grids. For example, using
refinements defined for triangular grids, we show how to obtain a greater
variety of quadrilateral refinements.

To define quadrilateral refinements using triangular refinements, we use
the sequence of conversions and refinements illustrated in Figure 12. For
instance, if we apply Cq→t

U and use triangular 1-to-3 refinement on Gt and
then apply Ct→q

P , the whole process is a quadrilateral 1-to-3 refinement as
illustrated in Figure 13. Note that depending on Ct→q

P three types of 1-to-3
refinements can be defined for quads as illustrated in Figure 13. The result of
this process may not produce a regular refinement as quadrilateral cells may
have valence three or six instead of four (see Figure 13 (e)). However, there
exists a strong regularity among the cells since all the cells have the same
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(a) (b) (c) (d) (e) (f )

Figure 13: (a) Gq, (b) Refined Gt by 1-to-3 refinement. (c), (d), and (e) Three types of Ǵq

(quadrilateral 1-to-3 refinements) can be made. Note that e is a near-regular refinement.
(f) Top/Bottom: Cell refinements for (c)/ (d),(e).

shape and area and the area of cells is compressed with the same propor-
tion of regular refinements. Note that the area of rhombic cells is equal to A

3

where A is the area of a regular quadrilateral cell. As some properties of such
refinements are the same as regular refinements, we call them near-regular
refinements. These refinements have been also called semiregular in the lit-
erature [21]. However, to avoid confusion between semiregular models that
are composed of regular patches and semiregular refinements that resemble
some of the properties of regular refinement, we use the term near-regular
for these refinements throughout the paper.

(a) (b)

Figure 14: 1-to-7 refinement for tri-
angular and quadrilateral grids.

Quadrilateral cells can be transformed to
rhombic cells using a simple matrix transfor-

mation R. Matrix R = (
2
3

1
3

1
3

2
3

) is obtained for

quadrilateral 1-to-3 refinement. Note that
rows of matrix R are the coordinates of new
inserted points after the refinement. The
refinement illustrated in Figure 13 (e) pro-
duces vertices with valence three or six, so
we call it 3-6 refinement. It is possible to
define other quadrilateral refinements based on the hierarchical grid conver-
sion. Similarly, we can define a 1-to-7 quadrilateral refinement (see Appendix
D) if we replace 1-to-3 triangular refinement by 1-to-7 triangular refinement
in the conversion (Figure 14).

4.2.2. Triangular Refinements

Although triangular refinements are very well studied, we can define new
refinements for triangular grids using quadrilateral refinements. Two in-
stances of quadrilateral refinements are 1-to-2 and 1-to-5 refinements defined
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for quads (see Appendix A and Appendix C). To apply quadrilateral refine-
ment Rq on a triangular grid Gt, we use pairing conversion Ct→q

P to obtain

Gq, and then apply Rq on Gq to obtain Ǵq. We can then apply the unpair

conversion Cq→t
U to get Ǵt which is the refined version of Gt. Figure 15 and

16 illustrate this process when Rq is 1-to-2 or 1-to-5. Note that two types of

Ǵt can be obtained: 4-8 refinement and triangular 1-to-2 refinement.

(a) (b) (c) (d) (e)

Figure 15: (a) Gt. (b) Gq. (c) Ǵt (4-8 refinement). (d) Ǵt (triangular 1-to-2 refinement).
(e) 1-to-2 cell refinement for triangles.

(a) (b) (d)(c)

Figure 16: (a) The location of inserted vertices. (b) New vertices on a coarse grid. (c)
new edges are drawn. (d) Triangular 1-to-5 refinement.

4.2.3. Hexagonal Refinement

Hexagonal refinements are often used in subdivision surfaces or image
processing [8, 40]. Using existing triangular refinements and our conversion
technique, the number of hexagonal refinements can be expanded. Given
a hexagonal grid Gh, we convert Gh to Gt using split conversion (Ch→t

S ).
We then apply triangular refinement on Gt (see Figure 17) and make a new
hexagonal grid Ǵh using one of the aggregation conversions (Ct→h

A ). It is
possible to define hexagonal refinements using a variety of triangular refine-
ments. Figure 18 illustrate hexagonal 1-to-4, and 1-to-7 refinements. We
have three possible aggregation conversions and each produces a different
refinement.
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(a) (b) (c) (d)

dual

primal

(e)

Figure 17: (a) Hexagonal grid Gh. (b) Split conversion is applied on Gh and Gt is obtained.
(c) 1-to-3 on Gt results in triangular grid Ǵt. (d) There are three possible origins for the
hexagons. (e) Choosing different origins results three distinct hexagonal refinement, one
dual and two primal.

(a)

primal

dual dual

primal

dual

primal

(b) (c)

Figure 18: Dual and primal 1-to-4 hexagonal refinements (a), 1-to-7 hexagonal refinements
with 19◦ (b) and −19◦ (c) rotations.

Our framework is general enough to introduce more variety of refinements
by changing conversions and refinements. Here, we have provided a set of
examples to describe the framework. Another instance of these refinements
is produced when we use duality conversion and 1-to-2 refinement on the
triangular grid, we can define a 1-to-2 refinement for hexagons as illustrated
in Figure 19. In this paper, in addition to introducing a general framework
to define refinements for grids, we achieved refinements that are novel to our
knowledge. Examples of these novel refinements are primal 1-to-7, and 1-to-2
hexagonal refinements, 1-to-3 and 1-to-7 quadrilateral refinements as well as
1-to-2 and 1-to-5 triangular refinements.

Although some of the refinements that are proposed seem skewed after
one iteration of the refinement, it is possible to cancel out these effects after
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(a) (b) (c) (d)

Figure 19: (a) Gh and its dual Gt. (b) Ǵh and its dual Ǵt refined by 1-to-2 refinement.
(c) Gh and Ǵh on top of each other. (d) Cell 1-to-2 hexagonal refinement. Red vertices
are newly inserted, white vertices are removed, and green vertices are preserved after a
refinement.

an additional application of refinements. This way, a perfect regular gird is
obtained. For instance, Figure 20 illustrates how a perfect grid is obtained
after two iteration of the refinement in Figure 13.

(a) (c) (d)(b)

Figure 20: (a) A quadrilateral grid. (b) 1-to-3 refinement on the quadrilateral grid in (a).
(c) An additional application of 1-to-3 refinement on the grid in (b). (d) The result of two
applications of 1-to-3 refinement on a quadrilateral grid is a regular quadrilateral grid.

5. Indexing Semiregular Models

A semiregular model is created by applying refinements on a mesh with
arbitrary connectivity. It is desired to have an efficient data structure for
these meshes. In [10, 11], a data structure called Atlas of Connectivity Maps
(ACM) has been proposed for triangular and quadrilateral semiregular mod-
els. In this section, we discuss how to use hierarchical grid conversions to
extend ACM to hexagons and also some new refinements that have not been
discussed in [10, 11]. Note that ACM is an example of a hierarchical data
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structure defined on a particular grid (quads) and it can be extended to other
cells thanks to the hierarchical grid conversions proposed in this paper. We
can use the same concept to extend other hierarchical data structures such
as quadtrees to support other types of cells and refinements.

5.1. Review of ACM

A semiregular model consists of a number of regular patches connected
to each other. In ACM, the connectivity of each patch can be captured by a
simple 2D grid with a 2D indexing method and then the geometry of vertices
can be recorded in a 2D array. The indexing is based on a simple coordinate
system assigned to each 2D grid.

Connections within each patch are implicit and therefore connectivity
queries between internal vertices of each patch are addressed by simple neigh-
borhood vectors that connect a vertex or cell to its neighboring vertices or
cells. A transformation is used to traverse from one patch to another (Fig-
ure 21). These simple 2D patches and their interconnections are maintained
through the resolutions (for all types of refinements) by applying a trans-
formation (imposed by the refinement) to the coordinate system of each 2D
patches. To capture this information, ACM has a set of elements illustrated
in Figure 21 (c). Using pairing conversion Ct→q

P , ACM can be also used for
triangular refinements .

Connectivity information of a mesh is captured in a list of connectivity
maps called CM List. Each entry of CM List (CM List[i]) corresponds to
a patch (CMi) in the mesh. A global integer called resolution is also stored for
the entire mesh that refers to the resolution or the level of refinement of the
mesh. If we want to support adaptive subdivision with patches at different
resolutions, we can separately store the resolution of each patch [43]. The
resolution of the mesh helps to determine the range of vertex indices in CMi.
For example, in 1-to-4 refinement, (a, b)r are in the range 0 ≤ a, b ≤ 2r.

Each connectivity map CMi has structures to store the 3D locations of
its vertices and connectivity information of its neighboring patches. CMi has
a 2D location array of 3D points (x, y, z) called vertices storing locations of
its vertices. To access neighbors, each CMi has also an integer array called
neighbors that keeps the indices of the neighbors of CMi in CM List. For
each neighbor (CMiα), a Tiα is also stored in an array called transformation.
To have an easier representation for transformations, we encode possible Tiα
by integers. These transformations are used to traverse from one patch to
its neighboring patches.
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Irregular vertices in semiregular meshes are only found at the corners of
the connectivity maps. These vertices are shared by multiple connectivity
maps. Therefore, to access the neighbors of a corner, we store patches that
share the same corner.

CM

{  

   Point        array [][] vertices; 

   Int        neighbors [4]; 

   Int        transformations[4];  

   List<int> array [4] corner_neighbors; 

}

(c)

T
(a)

i

j

i

j

i

j

(b)

Figure 21: (a) A connectivity map. Vertices are connected to their neighbors by neigh-
borhood vectors. (b) Transformation T is used to traverse from one connectivity map to
its neighbors. (c) Elements of a connectivity map. In ACM, we have a list of connectivity
maps (CM) for the entire model.

The reason for having an advantage over other common data structures
for storing the connectivity of a mesh such as half-edges is that in ACM the
connectivity information of vertices, faces, and edges are not stored through-
out the resolutions [10, 11]. The only stored information of the mesh is the
connectivity of the first resolution which is constant throughout the resolu-
tions. In addition, handling the neighborhood finding operation using simple
algebraic operations such as neighborhood vectors enhances the performance
of ACM in applications with extensive dependency to the connectivity infor-
mation of vertices such as subdivision.

5.2. ACM for Hexagons

As ACM is an efficient data structure for semiregular models, it is desired
to use it for hexagonal cells, despite its original formulation in terms of
triangles and quads. Hierarchical grid conversions provided in this paper can
help to extend ACM for supporting hexagons. To apply ACM to hexagons,
we use dual conversion Ch→t

D and obtain a triangular patch with n×n vertices
from an n × n patch of hexagonal cells (Figure 22 (a)). This way, for each
triangular cell, a unique vertex of hexagonal cells exists (Figure 22 (b)). A
quadrilateral patch with n × n vertices can be represented by a 2D array
in which the (i, j) entry of the array refers to the bottom-left vertex of cell
q[i, j] (see Figure 22 (a)). As discussed earlier, each quad q[i, j] may be split
into triangular cells t[i, j]0 and t[i, j]1. Each triangular cell t[i, j]k (k = 0
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CM

{  

   Point        array [][][] vertices; 

   Int        neighbors [4]; 

   Int        transformations[4];  

   List<int> array [4] corner_neighbors; 

}

h(a,b)0

h(a,b)1

h(a,b-1)1

h(a-1,b)0

h(a-1,b-1)1

h(a-1,b-1)0

(a) (b) (c)

q(i,j)

q[i,j]t(a-1,b-1)0

t(a-1,b-1)1

Figure 22: (a) Vertices of a quadrilateral and hexagonal patch are drawn in green and
red respectively. Vertex q(i, j) (drawn in blue) is the bottom-left corner of cell q[i, j].
Cell q[i, j] is split into two triangles t[i, j]0, and t[i, j]1 illustrated in grey and orange
respectively (b) Vertices of a hexagon and their associated triangular cells. (c) Modified
ACM for vertices of hexagonal cells. We use a 3D array instead of 2D arrays for storing
vertices.

or 1) corresponds to a vertex in a hexagonal grid. As a result, vertices of a
hexagonal grid are represented in a 3D array in which entry (i, j, k) refers to
triangular cell t[i, j]k obtained from dual conversion of the hexagonal grid.

We can modify the location array of vertices in ACM to a 3D array to
support hexagonal grids (see Figure 22 (c)). Transformation between connec-
tivity maps and handling the neighborhood queries are similar to the case of
triangular cells. Figure 23 illustrates a hexagonal mesh at two successive res-
olutions and its connectivity maps. By extending ACM to support hexagonal
grids, we can benefit from the advantages of ACM, such as speed in handling
connectivity queries and the efficient support of hierarchical queries between
the vertices and cells.

5.3. ACM Refinement Extension

In [10, 11], only regular refinements (with specific rotation) have been
discussed. By providing more possible refinements through hierarchical grid
conversions, the question is how to extend ACM to support these refine-
ments. Here, we discuss how ACM can be modified to support more variety
of refinements. In the following, we discuss two categories of refinements that
have not been explored in [10, 11].

1-to-5 and 1-to-7: In [10], refinements are categorized based on their
imposed transformation to the grid of subsequent resolutions. Based on these
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Figure 23: A shark at two successive resolutions (top) and its corresponding connectivity
maps at the bottom.
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categorizations, both 1-to-5 and 1-to-7 refinements belong to the category of
—scaling, rotation, no translation— that means these refinements impose
only scaling and rotation to the subsequent grids. In ACM, rotation of re-
finements are eliminated in order to benefit from the connectivity information
of the first resolution. In [10], 1-to-2 refinement is presented as an instance
of this category by scaling the connectivity map by two. This way, at odd
resolutions, some empty indices exist that are filled by new vertices at the
next even resolution. In fact, after two resolutions, the connectivity maps
are simply scaled by two without any rotation involved. This works due to
the cancellation of the 45◦ rotation of 1-to-2 refinement after two resolutions.

(a) (b) (c)

(d) (e) (f )

Figure 24: (a), (b) 1-to-7 refinement with +19◦ and −19◦ rotations. (c) After one level
of refinement in (a) followed by the refinement in (b), the rotation is discarded. (d), (e)
1-to-7 refinement with +25◦ and −25◦ rotations. (f) Rotation is canceled out.

1-to-5 and 1-to-7 refinements are not aligned after two resolutions since
the rotations are not canceled out. However, two versions of these refinements
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exist with θ and −θ rotations (see Figure 24). To have aligned connectivity
maps for these refinements, we can apply one level of refinement with θ fol-
lowed by one level of refinement with (−θ) rotation. This way, rotations are
canceled out, and we get a refinement with the same factor but without a
rotation (see Figure 24). Note that neighborhood vectors that connect a ver-
tex to its neighbors are different for even and odd resolutions in refinements
that impose rotations. Figure 25 (a) and (b) show neighborhood vectors for
1-to-5 and 1-to-7 refinements.

(1,0)r

(0,-1)r

(-1,0)r

(0,1)r

(2,1)
r+1

(-1,2)
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r+1

Even

(1,0)r

(0,-1)r

(-1,0)r
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(a)

(-1,2)
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(3,1)
r+1

(2,3)
r+1

(-2,-3)
r+1

Odd
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Odd

(a) (b) (c) (d)
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(0,1)r (1,1)r

(1,-1)r(-1,-1)r

(-1,1)r

Figure 25: Neighborhood vectors for (a) 1-to-5, (b) 1-to-7, (c) 3-6 and (d) 4-8 refinements.

4-8 and 3-6: 4-8 and 3-6 near-regular refinements have two types of
neighborhood vectors based on the type of vertex. Figure 25 (c) and (d)
illustrate neighborhood vectors for vertices of 4-8 or 3-6 refinement. Connec-
tivity maps are scaled by two and three every other resolution for 4-8 and
3-6 refinements respectively (see Figure 27).

6. Discussion and Results

Using the hierarchical grid conversions, we can define new refinements
that may be applied on regular grids. By alternating between conversions
and refinements, we can also apply subdivision methods that are defined for
specific results. For example, we can apply 1-to-3 refinement on quadrilat-
eral grids with the smooth filters defined for the

√
3 subdivision method for

triangular grids (see Figure 26). We also extend ACM to support hexagonal
meshes (see Figure 23) as well as more variety of refinements such as, 1-to-7,
1-to-5, and 4-8 subdivision (Figure 27). As a result, ACM, which efficiently
handles connectivity and hierarchical queries on semiregular models, can be
applied to a greater variety of refinements and grid types. Note that the
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smoothness of these subdivision techniques is the same as the original un-
derlying subdivision (e.g

√
3 for Figure 26 and 4-8 subdivision for Figure

27) as the conversions do not change the geometry and they just change the
connectivity of vertices. Extraordinary vertices of the mesh are also limited
to the number of extraordinary vertices at the first resolution after conver-
sions and they have the same as smoothness of extraordinary vertices in the
underlying subdivision. Our proposed conversions can also be used to effi-
ciently switch between grids as needed by the application. For example, the
hexagonal meshes that are common in Earth representations [44, 45, 46] can
be converted to a triangular mesh for efficient rendering (see Figure 28).

Figure 26: (a) A triangulated cube. (b) Applying
√

3 subdivision on (a). (c) Applying
unpair conversion on (b) results a quadrilateral mesh refined by 1-to-3 and smoothed by√

3 subdivision. (d) Applying the same process (unpair conversion and smoothing) on (c).
(e) The cube in (a) after applying 1-to-3 refinement and

√
3 smoothing masks.

Figure 27: (a) A quadrilateral mesh. (b) Triangulating the mesh using pairing conversion.
(c) 4-8 subdivision using ACM on the triangulated mesh.
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Figure 28: Left: A hexagonal globe with 1-to-3 refinement at three successive resolutions.
Right: Triangulation of left using dual conversion using ACM.

Although the focus of the paper is to study conversions for regular grids
or semiregular meshes that are composed of attached bounded grids, it is
interesting to see what are the outputs of each conversion in case of differ-
ent input meshes. In general, if the input of a conversion is not a regular
mesh, the result of the conversion is not usually a regular mesh. Note that
defining a coordinate system for an irregular mesh and therefore establishing
transformations are not as straightforward as regular grids. However, if the
mesh is pure quad or triangle mesh, we can still apply refinements and use
ACM to support its connectivity and hierarchical queries. Table 1 shows
the output of each conversion having different inputs. For example, when a
triangular mesh has a boundary, it may not be impossible to obtain a pure
quad mesh with no isolated triangle at the boundaries as the mesh may have
odd number of triangles or the connectivity of triangles does not allow a
pure quadrangulation. By following this table, we can also find the output
of a combination of conversions. For example, if we have an input irregular
hexagonal mesh Mh and apply split conversion, Ch→t

S , to it, we obtain an
irregular triangular mesh Mt. Now, we can apply pairing conversion, Ct→q

P ,
to Mt. Based on whether Mt (equivalently Mh) has a spherical topology, we
can obtain pure irregular quadrilateral mesh or a mix of triangles and quads.

7. Conclusion and Future Work

In this paper, we present hierarchical grid conversions and use it to sys-
tematically define refinements. We extend an existing patch-based hierarchi-
cal data structure called ACM for handling connectivity queries of semireg-
ular models, to support hexagonal semiregular models and some additional
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Table 1: Inputs and output of the discussed conversions. Note that irregular mesh is a
mesh whose face can have arbitrary number of sides. im in the superscript of conversions
refers to irregular meshes. Irregular quad and irregular triangle also respectively indicate
meshes with only quads or triangles whose vertices can be of arbitrary valence.

Conversion Input Output

Ct−>q
P regular triangle regular quad

Ct−>q
P irregular triangle irregular quad

(spherical topology)
Ct−>q
P irregular triangle quad and triangle

(non-spherical topology)

Cq−>t
U regular quad regular triangle

Cq−>t
U irregular quad irregular triangle

Cq−>t
U quad and triangle irregular triangle

Ct−>h
D regular triangle regular hexagon

Ch−>t
D regular hexagon regular triangle

Cq−>q
D regular quad regular quad

Cim−>im
D irregular mesh irregular mesh

Ch−>t
S regular hexagon regular triangle

Ch−>t
S irregular hexagon irregular triangle

Ct−>h
A regular triangle regular hexagon

Ct−>im
A irregular triangle irregular mesh

refinements. From this enhanced support and newly defined conversions, we
can best apply a given grid-type to the application-specific challenge.

Based on the conversions between regular grids, we can extend ACM to
support hexagonal semiregular models as well as a wider range of refinements
such as 4-8 and 1-to-7 refinements. We have proposed new types of refine-
ments that may be used to generate smooth subdivision schemes. Finding
smoothing masks of these new refinements and their multiresolution filters
can be a future work. ACM is designed for semiregular models and models
obtained from adaptively subdividing patches. Extending ACM to support
meshes that have a combination of regular patches and irregular connectivity
is also a future work. One possibility is to combine ACM with a known data
structure such as half-edges that can perform well for irregular patches of the
mesh.
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Appendix A. 1-to-2 refinement

1-to-2 refinement used in quadrilateral
√

2 subdivision is composed of
two stages of splitting and edge-flip. In the splitting stage, a cell is split
by inserting the midpoint of quadrilateral cells. These vertices are then
connected to the old vertices and old edges are flipped (see Figure A.29).

(a) (b) (c) (d)

Figure A.29: (a) A quadrilateral grid. (b) Midpoints of cells are inserted. (c) New edges
are drawn. (d) Old edges are removed.

Appendix B. 1-to-3 refinement

1-to-3 refinement is used in
√

3 subdivision [47]. In this refinement, a ver-
tex is inserted in the midpoint of each cell. These newly inserted vertices are
connected to the old vertices by inserting new edges and old edges are flipped
(see FigureB.30). Figure B.30 illustrates the steps of 1-to-3 refinement.

(a) (b) (c) (d) (e)

Figure B.30: (a) A triangular grid. (b) Midpoints of each triangular cell is inserted. (c)
Old vertices are drawn in red. (d) New vertices are connected to old vertices. (e) Old
edges are flipped.
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Appendix C. 1-to-5 refinement

1-to-5 refinement has been introduced for quadrilateral grids. In this
refinement, four vertices at locations

(
2
5
, 1
5

)
,
(
4
5
, 2
5

)
,
(
1
5
, 3
5

)
, and

(
3
5
, 4
5

)
are

inserted. The connectivity of vertices are changed afterwards as illustrated
in Figure C.31.

(0,0) (1,0)

(1,1)(0,1)

(2/5,1/5)

(4/5,2/5)

(3/5,4/5)

(1/5,3/5)

(a) (b) (c) (d)

Figure C.31: (a) The location of inserted vertices. (b) New vertices on a coarse grid. (c)
New edges are drawn. (d) Old edges are removed.

Appendix D. 1-to-7 refinement

1-to-7 triangular refinement has been studied in
√

7 subdivision [42]. In
this refinement, three vertices are inserted in a triangular cell, old edges are
removed and new edges are formed. Consider a diamond with unit length
edges. In triangle t[0, 0]0, three vertices with coordinates

(
1
7
, 3
7

)
,
(
4
7
, 5
7

)
, and(

2
7
, 6
7

)
are inserted and in t[0, 0]1, coordinates of three new vertices are

(
5
7
, 1
7

)
,(

3
7
, 2
7

)
, and

(
6
7
, 4
7

)
. Figure D.32 illustrates the mask of 1-to-7 refinement and

its topological changes.
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(0,0) (1,0)

(1,1)(0,1)

(5/7,1/7)

(3/7,2/7)

(6/7,4/7)

(1/7,3/7)

(4/7,5/7)
(2/7,6/7)

(a) (b) (c) (d)

Figure D.32: (a) Masks of 1-to-7 refinement. (b) New vertices are inserted. (c) Old edges
are removed and new and old vertices are connected. (d) Orange coarse triangular grid is
refined by 1-to-7 refinement.

32



[1] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computa-
tional Geometry: Algorithms and Applications, 2nd Edition, Springer-
Verlag, 2000.

[2] C. Loop, Smooth Subdivision Surfaces Based on Triangles, The Univer-
sity of Utah,Department of Mathematics.

[3] L. Piegl, W. Tiller, The NURBS book (2nd ed.), Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

[4] E. Catmull, J. Clark, Recursively generated B-spline surfaces on arbi-
trary topological meshes, CAD 10 (6) (1978) 350–355.

[5] H. Samet, Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2005.

[6] X. He, et al., Hexagonal structure for intelligent vision, in: First Inter-
national Conference of Information and Communication Technologies,
ICIT 2005, 2005, pp. 52–64.

[7] K. Sahr, Location coding on icosahedral aperture 3 hexagon discrete
global grids, Computers, Environment and Urban Systems 32 (3) (2008)
174–187.

[8] J. Claes, K. Beets, F. Van Reeth, A corner-cutting scheme for hexago-
nal subdivision surfaces, in: Proceedings of the Shape Modeling Inter-
national 2002 (SMI’02), SMI ’02, IEEE Computer Society, Washington,
DC, USA, 2002, pp. 13–20.

[9] K. Weiss, L. De Floriani, Simplex and diamond hierarchies: Models and
applications, Computer Graphics Forum 30 (8) (2011) 2127–2155.

[10] A. Mahdavi-Amiri, F. Samavati, ACM: Atlas of connectivity maps for
semiregular models, in: Proceedings of Graphics Interface 2013, 2013,
pp. 99–107.

[11] A. Mahdavi-Amiri, F. Samavati, Atlas of connectivity maps, Computers
& Graphics 39 (2014) 1–11.

33



[12] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, G. A.
Turner, Real-time, continuous level of detail rendering of height fields,
in: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’96, 1996, pp. 109–118.

[13] M. Guenette, A. J. Stewart, Triangulation of hierarchical hexagon
meshes, in: Proceedings of the 2008 ACM symposium on Solid and
physical modeling, SPM ’08, 2008, pp. 307–313.

[14] D. Bommes, B. Levy, N. Pietroni, E. Puppo, C. S. a, M. Tarini, D. Zorin,
State of the art in quad meshing, in: Eurographics STARS, 2012.

[15] E. Akleman, V. Srinivasan, E. Mandal, Remeshing schemes for semi-
regular tilings, in: Proceedings of the International Conference on Shape
Modeling and Applications 2005, SMI ’05, 2005, pp. 44–50.

[16] P. Bo, H. Pottmann, M. Kilian, W. Wang, J. Wallner, Circular arc
structures, ACM Trans. Graph. 30 (4) (2011) 101:1–101:12.
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Multiresolution using regular and irregular refinement, in: Proceed-
ings of the Eighteenth Annual Symposium on Computational Geometry,
SCG ’02, ACM, New York, NY, USA, 2002, pp. 264–272.

[21] L. Velho, Semi-regular 4-8 refinement and box spline surfaces, in: Com-
puter Graphics and Image Processing, 2000. Proceedings XIII Brazilian
Symposium on, 2000, pp. 131–138.

[22] J. Peters, U. Reif, The simplest subdivision scheme for smoothing poly-
hedra, ACM Trans. Graph. 16 (4) (1997) 420–431.

34



[23] M. Alexa, Refinement operators for triangle meshes, Comput. Aided
Geom. Des. 19 (3) (2002) 169–172.

[24] I. P. Ivrissimtzis, N. A. Dodgson, M. A. Sabin, A generative classification
of mesh refinement rules with lattice transformations, Comput. Aided
Geom. Des. 21 (1) (2004) 99–109.

[25] N. Dodgson, An heuristic analysis of the classification of bivariate subdi-
vision schemes, in: R. Martin, H. Bez, M. Sabin (Eds.), Mathematics of
Surfaces XI, Vol. 3604 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2005, pp. 161–183.
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