
Image-Assisted Modeling from Sketches
Luke Olsen∗

University of Calgary
Faramarz F. Samavati

University of Calgary

Figure 1: A porcelain dragon is modeled from a single image, with part boundaries sketched by the user. A feature-sensitive meshing algorithm,
combined with automatic texturing, produces a visually pleasing 3d representation of the object.

ABSTRACT

In this paper, we propose a method for creating freeform surfaces
from sketch-annotated images. Beginning from an image, the user
sketches object boundaries, features, and holes. Sketching is made
easier by a magnetic pen that follows strong edges in the image.
To create a surface from the sketch, a planar mesh is constructed
such that its geometry aligns with the boundary and interior fea-
tures. We then inflate to 3D using a discrete distance transform
filtered through a cross-sectional mapping function. Finally, the in-
put image is applied as a texture to the surface. The benefits of
our framework are demonstrated with examples in modeling both
freeform and manufactured objects.

Index Terms: I.3 Computer Graphics [I.3.5]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems [I.3.6]: Methodology and Techniques—Interaction
Techniques [I.3.7]: 3D Graphics and Realism—Texture

1 INTRODUCTION

It is apparent to anyone visiting the cinema or playing a modern
video game that the range of possible 3D models is limited only by
one’s imagination. The question is, how much effort does it take to
create a high-quality model? 3D modeling is a pursuit that requires
extensive training and experience. Traditional interfaces offer te-
dious mouse-based click-and-drag interaction, but great advances
in usability have been made in recent years as the research focus
has shifted toward improved interaction.

Sketch-based interfaces for modeling (SBIM) are a promising
trend in user interaction, offering simple and fast ways to perform
certain modeling tasks. Freehand input has been used to replace
traditional click-and-drag control point manipulation in tasks such
as object creation, composition, deformation, and augmentation.
From a broader perspective, the problem of interpreting freehand
sketch input as a 3D object involves several disciplines, including
computer vision, human-computer interaction, and cognitive sci-
ence (the study of perception).

A typical sketch-based system for model creation presents the
user with a blank “canvas” within which they draw some represen-
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tation of the object. For novice artists, drawing an accurate shape
without assistance is an arduous task – even drawing a square in the
correct proportions is difficult, and trained artists tend to draw with
incorrect perspective effects [28]. Tracing an image, however, can
be done by anyone.

In this work, we explore an image-centric interface to make
sketch-based modeling more accessible to inexperienced users. A
planar-mesh inflation approach is used for shape reconstruction, in
which the sketched silhouette is embedded in the 2D image plane.
A single image of an object is often enough to create a model in
our system; for more complex objects, the object can be modeled
parts-wise from multiple images and composited together. To make
the output models suitable for further editing, we propose a sur-
face reconstruction method that creates semi-regular meshes with
feature-aligned geometry. The input image is also used as texture
information for the output model, increasing visual quality without
a corresponding increase in geometric complexity.

Our main contributions are: an image-assisted sketching inter-
face, in which a “magnetic” pen can be used to align input strokes
with image features; a novel planar meshing approach that supports
interior features and holes; an inflation method based on the dis-
crete distance transform, allowing for custom cross-sections; and
finally, automatic texture-mapping of the created surfaces with the
input image.

1.1 Related Work

Our work is most related to inflation- and “skeleton”-based
freeform sketching systems [10, 30, 3, 19], in which the common el-
ement is the interpretation of a sketched line as an object boundary
contour. A smooth 3D surface passing through the boundary can be
constructed from a 2D skeleton by relating the surface-to-skeleton
distance to the boundary-to-skeleton distance [23]. An alternative
approach [19] uses functional optimization to define a smooth sur-
face passing through the sketched boundary.

Mesh-based inflation systems typically use a planar (2D) mesh-
ing algorithm to construct the mesh topology and connectivity. The
original Teddy [10] computes the Delaunay triangulation (DT) of
dense boundary points; the lack of points inside the boundary often
results in poorly-shaped triangles, however. Conformal triangula-
tions [27] add points to the DT to satisfy constraints on triangle
aspect ratio and angles. Nealen et al. [19, 20] trim a regular triangle
grid to the sketch area, ensuring well-shaped triangles with mostly
regular valence.
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Figure 2: System overview: (a) the user provides an image, then (b) sketches contours, features, and holes of the object; (c) the system
generates a feature-sensitive semi-regular planar mesh and (d) inflates in 3D; (e) the image is used to texture-map the object.

Our work is also related to image-based modeling. Automatic
methods exist for constructing a 3D representation of an object from
multiple images, such as the “turntable” approach [6]. When the
images come from less controlled sources, some user interaction is
required to indicate objects of interest [35, 39]. Modeling from a
single image is not possible in general due to incomplete informa-
tion, though properties such as symmetry can be exploited [38, 12].

In the context of image-based modeling and SBIM, perhaps the
first example is Williams’ 3D Paint system [36], in which sketched
Coons patch boundaries and a user-edited displacement map are
combined with a painted or acquired texture to create a 3D model.
Liu & Zhang [16] use edge detection to automatically extract a
boundary contour from an image, followed by inflation to a 3D
surface; however, the mesh quality is poor and limited to genus-
0 topology, and automatic segmentation is not very reliable. Kara
et al. [13] allow the user to trace over a conceptual design im-
age, though the image plays no active role in the system. Yang
et al. [37] use traced images to texture-map parametric models cre-
ated from sketched parts. Most recently, Gingold et al. [8] describe
an SBIM system in which complex models are created by sketch-
ing primitive shapes and then annotating the drawing to indicate
inter-relationships such as symmetry and connectivity. The system
allows for a user-specified image as a passive drawing guide, but
the image does not inform any internal system component.

2 MODELING FROM A SINGLE IMAGE

In this section, we describe the components of our system for mod-
eling objects from a single image and a sketch (Fig. 2). We first
describe the input, an automatically-refined user sketch (Sec. 2.1).
Each stroke of the sketch is then classified as an object boundary or
feature (Sec. 2.2.1), and that information is used to construct a pla-
nar mesh of the sketch area (Sec. 2.2.2). Finally, the planar mesh
is inflated or extruded into a 3D surface, and the input image is
applied as a texture map (Sec. 2.3-2.4).

Each constructed object is symmetric about the drawing canvas,
a result of the planar meshing approach. Thus, the method works
best when the image depicts a symmetric view of the object – for
example, the dragon and the fish of Figs. 1-2 are side views. A large
class of objects can be modeled from piecewise-symmetric parts, as
shown in our results (Sec. 3). However, more complex shapes may
require other modeling tools such as free-form deformation.

2.1 Image-Assisted Sketching
Sketching an object with complex boundary and internal features is
a difficult and time-consuming task, especially for untrained artists.
That is why most modeling software allows the user to display an
image in the editing window – to assist with the proportions and
position of various elements. This approach is very passive, as the
image is not exploited by the software. A single image is full of use-
ful information that can be used to refine or assist the input sketch.

We provide two drawing tools to the user: a regular freehand
pen, and a “magnetic” pen that tries to follow nearby edges in the
image (Fig. 3). Tsang et al. [32] describe a similar “image-guided”
sketching system, based on active contours [17], for snapping in-
put to scanned sketch images; that is, the important edges are clear

and distinguishable. In our scenario we are more concerned with
photographs.

The magnetic pen in our system is a variation of the intelligent
scissors image segmentation tool introduced by Mortensen & Bar-
rett [18]. In their method, an image is modeled as a graph with
edges between neighboring pixels. The edge weights are derived
from the image gradient, such that moving along strong edges has
lower cost than moving across homogeneous regions. A pathfinding
algorithm is then used to find the lowest-cost path between “seed”
points placed by the user. In this way, an object can be segmented
from the background with as few as two seed points. The seed
points create localized and more predictable snapping behavior than
the globally-optimal active contour model.

a) Mark search area b) Snap to edges

Figure 3: The magnetic pen: the input stroke defines a search region
(a) within which the stroke is snapped to strong edges (b).

Our usage scenario is different, in that we want to support
freeform and natural sketching. We only want to refine or snap
the stroke when the input stroke appears to be following an edge.
Thus we restrict the search space to a fixed distance from the stroke.
For seed points, the polyline approximation method described in
Sec. 2.2.2 is used to automatically extract them from the input
strokes. As well, we really only want to snap to strong edges; if
the user draws a stroke cutting through a low-gradient region, we
preserve their original stroke/intent rather than choose a path that is
less direct but slightly more optimal.

The input strokes {S1, . . . ,Sk}, obtained from a mouse or tablet
device, are represented as a sequence of point samples Si =
{pi0, . . . , pin}. Each point pi j ∈ℜ3 is projected from window coor-
dinates onto the drawing (x-y) plane (Fig. 4a). (Because our inter-
face supports panning and zooming of the sketch canvas, window
coordinates are not used directly.) The input is uniformly resampled
by discarding extraneous points and interpolating between widely-
spaced samples. Since we wish to support small-scale features and
sharp corners, we do not filter or smooth the input. Instead, overs-
ketching [7] is supported to allow the user to correct mistakes.

Though strokes are stored in projected world coordinates, some
operations in our pipeline occur in raster space – that is, a dis-
crete pixel sampling of the drawing canvas (Fig. 4b). World-space
strokes are useful for determining the speed and direction of draw-
ing, identifying feature points, resampling, and rendering. We
use raster-space processing to classify strokes (Sec. 2.2.1), which
makes the method agnostic to the drawing order and leads to more
natural sketching.
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Figure 4: (a) Stroke space: input strokes (in window coordinates) are
projected onto the sketch canvas (in world coordinates); (b) Raster space:
the sketch canvas is drawn to a discrete pixel grid for stroke classification
(Sec. 2.2.1).

Figure 5: Left: Feature-based meshing enables intuitive editing.
Right: If the geometry does not align with the desired deformation,
the results are poor.

2.2 Planar Meshing
Many mesh editing operations (e.g. [24, 21]) require aligned edges
and vertices to represent the details (Fig. 5). If the required ge-
ometry does not exist, it has to be created by localized re-meshing
or vertex relocation. These operations can often create artifacts or
poor-quality triangles, especially over successive applications. We
propose a feature-sensitive planar meshing in which all strokes in
the original sketch are taken into consideration during the meshing
process. The required geometry then exists for further editing.

The current state-of-the-art in inflation-based SBIM is Fiber-
Mesh [19, 20], a descendant of Teddy. To create a planar mesh, the
area enclosed by a boundary stroke is filled with a regular triangle
mesh by growing outward from a single seed triangle. To increase
the regularity of the triangles and vertex valences, a boundary en-
ergy condition is imposed. This approach has some limitations:
first, the triangle size determines the scale of sketch features that
can be captured, necessitating a fairing approach to widen narrow
regions; second, the triangle size is uniform over the whole area;
most importantly, adding interior features requires local remeshing,
which degrades the mesh quality over subsequent applications.

We also strive for vertex and triangle regularity in the planar
mesh, but approach the problem from a different direction. We
note that most subdivision schemes produce regular-valence ver-
tices and well-shaped triangles. For example, in Loop’s scheme
all inserted interior edge vertices are regular (6 neighbors for trian-
gular meshes); thus, the only irregular vertices are those that exist
at the base level or lie on a boundary. To exploit this behavior in
the planar meshing stage, we first create a coarse tessellation and
then refine it via subdivision. This involves three main steps: stroke
classification, coarse tessellation, and refinement.

2.2.1 Stroke Classification
Whereas most preceding SBIM systems operate on single-stroke in-
put, our system accepts an arbitrary number of strokes and places no
constraints on directionality or order. Therefore, before we can con-
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Figure 6: Stroke classification: first, the connected components, or
“blobs”, are extracted; second, the blobs are processed to extract
adjacency information; finally, the adjacency information is used to
construct a region hierarchy. Each child of the background blob is a
unique object in the sketch.

struct a planar mesh, we need to determine some high-level struc-
ture of the input sketch. As shown in Fig. 2b, a stroke can define
either an object boundary or a feature. Feature strokes can be either
open or closed, and are associated with their containing boundary
stroke. The problem then becomes one of determining a contain-
ment hierarchy.

An important decision is whether to construct the hierarchy in
stroke- or raster-space. We choose the latter for two reasons. First,
rasterizing the strokes removes any effect of drawing direction, or-
der, and continuity; if strokes are connected in raster space, then
they’re adjacent in stroke space. This allows for more natural
sketching, because the algorithm is concerned with what was drawn
rather than how. Second, the raster algorithms we use are computa-
tionally efficient and depend only on the number of pixels, not the
number of stroke samples. This allows the hierarchy to be updated
transparently in the background as the user draws.

To find the stroke containment hierarchy, we employ the con-
nected component (CC) labeling algorithm [31] for identifying con-
tiguous ‘blobs’ in an image. The input to the algorithm is an im-
age Isk containing the rasterization of all user strokes, each colored
uniquely. The output is a set of blobs {B1, . . . ,Bn}, where each
blob is a connected set of pixels of a single color. This allows us to
distinguish between blobs formed by stroke and background pixels.
We currently assume that each stroke is a single unbroken line; this
could be overcome by using a stroke-blending method [26] or by
tracing the contours of the background blobs.

In the simplest case, a single boundary stroke will have three
blobs: the background, the region bounded by the stroke, and the
stroke itself. In the example shown in Fig. 6, there are 7 blobs: the
background G, regions A and B, and the four strokes.

After identifying the blobs, the labeled image (in which all pix-
els belonging to blob Bi have unique color Ci) is post-processed to
extract adjacency information. For stroke blobs, we’re interested
in the adjacent background blobs. If a stroke is adjacent to only 1
blob (e.g. S4 adjacent to region A in Fig. 6), then it is classified as
an open feature stroke. Strokes adjacent to 2 blobs can be either
boundary or closed feature strokes, contingent on whether one is
the background blob. For example, S2, adjacent to A and B, is a
feature stroke, while S1 is a boundary stroke. For each background
blob (that is, a region enclosed by a stroke), we need to find adjacent
background blobs – these will be separated by a stroke. Thus, for
each pixel we check pixels ±w rows and columns away, where w
is the width of a rasterized stroke. Let the largest background blob
be the root blob G – it will be the size of Isk, so long as no strokes
touch the boundary. Any background blob adjacent to it defines a
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Figure 7: Polyline approximation of a stroke: (a) corner points are
placed when the direction change is high; (b) stroke segments are
split when the maximum deviation is too high.

Figure 8: Planar meshing: (a) the input strokes are approximated
with polylines (black points); (b) the CDT of those points yields a
coarse mesh.

unique object (e.g. region A); all other blobs are children of these
objects.

From this adjacency information, we construct a region hi-
erarchy. A sketch region R = [Sb,F,C] is defined by a set of
strokes, where Sb is a closed stroke defining the boundary and
F = {S f 1, . . .S f m} is a set of feature strokes contained in the region.
The final set C = {c1, . . . ,ck} is the set of other sketch regions fully
contained within R. Figure 6 illustrates the region hierarchy of a
simple sketch.

2.2.2 Coarse Tessellation

Each object is composed of a boundary stroke and zero or more
features. To create a coarse mesh, we first approximate each stroke
with a sparsely-sampled polyline and then compute the Delaunay
triangulation of those points. There are two main qualities desired
in the polyline approximation Pi ⊂ Si: feature sensitivity (i.e. low
approximation error), and compactness. It is important to mini-
mize the number of points because Pi is not a final approximation
of Si – the base mesh will later be refined with subdivision. Limit-
ing the approximation error is also important, as high error is diffi-
cult to overcome in the subdivision stage. The benefit of a feature-
sensitive approach over uniform spacing is that sharp features can
be captured, and less geometry is devoted to on low-detail areas.

We use a two-stage approach to construct Pi. First, sharp corners
are found by looking the local change of direction φ at each stroke
sample (Fig. 7a). A directional change exceeding a threshold angle
φt indicates that the sample is at or near a sharp corner. There will
typically be a few consecutive samples meeting this criteria at each
corner; these are clustered to a single point, and all such points
are retained as vertices in Pi. In the second stage, we employ an
iterative splitting scheme [4] to split the stroke segments between
corner points. The point of maximal deviation from a straight-line
approximation is chosen as the location of a new polyline vertex,
splitting the segment into two parts (Fig. 7b). Each sub-segment
can then be split in the same fashion, until either the maximal point
is within δDP of the straight line, or the segment is too short to split.

This construction has two parameters for controlling the approx-
imation quality, φt and δDP. We have found values that work well
enough in most cases (φt = π

4 , δDP = 5% of the canvas size), al-
though having them adjusted automatically according to the sketch
would be ideal.

After each stroke has been approximated with a polyline, we

compute a coarse mesh Mp0 as a constrained DT (CDT) of the ver-
tices, with the stroke segments acting as constraints (Fig. 8). That
is, if two vertices are connected by a stroke segment, then the DT
is constrained to contain an edge between those vertices; this is
consistent so long as no two strokes intersect each other. Termi-
nal triangles (those having three boundary vertices) are problem-
atic during surface construction, since they result in non-manifold
connectivity. To remove terminal triangles, we use a merge-and-
split approach similar to Teddy, in which each terminal triangle is
merged with adjacent faces, and the resulting (non-triangle) face is
then split by inserting a new vertex at the center of the face.

2.2.3 Mesh Refinement

The coarse mesh Mp0 only approximates the input sketch, but the
final planar mesh should match the user’s sketch as closely as pos-
sible. To better match the input strokes, we employ a subdivision-
with-snapping technique (Fig. 9). Stroke segments are associ-
ated with edges based on the polyline approximation. As the
mesh is subdivided, new vertices are created along edges and then
“snapped” onto the stroke segment. After several levels, the edges
in the planar mesh follow the original sketch very closely.

Figure 9: Mesh refinement (left to right): the coarse base mesh; after
subdivision; after snapping.

We use smooth subdivision rather than linear, as it results in bet-
ter vertex distribution in the sketch interior. In the presence of in-
terior feature strokes, however, the use of smooth subdivision can
lead to unwanted artifacts as triangles are compressed or stretched.
To mitigate these issues, when interior vertices are snapped onto a
stroke a portion of their displacement (we used 30%) is passed on
to adjacent vertices.

2.2.4 Extensions

To offer more control and variety in the planar mesh geometry, we
support a couple of variations to the method described above. First,
quadrilateral meshing is often preferable to triangulation (e.g. for
manufactured object design). To create a planar quad mesh, we
perform the coarse CDT triangulation and then employ a greedy
triangle-merging approach [11] (Fig. 10). Although some trian-
gles may remain in the base mesh, Catmull-Clark subdivision [2]
– which produces only quads after one iteration – is used instead of
Loop in the refinement stage.

A second improvement is to add some points to the base mesh;
as Fig. 11a shows, when the sketch has a large interior with no
features, the lack of Delaunay points can result in large region-
spanning triangles. We use a random dart-throwing approach [33],
with the restriction that any inserted dart pd must be at least rd
from the boundary and all other darts. In our experiments, setting

Figure 10: Our system can produce either triangle or quad meshes.



Figure 11: Planar mesh (a) without and (b) with dart-throwing to gen-
erate interior points.

rd = 1
2 max(T (I)) works well, where T (I) is the discrete distance

transform discussed in Sec. 2.3. The result is a more regular distri-
bution of triangles in the sketch interior (Fig. 11b).

2.3 Surface Reconstruction

T(I)
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Figure 12: (a) Inflation uses a distance transform T (I) to displace
vertices in Mp; (b) extrusion uses uniform displacement and requires
additional “stitch” faces.

The planar mesh we have constructed could be used in any previ-
ous inflation method, such as the non-linear optimization approach
of FiberMesh [19]. Optimization is a “black-box” approach that
offers no recourse for the user if the result is unsatisfactory or if a
non-smooth result is desired. In this section, we explore a construc-
tive inflation method that allows for customization and control of
the surface cross-section. We provide two reconstruction variants:
inflation for smooth objects, and extrusion for rectilinear shapes
(Fig. 12).

In either case, our default interpretation is to construct a mesh
M symmetric about the drawing (x-y) plane. In the absence of any
depth (z) information, this is a justifiable assumption. Let M f ront
be the portion of M visible from positive z, and Mback be the −z
portion; then M = M f ront ∪Mback ∪Mstitch where Mstitch is a set of
faces that may be necessary to bridge the front and back. The final
mesh is also semi-regular, suitable for multiresolution editing [40,
22] and compression [14] applications.

To inflate a planar mesh Mp, interior vertices are “pushed away”
from the drawing plane by an amount determined by the distance d
to the boundary, while the boundary remains fixed. This requires an
efficient way to compute d. A chordal axis, approximated from a
Delaunay triangulation, can be used to estimate the distance. How-
ever, because we are using a very coarse DT, the chordal axis is not
very accurate. Furthermore, it is not clear how to define the chordal
axis in the presence of feature strokes and holes. Therefore, we
need a more robust way to estimate d.

We use a discrete image-based distance transform T (I) [5].
Given a binary image I, T (I) is an image in which the value of
a pixel encodes the distance to the nearest black pixel. That is, if
I(i, j) is black T (I(i, j)) = 0; pixels adjacent to black pixels have
value 1, and so forth. Figure 13a shows an example of T (I) (in-
verted for clarity). The purpose of a distance transform is to esti-
mate the distance from an interior vertex to the boundary. Thus,
only boundary strokes should be drawn into I – including hole
boundaries, but not tunnels (see Fig. 15). In a sense, this cre-
ates a displacement map whose usage is similar to Williams’ sys-
tem [36], but derived automatically from the input strokes rather
than acquired from a range scanner or painted by a user.

Figure 13: (a) The distance transform T (I) defined by a boundary stroke;
(b) The set of local-max pixels defines the object’s skeleton.
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Figure 14: The distance d in T (I) can be mapped to an inflation offset
h by an arbitrary function, giving control over the cross-section.

For any vertex vi ∈ Mp, we can map it to pixel-space, look up
the distance d to the boundary in T (I), and map that distance to
displacement δi. We generally do not want to use d directly, how-
ever, because it is linear. To inflate a smooth object, a circular
cross-section can be attained by the mapping δ =

√
D2− (D−d)2,

where D = maxd T (I). In practice, we use a local maximum, which
corresponds to the radius on the skeletal axis (Fig. 13b). A more
robust skeleton-extraction method, such as [15], could be used to
remove the spurious branches (for example, in the fish’s tail).

Other mapping functions can be used to achieve different smooth
or non-smooth cross-sections; Fig. 14 shows some examples. This
approach is similar to the cross-sectional blending surfaces pro-
posed by Cherlin et al. [3], but extended to arbitrary topology sur-
faces (equivalently, shapes with branching or looping skeletons).

Let ∆ = {δ1,δ2, . . .} be the set of these per-vertex displacements.
In the inflated mesh M, then, we have M f ront = Mp +∆ and Mback =
Mp−∆. No stitch faces are required (Mstitch = /0), but boundary
vertices in the front and back should be merged to create a sealed
mesh. Because M f ront and Mback are both semi-regular, the union
M is as well.

Inflation by displacing vertices purely in the z direction results in
triangles near the planar mesh boundary being stretched in 3D. To
have nice triangles in 3D requires either irregularly-shaped triangles
in the plane (i.e. the near-orthogonal projection of a well-shaped
triangle), post-inflation vertex movement [9], or remeshing [25].
Currently this is not implemented in our system.

To have more expressive range, our system also supports extru-
sions, which are more suitable to mechanical or engineered sur-
faces. To extrude the planar mesh, we displace the vertices uni-
formly by δE to create the front mesh, and duplicate them in the
negative z direction for the back mesh. The front and back then
need to be stitched together with new faces (Fig. 12b). This stitch-
ing must be done with some care if we want to preserve semi-
regularity. At the base level, each boundary edge in M f ront should
be connected by two triangles (or a single quad) to the correspond-
ing edge in Mback. Therefore, if Mp were subdivided k times, the
gap should be stitched with 2k triangles (k quads).
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Figure 15: (a) Holes are created by trimming faces from Mp and in-
cluding the hole’s boundary in T (I). (b) Tunnels are created by trim-
ming faces from M, with no change to T (I).

2.3.1 Holes & Tunnels

To create a torus, one would have to sketch two concentric circles,
one corresponding to the surface and the other to the hole. How-
ever, the same sketch might correspond to a rim-and-tire object,
with no hole but simply a boundary between the regions. Because
of this inherent ambiguity in interpretation, we leave it to the user
to identify holes. By default all regions are assumed to be filled, but
any closed region that is a child of another region can be designated
as either a hole or a tunnel. The difference between these two is
illustrated in Fig. 15.

A hole is created before reconstruction by removing faces over-
lapping the hole from Mp. Vertices around the hole should have
zero displacement, so its boundary stroke is included in the dis-
tance transform. A tunnel is created after reconstruction by remov-
ing faces in the hole region from M. Vertices on the hole’s boundary
should be displaced as usual, so the boundary stroke is not included
in the distance transform.

2.4 Texturing

In most modeling programs, the modeling and texturing phases
are disjoint – first the model is created, and then the textures
are painstakingly applied. Predefined mappings such as cube- or
sphere-maps can make the process easier, but are suitable only for
certain objects. In our system modeling and texturing are inter-
twined, as the nature of our symmetric mesh construction provides
a natural way to interpret the image as a texture. We use a simple
projective mapping: for a texture with width w, height h, and ori-
gin (xo,yo) (in world coordinates), the texture coordinate (s, t) of a
vertex v = (x,y,z) is s = (x− xo)/w and t = (y− yo)/h.

This type of mapping exhibits distortion on geometry that is
aligned with the projection axis (z). Where the surface is paral-
lel to the drawing plane the projection is roughly uniform; near the
boundary, however, a large portion of the surface projects to a rel-
atively small portion of the texture. This is especially problematic
with extruded surfaces, because all stitch faces are parallel to the
view direction and thus project to the same texture coordinates.

Note that from the input sketch we have a set of image-texture
correspondences. To reduce texture distortion along the seam, in
the future these could be used as input to a more robust texturing
approach, such as Tzur and Tal’s method based on local camera
parameter recovery [34].

3 RESULTS

We have used the techniques described in the paper to create a va-
riety of models from photographs. The authors are not professional
modelers or artists, so sketching realistic objects without an image-
assisted system is beyond our capabilities. Using our framework,
we are able to create high-quality models quickly and easily.

As Fig. 16 shows in a detailed view, our system produces meshes
whose geometry closely follows the sketched feature strokes. This
is beneficial for making complex models, as the mesh has the ge-

Figure 16: Mesh geometry respects the sketched features.

ometry in the right place for performing further deformations and
refinements.

Figure 17 shows several results demonstrating the capabilities
of our system. Most are multi-part objects that were reconstructed
piecewise and then assembled via traditional methods. Together
they demonstrate all of the benefits of our framework: the lock
and key have complex holes and tunnels; the gun and plane show
both triangle and quad meshing. The automatic texturing gives each
model a strong visual impact, and the underlying geometry is sim-
ple and clean. Most importantly, these models were created easily
by untrained modelers in under ten minutes.

The creation of each part via the methods described in this paper
is very fast, taking only a few seconds. The actual sketching phase
can be moderately time-consuming (a minute or two in these exam-
ples), depending on how many features, and how carefully, the user
chooses to sketch. The planar mesh construction happens interac-
tively as the user sketches, as does the distance transform compu-
tation. Thus, when the user is satisfied with their sketch and clicks
Inflate or Extrude, the 3D model can be constructed instantly. The
bulk of the creation time for the results shown here is spent placing
the parts: primarily, translating the part in the depth. In the future,
we’d like to offer quicker sketch-based composition tools, such as
sketching part connection points.

4 CONCLUSION & FUTURE WORK

In this paper, we have described a sketch-based system for mod-
eling single-image objects. Our planar mesh construction supports
sketches with not just boundary strokes, but also interior features
and holes. This allows for more topological variety and feature-
aligned mesh geometry. To create a 3D surface, we proposed a dis-
crete distance transform method that allows for a variety of cross-
sections. The reconstructed objects are planar-symmetric; to attain
more complex shapes, the user can sketch multiple parts either from
a single image or multiple images, and then assemble the parts with
affine transformations.

We have also advocated an image-oriented approach, in which
an image acts as an active drawing guide. The clear image–sketch
correspondence allows for “free” texture mapping, increasing the
visual quality of the output and automating a tedious task. This
allows skilled and unskilled users alike to create visually appealing
and proportionally correct models by simply tracing an image. The
benefits of this construction were illustrated with several examples.
Future work. While some informal feedback has been garnered
from modelers and artists, a formal user study is necessary to eval-
uate the usability of our framework. Undertaking such a study is
the next stage of our research.

Our current system currently does not provide tools for modify-
ing an existing surface, such as extruding one surface from another,
or blending surfaces together. In the future, we would like to of-



Figure 17: Several models created with our system; for each re-
sult, the input sketch(es), textured model, and underlying geom-
etry are shown. The modeling times ranged from 5-10 minutes
for each. [Image Credits: Lobster: glf.dfo-mpo.gc.ca. Lock: tribalar-
tifacts.com. Key: charmfactory.com. Xbox controller: microsoft.com. Air-
plane: www.cruzware.com. Seal: fotolia.com. Car: sandsmuseum.com. Gun:
gamespot.com.]

fer better sketch-based tools for creating and assembling multi-part
objects. Methods such as sketching the connection points on each
part [29] and annotating inter-part relations [8] can serve as inspi-
ration here.

The texturing component should also be extended to improve
the quality along the object’s seam. This could include a multi-
image integration technique [1], or perhaps a non-linear mapping.
We would also like to allow for the front and back surfaces to have
separate textures.

The raster-based region extraction used for stroke classification
has some limitations in the current implementation. In particular,
it fails if two strokes intersect. This prevents the user from draw-
ing, for instance, an object with a feature that spans the whole ob-
ject. Fortunately, this limitation can likely be overcome with minor
modifications to our current system.

Some aspects of the system could use further automation. The
final mesh quality depends on the polyline precision and the num-
ber of subdivisions levels; the results presented here were attained
with some tweaking of the parameters. There is an interrelationship
between the polylines as well; for example, the best place to con-
nect the endpoint of a feature line is to the nearest boundary point,
but there may not be a point there in the boundary’s polyline. These
aspects should be explored more fully to further improve the mesh
quality.
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