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Abstract. Subdivision surface intersections can be costly to compute.
They require the intersection of high resolution meshes in order to obtain
accurate results, which can lead to slow performance and high memory
usage. In this paper we show how the strong convex hull property can lead
to a method for efficiently computing intersections at high resolutions.
Consequently, the method can be used with any subdivision scheme that
has the strong convex hull property. In this method, a bipartite graph
structure is used to track potentially intersecting faces.

1 Introduction

Surface intersection is a common problem with a variety of applications. It is
integral to algorithms for computing Boolean operations between surfaces, which
are an essential tool in Computer Aided Geometric Design (CAGD). The some-
what simpler problem of detecting surface intersection is necessary for collision
detection, which has a wide variety of applications in animation, simulations,
video games, and other areas. Much work has been devoted to the surface in-
tersection problem for analytical surfaces [4, 5, 18] and NURBS surfaces [10–12],
however few previous works have attempted to solve this problem for subdivision
surfaces. Subdivision surface intersection often involves subdividing the control
meshes to a desired resolution and then applying a mesh intersection algorithm,
without considering properties of subdivision [2].

Today, meshes and subdivision surfaces are used in high end modelling pack-
ages [1], animation production [3], and have become part of the MPEG4 stan-
dard [16]. Subdivision is considered to be a fundamental building block in digital
geometry and mesh processing [19]. We can easily find many libraries and data
sets for meshes that represent various kinds of objects. By applying subdivision
schemes to these meshes we can create smoother surfaces, and it is also possible
to include sharp features in the results. Efficient intersection of these surfaces
makes it possible to apply Boolean operations on meshes, creating many use-
ful and new objects from the current objects (Fig. 1). Consequently, computing
intersections on the hierarchy of meshes resulting from subdivision is an impor-
tant task. For low resolution meshes this problem can be solved efficiently using
existing mesh intersection techniques. However, in order to produce high quality
results we need to perform these intersections on high resolution meshes which
can be slow and memory intensive. Subdivision schemes lead to exponential



Fig. 1. Using subdivision surface intersection to compute a Boolean operation between
two surfaces. The cylinder is subtracted from the man’s head.

growth of the number of faces in a mesh and only a few iterations of subdivision
can lead to meshes that are difficult to intersect due to their size.

In this paper we present a method for efficiently computing the intersec-
tion between two subdivision surfaces. The operations can be performed with
arbitrary precision, but our focus is on intersecting high resolution surfaces ef-
ficiently. We will not consider the case of self-intersecting surfaces. Our main
contributions are a fast face intersection exclusion test derived from the strong
convex hull property of subdivision surfaces, a bipartite graph construction that
makes it possible to identify and track which faces do not need to be tested
for intersection, and a complete subdivision surface intersection algorithm built
from these two results. We have implemented and tested our algorithm for Loop
and Catmull-Clark subdivision. Our exclusion method can also be used for the
case where the vertices are sent to the limit position.

Our method could be applied to any subdivision scheme where the strong
convex hull property of subdivision surfaces holds. The method can be used for
any existing meshes without additional pre-processing steps and could fit into
the framework of existing CAGD systems that use subdivision surfaces.

2 Previous Work

Much work has been done on computing intersections between various types
of surfaces. Several techniques have been developed for intersecting trimmed
NURBS surfaces. Methods involving symbolic and numerical techniques have
been used to trim the resulting surfaces [12], as well as mostly symbolic methods
involving exact algebraic number representation [10, 11]. Hohmeyer [8] gives a
framework for robust surface intersection based on loop detection.

The work of Epstein et al. [4], Goldfeather et al. [5], and Rappoport and
Spitz [18] on efficient rendering of constructive solid geometry (CSG) objects
presents a different approach to the problem of computing Boolean operations.
For such surfaces, intersection is a trivial problem.



Lin and Gottschalk [14] give an excellent survey of collision detection algo-
rithms. Collision detection between subdivision surfaces was discussed as a part
of character animation by DeRose et al. [3]. Bounding hierarchies are commonly
used when intersecting meshes, some examples of these include Gottschalk et al.
[6] and Zachmann [22]. Interference detection on subdivision surfaces has been
considered in works by Wu and Peters [21] and Grinspun and Schröder [7].

Our work on intersecting subdivision surfaces is most closely related to that
of Lanquetin et al. [13], who developed a method for intersecting subdivision
surfaces using their control meshes and bipartite graphs to minimize the cost.
It should be noted, however, that their method can incorrectly compute the in-
tersection in some cases, as they explained in their paper. Our use of bipartite
graphs was inspired by their work, although our graphs are constructed differ-
ently.

Biermann et al. [2] developed a technique for approximating Boolean opera-
tions on free-form solids bounded by subdivision surfaces. In their work, they in-
tersected the surfaces by performing midpoint subdivision on the control meshes
and using a standard mesh intersection technique based on spatial subdivision.
Our intersection approach could be employed in their Boolean operations frame-
work. Litke et al. [15] developed ways for trimming subdivision surfaces, such
trimmed surfaces are produced naturally through surface intersections. Several
different approaches for producing sharp features or creases have been described
in the past [2, 9, 20], which can be produced from intersection curves.

3 Excluding Face Intersections

For the remainder of this paper, the neighbourhood of face f, denoted N(f), refers
to the vertices of face f and all vertices of faces that share at least one vertex
with f. A child of face f refers to any face produced by the subdivision of f. The
convex hull of a set of vertices V will be denoted co(V).

3.1 Convex Hull Intersection

The strong convex hull property for subdivision surfaces states that, for any
face f, the children of f will be contained within co(N(f)) (Fig. 2). This property
holds where all masks’ weights are positive. B-spline based subdivision schemes,
including Loop, Catmull-Clark, polyhedral, and Doo-Sabin, are subdivision ex-
amples with this property. As a rare case, the convex hull property does not hold
for Butterfly subdivision.

We can apply this property to the process of intersecting subdivision surfaces
with the following observation. If C1 and C2 are control meshes of two subdivision
surfaces and f1 ∈ C1 and f2 ∈ C2 are two arbitrary faces in those meshes, then
the children of f1 will be contained in co(N(f1)) and the children of f2 will be
contained in co(N(f2)). Therefore, if co(N(f1)) does not intersect co(N(f2)) we
know that none of the children of f1 will intersect any of the children of f2, no
matter how often each surface is subdivided. We now state this formally.



Fig. 2. The strong convex hull property illustrated for Loop subdivision. The fine mesh
is contained within the convex hull of the coarse mesh.

Theorem 1: Let C0
1 and C0

2 be the control meshes of two subdivision surfaces,
let Ci

1 and Ci
2 be the meshes resulting from subdividing C0

1 and C0
2 i times, and

let f i
1 ∈ Ci

1 and f i
2 ∈ Ci

2 be two arbitrary faces produced from subdividing f0
1 ∈

C0
1 and f0

2 ∈ C0
2 i times respectively. If co(N(f0

1 )) does not intersect co(N(f0
2 ))

then f i
1 does not intersect f i

2.
This theorem gives us a strong condition for excluding the intersection of two

faces. If co(N(f i
1)) does not intersect co(N(f i

2)) for f i
1 ∈ Ci

1 and f i
2 ∈ Ci

2 then
we can exclude all children of f i

1 and f i
2 from intersection tests with each other.

We show in our results that this can be applied to greatly reduce the number
of face intersection tests when compared to other standard mesh intersection
algorithms.

It should be noted that we do not need to compute any convex hulls in order
to apply this result. If the distance between the convex hulls of the vertices of
the neighbourhood is greater than zero then an exclusion has been detected, and
this can be determined without computing the convex hulls. Rabbitz [17] gives
an algorithm for computing the distance between two convex polyhedra using
only the vertices of the polyhedra. If vertices of a non-convex polyhedra are
given then the intersection is computed with the convex hull of those vertices.
Since this algorithm takes only two sets of vertices as input it is well suited to
our purposes. To determine if the children of faces f1 ∈ C1 and f2 ∈ C2 could
potentially intersect, we can pass N(f1) and N(f2) to Rabbitz’s algorithm.

Even though we have a relatively efficient way to test for intersection between
co(N(f1)) and co(N(f2)), our experiments have found that this technique is
only beneficial for extremely high resolution meshes. Although convex hulls are
very good at reducing the number of face-face intersections performed, in most
practical cases the expense of intersecting two convex hulls for each pair of faces
results in a slower algorithm than a standard spatial subdivision approach. In
order to make these ideas work at more practical resolution levels we need a
much faster intersection exclusion test.

3.2 Alternate Intersection Tests

Any bounding volume around the convex hull can be used for excluding inter-
sections. We have experimented with a variety of methods for bounding the
convex hull of the neighbourhood of a face, including bounding spheres, oriented



bounding boxes (OBBs), and axis-aligned bounding boxes (AABBs). A tight ra-
dius for bounding spheres is hard to find and we have found that, with a larger
radius, bounding spheres are not able to exclude enough face-face intersection
tests. OBBs are very effective at excluding face-face intersection tests, however
computing an OBB around the neighbourhood of a face is not trivial. OBBs are
typically most effective when they can be pre-computed, but in our case they
need to be computed on the fly each time a mesh is subdivided.

We have found that the best method of bounding the convex hull of the
neighbourhood of a face, in terms of running time, is to use axis-aligned bounding
boxes. For a face f, it is clear that the AABB of N(f) will contain co(N(f)), which
leads to the following corollary.

Corollary: Let C0
1 and C0

2 be the control meshes of two subdivision surfaces,
let Ci

1 and Ci
2 be the meshes resulting from subdividing C0

1 and C0
2 i times, and

let f i
1 ∈ Ci

1 and f i
2 ∈ Ci

2 be two arbitrary faces produced from subdividing f0
1

∈ C0
1 and f0

2 ∈ C0
2 i times respectively. If an AABB containing all vertices of

N(f0
1 ) does not intersect an AABB containing all vertices of N(f0

2 ) then f i
1 does

not intersect f i
2.

This results in a highly efficient exclusion test with a tight enough bound to
exclude the majority of face-face intersection tests.

4 Graph Based Intersection

We use a dynamic bipartite graph to keep track of only the faces that remain
from the convex hull exclusion. In other words, this graph helps us to find all
potentially intersecting faces. Our graph, G = (V1, V2, E), consists of two sets of
vertices, V1 and V2, and a set E of edges. Each vertex in V1 represents a face in
the control mesh C1 and each vertex in V2 represents a face in the control mesh
C2. An edge e ∈ E connects v1 ∈ V1 to v2 ∈ V2 if the faces represented by v1

and v2 could potentially intersect. We call this the potential intersection graph.
Using our result from the previous section, this means that if an AABB around
co(N(v1)) intersects an AABB around co(N(v2)) then v1 and v2 are connected
by an edge. Otherwise, they are not. The vertex sets V1 and V2 form the two
partitions of the graph. As we are not considering self-intersection, there will
be no edges between two vertices of the same set since two faces from the same
control mesh will not need to be tested for intersection.

Upon subdividing C1, each vertex of V1 is split into n new vertices rep-
resenting the new faces resulting from subdivision (in Loop or Catmull-Clark
subdivision, for example, each vertex of V1 is split into 4 vertices representing
the 4 new faces resulting from the subdivision of each face). If an edge existed
between v1 ∈ V1 and v2 ∈ V2 then edges will connect v2 to each of the vertices
resulting from splitting v1 (Fig. 3). Subdivision of C2 is handled the same way.

This dynamic graph structure is used to keep track of which faces need tested
for intersection and which tests can be excluded. Each edge represents a face
intersection test that has not yet been resolved. Using the quick exclusion test



Fig. 3. A bipartite graph with potential intersections between v1 and w1, v1 and w2, v2

and w2, and v2 and w3 (left). The same graph after subdividing one partition (right).

described in Sect. 3, we can eliminate many edges from the graph each time a
control mesh is subdivided using the algorithm described in the next section.

5 The Intersection Algorithm

We begin with the control meshes C0
1 and C0

2 of two subdivision surfaces and an
integer n, the depth of subdivision at which the intersection will be computed.
The choice of n will determine the accuracy of the intersection, with larger values
leading to a more accurate intersection. Larger values of n will also lead to a
slower intersection due to the exponential growth in the number of faces resulting
from subdivision.

In the first step of the algorithm, we must compute an initial potential in-
tersection graph G0, having the form described in Sect. 4. Since we begin with
no previous information on whether or not any two faces of C0

1 and C0
2 inter-

sect, we must test each face of C0
1 with each face of C0

2 . For each face f0
1 ∈ C0

1

and f0
2 ∈ C0

2 we compute N(f0
1 ) and N(f0

2 ) and then test if an AABB around
co(N(f0

1 )) intersects an AABB around co(N(f0
2 )). If there is no intersection, we

can conclude that there will be no intersections between the children of these
faces. Otherwise we add an edge to G0 from f0

1 to f0
2 (a potential intersection

in further levels). Note that the construction of the AABBs is trivial since they
depend only on the vertices of N(f0

1 )) and N(f0
2 )) respectively.

At this point we can use spatial subdivision to make the process of con-
structing the initial potential intersection graph more efficient. We compute the
AABB of co(N(f)) for each face f of a control mesh and then place these in an
axis-aligned hierarchical bounding box structure [22], one for each control mesh,
where the leaf nodes are the AABBs. The initial graph can then be computed
by intersecting the two bounding box trees, adding an edge whenever two leaf
nodes intersect. This optimization is unnecessary for extremely coarse control
meshes having few faces, but can be beneficial in other cases.

After computing the initial graph, we proceed in a loop where, for each
iteration, both meshes are subdivided and then a new graph is created from the



old one. The new graph Gi+1 is created from Gi by splitting the vertices of Gi in
the manner described in Sect. 4. This produces a much larger graph, but many
of the edges can be removed using the intersection exclusion test once again.
If there is an edge e ∈ Gi+1 from face f i

1 to face f i
2 then we compute N(f i

1)
and N(f i

2) and test for intersection between an AABB around co(N(f i
1)) and

an AABB around co(N(f i
2)). If they do not intersect edge e is removed from

Gi+1. We can further prune the graph by removing any isolated vertices that do
not have any edges connected to them. The loop terminates when the desired
subdivision depth has been reached (Fig. 4).

Fig. 4. The intersection algorithm proceeds from left to right, subdividing and updating
the graph at each iteration. Faces still in the graph are highlighted. Note that most
faces are excluded at a low resolution.

When the loop is complete we have two meshes, Cn
1 and Cn

2 , and a bipartite
graph Gn, and we are ready to compute the final, precise intersection. To do
this, we iterate over all edges of Gn and, if an edge connects fn

1 to fn
2 in the

graph, we test fn
1 and fn

2 for real intersection.
One common method for producing a more accurate approximation to the

limit surface after several applications of subdivision is to relocate the vertices of
the mesh to the limit surface. Due to the fact that the limit surface is contained
within the convex hulls of the neighbourhoods of the faces, this technique can be
used with our algorithm before computing the real intersection without affecting
the results of the computation.

6 Results

We have tested our algorithm on a wide variety of surfaces using both Loop
and Catmull-Clark subdivision and have found that it leads to significant per-
formance improvements, especially at high resolutions that are problematic in
real applications. Table 1 gives a comparison of our method with a mesh inter-
section algorithm using spatial subdivision. The table gives the average number
of face intersections that need to be performed for each algorithm. The number
of subdivisions refers to the depth of subdivision at which the intersection is
performed (the integer n in our algorithm). In the case of hierarchical bounding
boxes, the control meshes were subdivided n times and the resulting surfaces
were intersected. Fifty pairs of surfaces were intersected with the surfaces se-
lected from a set of polygonal meshes. The meshes consisted of simple surfaces,



Subdivisions (n) 1 2 3 4

Catmull-Clark subdivision

Hierarchical bounding boxes 48850 137330 397056 1179298
Bipartite graph with AABB exclusion test 52462 100827 198595 396781
Bipartite graph with convex hull exclusion test 13463 19899 25602 37905

Loop subdivision

Hierarchical bounding boxes 48667 127348 357738 1036631
Bipartite graph with AABB exclusion test 82805 152086 288928 554449
Bipartite graph with convex hull exclusion test 23031 29522 39620 65865

Table 1. Average number of face-face intersection tests performed while intersecting
50 pairs of subdivision surfaces at various resolutions.

such as cubes and spheres, as well as arbitrary topology surfaces such as animals
and human heads. The number of faces in the coarse meshes varied from 24 to
3336. Notice that, if we subdivide only once, spatial subdivision outperforms our
method in the case of Loop subdivision and performs almost equally as well with
Catmull-Clark subdivision. However, when subdividing four times our method is
nearly twice as efficient in excluding intersection tests for Loop subdivision, and
three times as efficient for Catmull-Clark subdivision. Our method also performs
well with non-intersecting surfaces. In such cases all faces are excluded at a low
resolution and no tests need to be performed on the high resolution meshes.

We have also included in the Table 1 the number of face-face intersection
tests performed when using an exact convex hull intersection test to exclude
faces from intersection. Clearly this gives a tighter bound than the AABB ex-
clusion test, and this is reflected in the results. Using an exact convex hull test
enormously reduces the number of face-face intersections that need to be per-
formed. However, in practice, testing for intersection between two convex hulls
is not fast enough for our purposes and leads to a slower algorithm.

We have experimented with a variety of different exclusion tests, including
bounding spheres centred around faces, vertices, or edges, oriented bounding
boxes, and exact convex hulls around face neighbourhoods, and we have found
that most efficient method in terms of running time is the AABB test presented
here. Figure 5 shows a comparison between the performance of our method
and a hierarchical bounding box approach for a typical collision detection case
resolved to various subdivision depths. As the resolution gets higher, our method
performs significantly better due to the reduction in face-face intersection tests.

Also in Fig. 5 is a comparison of peak memory usage. Our method leads
to a large reduction in memory usage at higher resolutions since we only need
to store information about faces that could potentially intersect. After several
subdivision steps, most faces have been removed from the graph.



Fig. 5. A comparison of the running time (left) and peak memory usage (right) for a
typical surface intersection at various subdivision depths using Loop subdivision. Two
arbitrary topology surfaces, a dolphin (816 faces in the coarse mesh) and a duck (1818
faces in the coarse mesh) were used in the tests.

7 Conclusion

We have presented a method for computing the intersection of two subdivi-
sion surfaces with arbitrary precision that takes advantage of the strong convex
hull property to produce an efficient algorithm. Our method can be used with
any subdivision scheme where the strong convex hull property holds, and we
have shown that it leads to a significantly more efficient intersection computa-
tion than existing methods for both Loop and Catmull-Clark subdivision. This
method could be applied to improve the efficiency of several algorithms that
involve intersecting subdivision surfaces, such as performing Boolean operations
or collision detection.

Although we have investigated several intersection exclusion tests, it may be
possible to find a more efficient test that improves these results. Our results in-
dicate that many more face intersection tests could be excluded using the strong
convex hull property if an appropriate exclusion test could be developed, how-
ever such a test must be quite quick in order to work effectively in this context.
It is not clear if such a test exists and therefore merits further investigation.

References

1. ALIAS|WAVEFRONT: Maya. www.aliaswavefront.com (2002)
2. Biermann, H., Kristjansson, D., Zorin D.: Approximate Boolean operations on free-

form solids. Proceedings of SIGGRAPH 2001 185–194
3. DeRose, T., Kass, M., Truong T.: Subdivision surfaces in character animation. Pro-

ceedings of SIGGRAPH 1998 85–94
4. Epstein, D., Gharachorloo, N., Jansen, F., Rossignac, J., Zoulos, C.: Multiple depth-

buffer rendering of csg. Technical report, IBM Research Report (1989)



5. Goldfeather, J., Hultquist, J. P. M., Fuchs, H.: Fast constructive solid geometry in
the pixel-powers graphics system. Proceedings of SIGGRAPH 1986 107–116

6. Gottschalk, S., Lin, M. C., Manocha D.: OBBTree: A hierarchical structure for rapid
interference detection. Computer Aided Geometric Design 3(4) (1986) 295–311
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