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Databases of human iris images are created and distributed for the purposes of testing iris identification

algorithms. For logistical and privacy reasons, these databases are often too small to fulfill their

potential applications.

In this work we develop a novel multiresolution approach to augment iris image databases. First,

using a multiresolution obtained from reverse subdivision we decompose the example iris images into a

set of lower resolution components. The components are a complete representation of the original

image and consist of a low resolution approximation and a set of characteristics. To generate synthetic

iris images we combine a set of components chosen from the original images. To ensure a unique, yet

realistic, iris image each component of a synthetic image is chosen from different iris images. We

quantitatively validate our approach by employing a classical iris recognition algorithm to compare our

synthetic images with those that were used to create them. The results demonstrate that our approach

is effective at augmenting iris image databases with iris images that are unique, yet exhibit both

visually and statistically realistic characteristics.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Digital models can be created by gathering a set of measure-
ments from geometric objects. For various reasons, these models
may be incomplete representations of the objects. For example,
there may be too few sample objects to produce a sufficiently
large database.

The development of new iris identification algorithms can be
hindered by the lack of test databases with enough sample iris
images [36]. At the time of this research there were only three,
freely available, public databases that could be used for testing iris
recognition algorithms [5,19,8]. This motivated our interest in the
development of a new technique for iris synthesis.

Although free databases of real iris images may become more
readily available in the future, our method will continue to be
relevant. Given high-quality sample iris images we can produce
new high-quality iris images thereby augmenting whichever
input database that is chosen. The sample irises will inherit
properties from the original set of irises allowing for investigation
into what kind and how many irises we can have if we start from
an initial small set.

The goal of our approach is to augment existing iris image
databases. We use a novel iris image synthesis technique that has
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two distinct components. First, a number of preprocessing steps
based on iris recognition methods are used to rid the image of
extraneous (non-iris) information. For the synthesis stage, we
capture and combine the characteristics of real images to
compose new images. Generally speaking, this is similar to
genetic inheritances, in which the irises of the children resemble
those of the parents. For the purposes of combination, we explore
a classification of iris images that increases the compatibility of
the selected components.

To verify that our augmented database exhibits the same
characteristics as the original database we use a well-known iris
recognition algorithm on both the original database and the
database augmented with our synthetic images. Although this
alone validates our primary goal of database augmentation, our
synthetic results also demonstrate a high level of realism.

The paper is organized as follows. Section 2 provides the
necessary background information and related work. Section 3
describes methodology we developed for creating iris databases
from the sample iris images. Section 4 presents experimental
results, followed by conclusions and future work.
2. Background

Multiresolution representation (MR) and wavelets are power-
ful tools that have been recently applied in biometric and other
image processing areas. They have been used for the purpose of
biometric identification [7,12,32,37], fingerprint edge detection
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and matching [29,28], document contour extraction [34], as well
as handwritten numeral recognition [20]. Recently, reverse
subdivision (RS) filters have been proposed as alternatives to
Haar wavelets for biometric applications [24]. RS refers to a kind
of multiresolution that is directly created from operations on
discrete datasets and therefore leads to more efficient and
compact results than conventional wavelets [22]. Other techni-
ques can be used for data synthesis purposes. See [24] for a
discussion of MR techniques for data synthesis and see [31] for a
discussion of non-MR techniques for data synthesis. Energy
minimization MR can create details that are better suited to
synthesis; however, their construction is more complex [21]. In
this work we use Chaikin RS filters as they are very simple, and
improve upon traditional Haar wavelets by providing continuous
scaling and wavelet functions.

RS methods have been used successfully in a number of areas;
such as polygonal silhouette error correction [9], and visualization
of clinical volume data [26]. More closely related to this work, RS
methods have been used in a synthesis capacity. Brosz et al.
modeled terrain, by example, using MR to match the resolution of
the terrains and provide the finer details needed for synthetic
terrains of higher resolution [1]. In order to extract characteristics
of line drawings, Brunn et al. used MR to decompose the drawings
which allowed them to carry the characteristics to other line
drawings [2]. In this paper, we present the novel application of
reverse subdivision methods to generate synthetic irises and thus
augment biometric databases.

Data synthesis refers to the creation of new data to meet some
intended purposes and includes areas such as texture synthesis,
domain specific rendering and biometric synthesis. Biometrics
conventionally involves the analysis of biometric data for
identification purposes. Due to logistical and privacy issues with
collecting and organizing large amounts of biometric data, a new
direction of biometric research concentrates on the synthesis of
biometric information. One of the primary goals of the synthesis
of biometric data is to provide databases on which the classical
biometric algorithms can be tested [36,11]. There is very little
work directly related to iris synthesis. In order to provide a better
background, we review some works that are generally related to
the area of biometric synthesis.

Cappelli et al. describe a complete system for human
fingerprint image generation [3]. Their system uses fingerprint
classifications to generate the global shape of each fingerprint.
This global shape then undergoes a series of deformations and
random variations in order to achieve the master ridge patterns.
Once the master ridge patterns are known, their system can
generate multiple samples of the original image using combina-
tions of deformations throughout the synthesis process. They
validate their results by exploiting the ubiquity of fingerprint
identification and the subsequent availability of fingerprint
experts and competitions.

Luo and Gavrilova propose an approach for facial synthesis and
expression modeling based on the underlying mesh modification.
Selection of control points in their method is guided by the 3D
Voronoi diagram [15]. A general overview of geometric algorithms
in facial expression modeling can be found in a plenary lecture
delivered by Gavrilova [10].

Cui et al. propose a method to synthesize iris images, based on
principal component analysis (PCA) and super-resolution [6].
Irises are grouped into five classes and 75 dimensional PCA global
feature vectors are generated by applying eigenvector-based
multivariate analysis to gray-level irises. The synthesis method
uses a feature vector of the same size, and the problem is
constrained to a search in a limited high dimensional space. Their
method is computationally expensive, and uses a process of fine
data decomposition while our method has a linear time
implementation and uses low resolution color components to
produce synthetic images.

A different technique to synthesize human irises for use in
computer graphics applications was recently developed by Lefohn
[14]. The method makes use of the domain knowledge of
ocularists to obtain results that take on a high level of realism.
Their approach uses 30–70 layers of painted textures, scanned
into the program using a conventional flat bed scanner. An
alternative approach uses a similar assembling technique to form
an iris image from iris layers, such as collarette or stroma [35].
The set of iris layers is taken from a collection of synthetic and
original elementary patterns of the iris. A superposition of these
so-called iris primitives is used to assemble the final iris image.
In addition to original elementary patterns, this approach
synthesizes the collarette’s outer boundary and the stroma using
Bezier curves and a Voronoi transform, respectively. However,
both approaches are highly computationally involved and
complicated.

In [13], a model-based method is presented which generates
iris images in five steps. To start, 3D continuous fibers are
projected into a 2D polar space. A top layer with an irregular edge
is modeled using cosine functions. Then the top of the layer is
blurred and a smooth Gaussian noise layer is added to make the
area bumpy. The final step adds eyelids using two low frequency
cosine curves.

Model-based methods are important and interesting
approaches for synthesizing objects. However, for complex
objects such as the iris, the model and its parameters (including
noise functions) become very complicated which, in turn, requires
major simplifications and consequently rigorous verification.
However, our approach uses a by-example strategy which starts
with examples of real iris images. Since the synthetic irises inherit
their characteristics from the real examples they also become
realistic. Furthermore, adding new features to the synthetic irises
produced by our method is a simple task. To obtain new features,
one must simply add an iris image that contains the specific
feature into the input dataset. Conversely, adding a new feature to
a model-based method is usually a challenging task.

In this paper, we propose a radically different approach to
augmenting iris databases with new and unique iris images that
are easily obtainable through multiresolution technique. Multi-
resolution representation has been used for iris synthesis in [30].
In this work we take this idea and extend it to complete a
systematic approach to iris synthesis with an emphasis on
extensive experimentation and validation.
3. Methodology: iris synthesis

We now present a method that describes how multiresolution
based synthesis can be applied to the problem of iris synthesis in
the area of biometrics. Biometrics is the science of using biological
properties to identify individuals. The purpose of biometric
identification algorithms is to determine if a given biometric
identifies anyone within a database of known individuals. Images
of an individual’s irises are a biometric that can be reliably used
for identification [32,7]. However, the development of new iris
identification algorithms can be hindered by the lack of test
databases with enough sample iris images [36]. This motivated
our interest in the development of a new technique for iris
synthesis. This section describes our new multiresolution
approach to synthesize new iris images.

We use multiresolution methods to decompose existing iris
images into several components. We then reconstruct new iris
images by combining components from different irises. By using
components of real irises in our method we are able to synthesize



Fig. 1. Selected synthetic irises generated with our algorithm.

Fig. 2. (a,b) Example UBIRIS iris images. (c,d) Example CASIA iris images. (e,f)

Example UPOL images.
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iris images that are very realistic. Each unique combination of
the extracted components creates a new and unique iris.
Therefore, all comparisons using our synthesized irises will be
inter-class comparisons (i.e. comparisons between images of
different irises).
3.1. Image databases

Our synthesis technique requires a pre-existing set of iris
images. There are currently three publicly available databases of
iris images: CASIA [5], UPOL [8], and UBIRIS [19] (see Fig. 2). Each
of the three databases has distinct characteristics: CASIA contains
black and white images of medium resolution, UPOL contains
color images of high resolution, and UBIRIS contains color images
of high resolution as well as noisy images. Our method uses the
existing images in the database to synthesize new images. The
synthesized images will be of the same color space, quality and
resolution of the input iris images which affects our decision of
which iris database to use. Although UBIRIS is the largest publicly
available iris database, it contains many noisy iris images for
testing purposes. Extracting characteristics from noisy iris images
produces noisy characteristics which is unsuitable for generating
high quality synthetic iris images. The CASIA database images are
black and white and as such, will result in black and white
synthetic iris images. The UPOL database contains high-quality,
high-resolution colored iris images which have minimal artifacts.
We chose UPOL as the starting database because it allows our
method to produce high quality, high resolution images. The
resulting images have minimal artifacts that can be attributed to
the input images thereby allowing us to easily identify any
artifacts introduced by our method.
3.2. Preprocessing: isolating the iris

The images in the UPOL database may also contain the
surrounding eye, eyelids and the pupil (see Fig. 3). In order to
rid the image of this extraneous information, iris recognition
algorithms use a number of preprocessing steps. Any of the
preprocessing steps that result in the identification and removal
of non-iris information contained in the image may be used
[33,32,7]. There are two main requirements that our algorithm
imposes on these preprocessing steps. The first is that they must
fully remove the eyelid, and any highlights contained in the pupil
leaving only the iris itself as in Fig. 3(b). The second is that they
must produce an image that is a suitable resolution for our
multiresolution step. We use an image editing tool, such as
photoshop to remove the lighting reflections from the pupil and
removing most of the eyelid and surrounding eye resulting in an
image such as Fig. 3(b). UPOL input images are 768�576 pixels in
size. After we removed the eyelid and eyeball from the images,
the images had o512 pixels of height. The RS filters we use are
best employed on images that have a width and height that is a
power of two. To satisfy this, the resulting images were resized
such that the largest dimension was 256 pixels and extra rows or
columns of black pixels were added to result in an image of size
256�256.

The iris itself is a circular, pigmented portion of the eye that
functions to regulate the amount of light allowed to pass through
to the retina. The stroma is a fibrovascular tissue that is visible as
the lines connecting the outer edge of the pupil with the outer
edge of the iris. Additionally, irises have circular rings that are
called the collarette. The stroma and collarette give the iris some
structure. We use a preprocessing step that unwraps the iris
image into polar coordinate system such that the stroma and the
collarette are aligned with the rows and the columns of the image.

The circular nature of the iris lends itself to an alternate
coordinate system. In the first step, we use a polar coordinate
transform to unwrap the iris image into a rectangular shape,
resulting in the image in Fig. 3(c). The polar coordinate system is
defined in terms of ðr,yÞwhere y is an angle from a polar axis and r

is the distance from the origin. This effectively unwraps the
circular iris information into columns and rows. Next, the pupil is
removed such that only the iris information is left in the image, a
necessary requirement of our synthesis method. Once a new iris
image has been synthesized, we re-insert the pupil information
and return the iris to its original coordinate system. The
sequential organization of the preprocessing stages and subse-
quent synthesis framework are provided in Fig. 4. We explain
each of the preprocessing stages in detail in the following
sections.

Each input image is a uniform sampling of the light reflecting
off of an iris. The image resulting from the polar coordinate
transform represents a uniform sampling in the angle and radius
axes. A standard polar coordinate transform produces an output
image of the same width and height as the input image. However,
the Cartesian and polar sampling rates are not equivalent. The



Fig. 3. Iris image preprocessing steps: (a) the original image, (b) after removing the eyelids, eyeball and pupil highlights, (c) after being unwrapped with the polar

coordinate transform, and (d) after being scaled using piecewise linear scaling algorithm.

Fig. 4. The preprocessing stages, and subsequent multiresolution engine organi-

zation.
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outer edge of the iris is a higher resolution sampling of the iris in
the angle dimension, than is the inner edge. In our case, a polar
coordinate transform that does not change image resolution will
result in loss of information from the outer edge of the iris. We
address this issue by using an output image that has a resolution
sufficiently large enough to contain the unwrapped circumference
of the iris. Analysis, discussed below, demonstrates that a
moderate increase in quality can be achieved by using this
approach instead of a standard resolution transform.

The circumference of any circle is p multiplied by the
diameter. For our database, the diameter of the iris is approxi-
mately the width of the image. Therefore, the resulting image size
must be at least pwi, where wi is the width of the input image.
Digital images use integer sizes, hence we use the ceiling of p¼ 4
which results in a polar coordinate image with dimensions
4wi �wi. The inverse transform reverses this process, producing
an iris image in the Cartesian coordinate system that has the same
size as the original iris image.

To test this high-resolution transform, we used the standard
measure of peak signal to noise ratio (PSNR) [17]. PSNR compares
an original signal with a reconstructed version and provides a
measure of the similarity of the original signal to the recon-
structed signal. We use the following definition of PSNR:

20:0 log10
255:0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
½f ði,jÞ�Fði,jÞ�2

p2

s
0
BBBB@

1
CCCCA ð1Þ

where p is the number of pixels in the image, f is the original iris
image and F is the image obtained by applying a polar coordinate
transform followed by the inverse transform. We use our high
resolution polar transform and compare its PSNR value with that
of a standard resolution transform. Fig. 5 demonstrates that the
high resolution polar coordinate transform provides a moderate
improvement in the quality of the resulting image.
3.2.1. Removing the pupil

The pupil is the central portion of the iris, where the light
passes through to the retina. Its size is dependant upon the
amount of light available. In addition, the pupil may not be
centered in the iris image. Both of these conditions produce
abnormalities in the polar coordinate images, see Fig. 3(c).
The variability of the pupil size causes a black rectangular area
in the top of the image. There may also exist small parabolas along
the bottom of the image due to non-centered pupils. In order to
isolate the iris for our synthesis algorithms we should remove
these parabolas.

To solve these issues, we employ a technique which scales the
iris image information to fill each column. This effectively
normalizes the length of each column in the iris image and also
removes all empty values. We use a piecewise linear scaling
algorithm [27] to perform the scaling.

The first step is to isolate area within each column that
contains the iris information and nothing else. Edges of the iris are
found in each column by detecting the first pixel from the top and
the first pixel from the bottom which is not black. The detection
may be sensitive to noise in the pupil although in our cases such
abnormalities were removed when we removed the eyeball,
eyelid and pupil highlights in the first step. Although it is not the
focus of this work, automation of this method might be achieved
through noise removal and smoothing filters with edge detection
algorithms [33,7]. These edges denote a new, smaller column of
values that will be scaled to fit the original column size.

We use a piecewise linear scaling algorithm [27] to scale the
iris. Co denotes the original column and Ci denotes the subset of
that column that contains the iris information. The scaling



Fig. 6. Iris image decomposition. The original iris image is on the top row. Each

subsequent row contains a coarse representation after one level of decomposition

and the details extracted during the process.

Fig. 7. (a) Original iris. Coarse approximation after (b) two, (c) three, (d) and four

levels of reverse subdivision. The third level still contains pattern information,

while the fourth level contains only color information. (e) Fully reconstructed iris

image, compared with details (f) captured from four levels of reverse subdivision.

(For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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algorithm maps each pixel in Co into the domain of Ci. The
mapping is not one to one, so each pixel in Co is a linear
interpolation of two adjacent values from Ci effectively resam-
pling the iris image in a uniform manner across the entire image.
The resulting image is similar to the one in Fig. 3(d).

Once the synthesis algorithm is finished, the new iris image
will also appear similar to Fig. 3(d). It is then post-processed to
return it to the original shape and size of a real iris (see Fig. 4).
During the post-processing each column is scaled to a fraction of
its original height. The size used during the post-processing step
can be varied to achieve varying sized pupils. This allows our
synthesis algorithm to produce images of the same iris with
different pupil sizes.

3.3. Iris synthesis

Our goal is to augment existing iris image databases through
our image synthesis process. The synthesized images should
display similar characteristics to real irises, yet be unique. To
achieve the goal of realism, we introduce a method that uses
characteristics of real iris images. For the goal of uniqueness, our
method uses a set of unique characteristics extracted from
multiple differing irises.

Iris image characteristics can be extracted from the original iris
image by using a suitable multiresolution method. Haar wavelets
are traditionally used in biometric applications, however, we use
Chaikin reverse subdivision filters which have been proposed as
alternatives [23]. Chaikin reverse subdivision filters improve upon
Haar wavelets by providing continuous scaling and wavelet
functions. In addition the filters improve upon conventional B-
Spline wavelets [25] by providing the banded regular structure with
shifted filter values necessary for efficient implementation [23].

A common approach to multiresolution notation is to use a
matrix notation where A, B, P, and Q represent the multiresolution
operations as follows. The iris image In can be decomposed to a
coarser approximation In�1 and a vector of details Dn�1 by using

In�1 ¼AnIn ð2Þ

and

Dn�1 ¼ BnIn ð3Þ

In addition, the original image In can be easily reconstructed from
In�1 and Dn�1 using

In ¼ PnIn�1þQ nDn�1 ð4Þ

The process can be iteratively applied to the coarse approxima-
tions for further decomposition In�l,Dn�l,Dn�lþ1, . . . ,Dn�1. The core
of our synthesis algorithm is built upon an interesting possibility:
any detail component, Dn�1 can be replaced with the details from
another iris image, D

0n�1. The reconstructed image based on these
two components can be thought of as a new unique iris image
Inew
n . This leads us to have many options for combining

components of different irises (Fig. 6).
Looking at any iris image, it becomes obvious that most of its

characteristics are made of high resolution data and consequently
the value of l should be small. Experimental results, shown in
Fig. 7, demonstrate that only four levels (l¼4) of decomposition
are enough to effectively capture all of the details from 256 �256
iris image. The low resolution approximation which is left after
four levels of decomposition contains only the global color
scheme of the given iris. To demonstrate this observation, we
decomposed an iris image and replaced its low resolution
approximation with a solid grey image. We then restored it to
its original resolution, resulting in the grey iris in Fig. 7(f). The
new iris is simply a grey-scale version of the original iris image.
We can therefore conclude that the details extracted during four
levels of decomposition completely capture the characteristics of
an iris image; an observation that is central to the combination
algorithm. This observation allows us to completely decompose



Fig. 8. Classifications of iris images, (a,b) with two rings of similar frequency

characteristics and (c,d) with one ring of similar frequency characteristics.

Fig. 9. Example iris which is blurry due to incompatible components.
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Fig. 10. Structure of the combination algorithm. Items with darker background

represent components extracted from real iris images, components with white

background represent synthetic iris images at varying levels of resolution.
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an iris image into the following five components In�4, Dn�4, Dn�3,
Dn�2, and Dn�1.

The number of levels required to completely capture the
characteristics of the iris is dependant on the input image
resolution. Given a database which contains larger iris images,
more levels of decomposition may be required to capture all
characteristics. In a conceptual level, our approach can also be
used when the level of the decomposition is higher than four and
indeed this can increase a larger set of synthesized irises.
However, our specific experimentation and implementation are
based on ‘four’ levels of decomposition which is a consequence of
selection of UPOL as the original database.

3.4. Selecting combinations of iris images

Recall that any 256�256 iris image can be decomposed into
five new components. The reverse is also true, a new 256�256
iris image can be created from five components, due to the
properties of multiresolution. For each newly synthesized iris
image, we select the five necessary components from those
available to us in the original database. As a way of synthesizing
new unique iris images, each of the components can be selected
from a different iris. Given a database of N input images, we can
decompose each of these images into their five components.
Therefore, when synthesizing an iris image, we have N choices
available for each of the necessary components which allows us to
create a total of N5 possible combinations. The original N iris
images are included in these new combinations, as they are
recreated when each of the selected components is from the same
iris image. Clearly, given even a reasonable small database to start
with, our method can generate an exponential increase in size.

3.5. Classifying iris images

During validation of our initial results, it became clear that not
all of the N5 combinations result in synthetic irises with a high
level of realism. Irises are quite varied and the characteristics
extracted from varied irises may not be compatible. This fact is
also valid for fingerprints. However, fingerprint classifications
allow synthesis algorithms to more effectively generate images. In
a similar fashion, simple classifications for irises also help to
separate the irises into compatible groups and subsequently
improve the realism of the results. Based on our observations,
there are two distinct types of iris images. Some iris images have
two areas where the thickness and position of the visible lines
have a subtle difference (Fig. 8(c) and (d)). In the second set of
irises, the lines are uniform throughout the iris, although the color
of the iris may change slightly (Fig. 8(c) and (d)). Therefore, we
classify irises into two types: single area or double areas.
Although, our framework allows us to combine components
from both kinds of irises, the resulting synthesized iris may
become blurry as shown in Fig. 9. To reduce the number of blurry
irises, only components from compatible irises (from the same
group) are combined.

Grouping databases into sets of single area or double area
irises can be done either manually (when the original size of the
datasets is small) or automatically using image segmentation
techniques [4,18]. The query is simple: whether each iris belongs
to the single or double area set. In addition, the error in
segmentation is not very critical and may only increase the
blurriness of some irises. Our selected database was small and
therefore a manual classification was employed.

Once one set of iris images have been classified, the possible
combinations of irises that can be made from this small set is very
large. If, for example, only eight iris images are available, a
possible 85
¼32 768 images can be created. Although it would

be possible to automate the classifications, the combinatorial
possibilities of this method make this automation a secondary
goal.
3.6. Combining the details to form a new iris

Our combination algorithm requires five images from the
database as input; using the subscript notation to identify each of
the five images we have: I0, I1, I2, I3, and I4. From these images, we
extract the five necessary components to build a complete iris
image (e.g. for I1 the hierarchy is I1

n�1, I1
n�2, I1

n�3 and I1
n�4). First,

the base color information for the new iris image Inew
n�4, is directly



Fig. 11. The components used to synthesize an iris and the final output iris. The left-most column is the initial set of details and coarse approximation extracted from the

original irises. The subsequent columns have the results of the reconstruction process on the top and another set of details on the bottom. The right-most column is the

final output iris image.

Fig. 12. Synthesized iris beside real iris samples used to create it. (a) The synthesized image, (b) the base iris image, I0, (c–f) the irises used for details, D1
n�1, D2

n�2, D3
n�3, and

D4
n�4, respectively.
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extracted from I0 by using the low resolution approximation of I0:
I0
n�4. Then the characteristics, D4

n�4, D3
n�3, D2

n�2, D1
n�1 are each

extracted from one of the other four images. The process starts by
combining the base color information, Inew

n�4, with the lowest
resolution set of details, D4

n�4 that results in a new, intermediate
resolution iris image, Inew

n�3. Similarly, we obtain the higher
resolution images, Inew

n�2, Inew
n�1, and Inew

n by iteratively applying

Ij
new ¼ PjIj�1

newþQ jDj�1
nþ1�j j¼ n�2,n�1,n ð5Þ

Fig. 10 provides a visual overview of the composition of the new iris
image, and Fig. 11 shows the construction of an actual iris from
synthetic components. The use of details from multiple real iris
images provides the synthesized iris with both a unique and a
realistic combination of characteristics as contained in the real irises.
4. Experimentation

The goal of this method is to increase the size of existing iris
image databases with realistic, synthetic irises. For the main
validation we used an iris-recognition algorithm to test the
individuality of the produced iris images when compared to the
original iris images. This validation confirms that our synthetic
images do not vary the characteristics of the database in a manner
which allows us to determine that it contains synthetic iris
images. In addition to such a validation, we highly value the
realism of the synthetic irises. In order to evaluate the realism, we
individually considered each synthetic image in terms of quality
and uniqueness. For this approach to be tractable, we did not
generate an exhaustive set of iris images. We restricted the
method to a small number of irises which are a good distribution
of the possible combinations.
Fig. 13. Eight original irises from the UPOL [8] database. Synthetic iris images

generated by our algorithm in the bottom box by using combinations of the

original eight.
5. Realism

Figs. 12–15, each contain eight iris images from the original
database followed by 16 out of the 70 synthetic irises generated
from the originals. The synthetic images demonstrate the high



Fig. 14. Eight original irises from the UPOL [8] database. Synthetic iris images

generated by our algorithm in the bottom box by using combinations of the

original eight.

Fig. 15. Eight original irises from the UPOL [8] database. Synthetic iris images

generated by our algorithm in the bottom box by using combinations of the

original eight.

Table 1
Grouping compatible irises together increases the percentage of iris that are

visually realistic.

Database Irises created Visually realistic irises Ratio (%)

Complete UPOL 1120 1025 91.5

Grouped UPOL 1120 1098 98.0
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level of realism achievable with our method: the stroma,
collarette and pupil are clearly present and the coloring of the
iris has a realistic nature. The synthetic images display reflections
similar to the ones found in the original irises (Fig. 1(b)). The
multiresolution method extracts all characteristics from an image
and cannot distinguish between the reflection and the underlying
iris characteristics. The reflections add to the realistic nature of
the resulting images. Future work may investigate methods to
selectively include or exclude highlights such as these reflections.
5.1. Database augmentation

In the first test of our method, we selected two sample
databases of irises from the existing UPOL database. The first
database consisted of all of the UPOL images with duplicates
removed; leaving a total of 128 iris images. We named this
database Complete. The second database is a copy of the first
database but is separated into two groups. The first group
contains the irises that have two rings of distinctly different
characteristics. The second group contains the irises that have one
ring of characteristics. We called this second database Grouped; it
also consists of 128 iris images. Our method was used to augment
each of these two databases.
To fully investigate the realism of our results, we needed to
consider each synthesized iris image individually in terms of
quality. We also needed to test the method’s ability to
significantly increase the number of images in a particular
database. However, as the number of output images increases,
our ability to individually consider each output image signifi-
cantly decreases. Therefore, we decided not to generate the
exhaustive set of possibilities. Rather, we generated a smaller
subset that represents a good distribution of all possible
combinations. To achieve this goal we exclude the component
used as the base color from the selection process, reducing the
possibilities to N4, where N is the number of irises in the database.
The component to be used for the base color information is then
selected uniformly from the original set of irises that provides an
even distribution of the color schemes amongst the generated
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irises. Next, we use only the unique combinations of the
remaining four components, rather than the ordered permuta-
tions. This further reduces the number of images to the unique
combinations of four iris images chosen from N. In our case, each
database will contain 128 iris images. Even with the reduced
number of possibilities, using our method on a database of this
size will generate approximately 10 million iris images. To reduce
this to a reasonable number, we separate each database into
groups of eight images, and consider each group as a separate
database. With each of these databases we obtain 70 new
iris images from a unique combinations of four irises from
eight. Therefore, the total number of iris images synthesized is
reduced to

N

8
� 70 ð6Þ

or in our case: 1120 synthesized irises.
Next, the synthesized iris images were examined and rated

according to the clarity and realism of the characteristics. We also
used the uniqueness of the synthetic iris when compared with
those used to create it. This visual process required that we learn
Fig. 16. Original database size and the increase provided by our augmentation

method.
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Fig. 17. Hamming distances for inter-class comparisons of (a) the original
the patterns and characteristics found in the real irises from the
database in order to distinguish the sometimes subtle differences
between two similar irises. Selecting which irises to use when
creating a new iris is an important step in the process as it
influences the quality of the resulting images. Results show that
the classification process improves the overall quality of the
synthetic irises, as seen in Table 1.

Fig. 1 contains example synthesized irises images. The
synthesized images display similar characteristics and color
patterns to real irises resulting in very realistic iris images. In
addition, each synthetic iris is significantly different from the
irises used to create them and therefore are unique iris images
that can be used in addition to the existing irises in the database.

Not only does the algorithm produce proper individual results
but also it can significantly increase the number of unique iris
images contained in the database, as the chart in Fig. 16
demonstrates. Our implementation did not generate an
exhaustive set of all possible irises for logistical reasons, yet still
made a significant increase to the UPOL database by providing
1098 new unique and realistic iris images.
5.2. Usefulness for iris recognition testing

In addition to having a realistic appearance, which is the main
focus of this paper, the augmented database should have
statistical properties similar to those of the original database.
Each synthetic iris image is a new iris within the augmented
database, therefore only inter-class comparisons can be per-
formed. We use the Daugman iris recognition algorithm as
provided by Masek and Kovesi [16] for these comparisons. The
Daugman algorithm reduces each iris to a unique binary iris code
and calculates a Hamming distance between two irises. Fig. 17
and Table 2 contains the resulting distribution of hamming
distances as calculated within the original UPOL database and the
augmented database.

As can be seen from the charts, the two distributions are close
to each other. The largest differences being a 10% shift in the
0.45–0.50 range, and a 4% shift in the 0.00–0.05 range. Despite
the differences on the boundaries, the results demonstrate that the
augmented database maintains a satisfactory statistical similarity
to the original database while significantly increasing its size.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.90.8 1

5%

0%

5%

5%

0%

0%

UPOL database and (b) the UPOL database augmented with our irises.



Table 2
A table illustrating the percentage of inter-class comparisons in our testing of the

synthesis method.

Range Original UPOL (%) Augmented UPOL (%)

0.00–0.05 4 8

0.05–0.10 2 2

0.10–0.15 2 3

0.15–0.20 4 5

0.20–0.25 5 7

0.25–0.30 7 7

0.30–0.35 9 11

0.35–0.40 15 19

0.40–0.45 29 26

0.45–0.50 22 12

0.50–0.55 1 0

0.55–0.60 0 0

0.60–0.65 0 0

0.65–0.70 0 0

0.70–0.75 0 0

0.75–0.80 0 0

0.80–0.85 0 0

0.85–0.90 0 0

0.90–0.95 0 0

0.95–1.00 0 0
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6. Conclusions and future work

In this paper, we presented a novel synthesis technique to
augment existing iris image databases with new and unique iris
images. We have shown how an iris can be isolated from
surrounding anatomy by using a polar transform and normal-
ization technique. Using reverse subdivision, we have illustrated
how individual iris images can be decomposed into components
that represent iris characteristics. Our technique allows character-
istic components from multiple irises to be combined forming new
unique iris images. We further increase the effectiveness of this
technique by organizing the pre-existing irises into compatible
groups resulting in synthetic images with greater realism.

Experimentation with statistical properties verified that the
augmented database has a satisfactory statistical similarity to that
of the original database. However, the experimentation uses only
one of the many statistical properties of each database and more
statistical properties may provide further insights. Future work
may also investigate the effects of the number of levels of
resolution and the choice of multiresolution system on the
resulting statistical properties. It is particularly useful to find
acceptability criteria for achieving better statistical similarity
properties between the augmented and the original databases.
Since the general approach proposed in this work can create a
huge database of synthesized iris images, it gives enough room for
filtering statistically problematic irises.
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