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Highlights

• Blood flow data from 4D Flow MRI can be visualized us-
ing affordable 3D printers

• Flow physicalization is a tangible alternative to digital 3D
flow visualizations

• The presented physicalization framework can be applied
to real medical data
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4D Flow data

1. Choose style
e.g. glyphs or integral lines

2. Filter
e.g. by slice or 

distance metric

3. Slice
e.g. short axis, long axis

4. Context 
  (as needed)

5. 3D print
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A B S T R A C T

Blood flow data from cardiac 4D Flow MRI (magnetic resonance imaging) holds much
potential for research and diagnosis of flow-related diseases. However, understanding
this data is quite challenging – after all, it is a volumetric vector field that changes over
time. One helpful way to explore the data is by flow visualization, but most traditional
flow visualizations are designed for 2D screens and thus suffer from limited depth per-
ception and restricted screen space. We propose a novel slice-based physical model as a
complementary method for visualizing the flow data. The design of this model respects
the conventional method of viewing medical imagery (i.e. in cross sections) but has the
added advantages of engaging one’s sense of touch, not suffering from screen space re-
strictions, and being easily fabricated by affordable fused deposition modeling (FDM)
printers. We apply the slice-based technique to different representations of blood flow
data and demonstrate that the technique is capable of transforming volumetric flow data
into a tangible, easily fabricable model.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

Medical imaging illuminates the unseen in modern-day2

medicine; it empowers our ability to understand the human3

body in both its beauty and its struggles, with usage in ar-4

eas such as research, diagnosis, and communication. In re-5

cent years, imaging technology has reached a point where even6

blood flow in the heart and great vessels can be acquired. One7

such technology, known as 4D Flow MRI (magnetic resonance8

imaging), captures time-varying three-dimensional data that9

represents the magnitude and direction of blood flow [1]. While10

4D Flow MRI holds much potential for research and diagnos-11

tic tests of flow-related diseases [2], to understand this data we12

need a way to visualize it.13

Due to the complexity of the data – it is volumetric, time14

varying, and encodes vector field information – creating good15

visualizations can be quite challenging. Common ways for vi-16

sualizing vector field data include using glyphs as a visual rep-17

∗Corresponding author:
e-mail: kdang@ucalgary.ca (Kathleen D. Ang )

resentation of the vectors at each point in space, or using inte- 18

gral lines such as streamlines or pathlines, which are tangent 19

to the vector field at every point and can depict complex flow 20

patterns [1]. Some medical imaging software programs are also 21

equipped with tools for volume rendering, accompanied by in- 22

teraction techniques such as rotating, zooming in/out, and pan- 23

ning. Although such programs are beneficial, there are some 24

drawbacks: it can take some time to learn how to use the soft- 25

ware (even interaction with mouse/keyboard can limit acces- 26

sibility to a broader audience), and the visualizations are ulti- 27

mately displayed on a 2D screen. Thus, challenges with screen 28

space, depth perception, lack of tangibility, and understanding 29

of real-world physical scale are inevitable. 30

Rather than navigating the constraints that are imposed by 31

2D screen visualizations, we propose the use of physical visu- 32

alization or physicalization (we use these terms interchange- 33

ably) as a technique to represent blood flow data. A fabricated 34

model offers natural depth perception (since it inherently exists 35

in 3D space) as well as the advantage of tangibility. There are 36

a number of reported benefits of physical visualization, such 37

as enabling active perception, appealing to non-visual senses, 38
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making data more accessible to a broader audience (e.g. those1

who are visually impaired or who are less amenable to digital2

technology), and engaging people [3]. In medicine specifically,3

there has been a marked increase in the use of physical models4

(i.e. 3D printed models) over the last two decades [4, 5, 6, 7].5

Various types and applications of models exist, ranging from6

customized 3D-printed implants [8] to prints of patient-specific7

anatomy for presurgical planning [9]. Given that synthesis of8

data from different sources (e.g. anatomical structures from9

cine SSFP (steady-state free precession) MRI and blood flow10

from 4D Flow MRI) is often desirable for increased understand-11

ing and analysis, physicalization of blood flow holds promise12

for enhancing the more typical anatomical 3D printed models13

in medicine. But despite the growing body of work focused on14

3D printing in medical applications, to the authors’ best knowl-15

edge there have been no studies on 3D printing for visualization16

of blood flow data.17

Indeed, physically visualizing volumetric vector field data is18

challenging. Fundamentally, it requires designing a model that19

can be fabricated by tangible material, which can take place in20

many ways (e.g. subtractive manufacturing, additive manufac-21

turing, or careful design and assembly at the hand of an artist,22

to name a few). To encourage accessibility to a wider audience,23

we chose to use affordable material extrusion 3D printers (often24

referred to as “fused deposition modelling (FDM)” or “fused25

filament fabrication (FFF)” printers). From here, we must con-26

sider how vector field data can be visualized. Typical flow vi-27

sualization styles such as vector glyphs or streamlines are com-28

mon for digital fomats, but it is not straightforward to fabri-29

cate a comparable physical visualization with potentially many30

glyphs, or long and thin streamlines, since such fine features31

are susceptible to breakage [10]. Moreover, there are other sub-32

tleties to consider when creating a physical visualization – un-33

like virtual visualizations, physical models are subject to grav-34

ity and need appropriate mechanisms for existing in the real35

world [3]. Hence, naı̈vely attempting to print some glyphs or36

streamlines is essentially guaranteed to fail (Fig. 1).37

Fig. 1. Some initial tests: (A) Attempting to print a small sample of thin ar-
row glyphs failed due to the many fragile features; and (B) Trying to print
a small sample of streamlines shows that thin tubes are quite breakable.

To tackle these challenges, our physical visualization design38

was inspired by traditional methods that are natural to most39

medical professionals: slice-based (i.e. cross section-based)40

visualization. Typical practice in the medical community in-41

volves viewing “slices” or cross sections (2D images) of the 42

data, as this better supports detailed analysis [11] and is the for- 43

mat of most medical images, even if a volumetric space was 44

acquired. Specifically, our slice-based physical visualization is 45

constructed in 5 main steps (see also Fig. 2): 46

1. Select a visualization style to represent the data. We pri- 47

marily focus on two styles, glyphs and integral lines. 48

2. Filter the visualization objects (i.e. glyphs or lines) so that 49

they are fabricable, either by subsampling (for the glyphs), 50

or by using a similarity-guided placement strategy [12] 51

(for the streamlines). 52

3. “Slice” the model into 3D printable parts which are subsets 53

of the original dataset. 54

4. Augment the model with anatomical context and auxiliary 55

structures (e.g. base/connecting parts) as appropriate. 56

5. Fabricate the model using an affordable 3D printer. 57

Physicalization of blood flow (steps)

INPUT

1. Choose style

2. Filter

3. Slice

4. Context 
  (as needed)

5. 3D print

e.g. glyphs or integral lines

segmented

left ventricle

4D Flow data

e.g. by slice or 

distance metric

e.g. short axis, long axis

Fig. 2. Overview of physical visualization framework.

The slice-based design brings with it numerous advantages: 58

it creates an inherent support structure which can be easily fab- 59

ricated by low-cost 3D printers, it affords a potential way to 60
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compare between different parts of the data (e.g. comparing1

slices from two different time frames), and it naturally adds con-2

textual information. The palpability of the overall model can3

also be seen as a complementary means to grasp the data. More-4

over, our physical flow model can be used to enhance anatom-5

ical 3D printed models by providing complementary hemody-6

namic information.7

The main contributions of this work include the following:8

1. Developing a new framework for physical visualization of9

cardiac blood flow from 4D Flow MRI data using afford-10

able/accessible 3D printers.11

2. Evaluating the feasibility of such a framework by physical-12

izing blood flow data from an actual human heart (specif-13

ically the left ventricle (LV)) with different visualization14

styles.15

3. Comparing the usability of the developed physical visual-16

ization against conventional digital 3D visualization for-17

mats by conducting a user study.18

2. Background and related work19

The work we present in this paper relates to a few main20

areas of study: cardiac imaging (specifically, 4D Flow MRI),21

flow visualization, and physical visualization. This section first22

provides a broad overview of 4D Flow MRI, and then focuses23

on 4D Flow MRI data from a scientific visualization perspec-24

tive, primarily highlighting various qualitative flow visualiza-25

tion techniques. Finally, we broadly present the idea of physical26

visualization, and highlight some of its current uses in cardio-27

vascular medicine.28

There are many cardiovascular magnetic resonance (CMR)29

imaging techniques [13]. One such technique is 4D Flow30

MRI (also known as 4D Flow CMR), which can be described31

as “three-dimensional (3D) cine (time-resolved) phase-contrast32

CMR with three-directional velocity-encoding” [2]. The cap-33

tured data encodes flow velocity within a volumetric space in34

all three spatial directions over time along the cardiac cycle (3D35

+ time = 4D), thus opening up much possibility for understand-36

ing flow within the chambers of the heart and great vessels. In37

light of this technology, a group of physicists, physicians and38

biomedical engineers came together to produce a consensus39

paper [2], which provides a summary of many aspects in the40

4D Flow MRI workflow, from acquisition to processing. The41

work we present in this paper fits within the last stage of this42

workflow, specifically aiming to introduce a novel technique43

for blood flow visualization.44

Processing and visualizing blood flow data has become an45

area of active interest within the field of computer graphics: a46

few recent survey papers relating to blood flow visualization47

[14], data processing of 4D Flow MRI (with a focus on the48

aorta) [15] and medical flow visualization [16] provide a com-49

prehensive overview of flow visualization in the medical area.50

Within these surveys, we highlight one main topic related to our51

work, namely qualitative flow analysis.52

Qualitative flow analysis can be broken down into three main53

categories [15]: (1) direct methods, (2) geometry-based meth-54

ods and (3) feature-based methods. Direct methods include, e.g.55

volume rendering of velocity magnitudes, or using line/arrow 56

glyphs to represent the vector field data. Displaying a glyph 57

at each voxel creates visual clutter, so it is common to display 58

vectors with a given distance between each of them, or to only 59

depict vectors within a particular region [17]. These vector dis- 60

plays can be used to qualitatively assess LV inflow/outflow di- 61

rection, stenotic jet direction, and regions of recirculating flow 62

[17]. Geometry-based flow visualization includes using lines 63

or particles to depict flow. Two of the most common geometry- 64

based techniques used for 4D Flow MRI are streamlines and 65

pathlines: streamlines show the instantaneous nature of the 66

flow, whereas pathlines depict a particle’s trajectory in an un- 67

steady flow field over time. A number of methods have been 68

proposed for appropriately seeding and growing these integral 69

lines [12, 18, 19]. These lines can also be interactively seeded 70

(e.g. by selecting vessel cross-sections) [20] and rendered in 71

a stylistic way to improve depiction of the blood flow dynam- 72

ics [21, 20]. Finally, feature-based methods highlight specific 73

flow characteristics in the data, such as high-velocity jets, vor- 74

tex cores, or vortex regions. Salzbrunn et al. [22] introduced the 75

idea of line predicates: Boolean functions which indicate if an 76

integral line matches a certain criterion or not. They have been 77

used for bundling flow lines which, e.g. pass through a certain 78

region of interest, are part of a vortex, reach maximal veloc- 79

ity, are a minimum length, or reside in a particular area longer 80

than a specified length of time [23, 24]. Bridging geometry- 81

based and feature-based methods, there has also been work on 82

clustering integral lines to reduce visual clutter, classify flow 83

structures, and aid in physicians’/experts’ exploration and un- 84

derstanding of flow data [25, 26, 27, 19]. Software tools which 85

allow the user to clip or slice the data (sometimes creating addi- 86

tional focus windows or inspection lenses [28]) have also been 87

designed in an attempt to decrease the clutter and get a clearer 88

understanding of the data, though the restriction of screen space 89

still hinders comparison between multiple windows. 90

Despite the advances in flow visualization methods (im- 91

proved rendering techniques and interactivity, for instance), 92

they are generally still limited to 2D screen displays. As a 93

complementary alternative, there has been recent interest in the 94

area of physical visualization. In particular, the work of Jansen 95

et al. [3] highlights the opportunities and challenges for data 96

physicalization. The authors define a data physicalization as “a 97

physical artifact whose geometry or material properties encode 98

data”, and discuss numerous benefits of physicalization, such 99

as enabling active perception (e.g. being able to turn a model 100

around or move closer), engaging non-visual senses (e.g. touch, 101

with nuances in perceiving texture, weight, etc.), and bringing 102

data into the real world (the visualization is always “on”, which 103

supports casual visualization). 104

Physical visualization has a broad scope of application. For 105

instance, geospatial data benefits from physicalization by im- 106

proving interaction and understanding [29, 10]. Even data 107

which we traditionally see in plots and charts can take on 108

a physical form [30, 31, 32]. Herman and Keefe [33] ex- 109

perimented with 3D printing scalar fields on different kinds 110

of surfaces and found that box-shaped glyphs (“boxcars”) on 111

spheroids (“potatoes”) were most compelling for tangible in- 112
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teraction (users were more likely to pick them up and inspect1

closer). Bader et al. [34] exploit multimaterial voxel-printing to2

create physicalizations of 3D data such as volumes from med-3

ical imaging, or results from a computational fluid simulation.4

The example prints are visually striking but require a commer-5

cial 3D printer rather than an affordable one. This rather humble6

sampling of previous work demonstrates the power and profit7

of physicalizations in a broad sense. However, we are inter-8

ested in physicalization of blood flow specifically and thus now9

discuss some existing work on physicalization of flow and/or10

motion in general. Informally, there are a few examples: Allen11

and Smith [35] artistically 3D printed people’s movements in12

a lobby space over a 10-hour time frame, Langnau [36] re-13

ports an example of 3D printing trajectory lines in an engi-14

neering application, and Taira et al. [37] explore printing of15

abstract fluid flow structures. Of note, none of these examples16

have been studied or presented in a detailed and rigorous way.17

More formally, there has been work on building software tools18

for authoring motion geometry [38] and for generating motion19

sculptures from a series of 2D images [39]. However, both of20

these studies generally emphasize the portrayal of human mo-21

tion from a more “macroscopic” perspective (e.g. the move-22

ment of a person’s limbs while running, or the path swept by23

a tennis player’s swing), rather than a finer, “microscopic” ap-24

plication such as the intricacy of blood flow within the heart.25

Related to medical data, Acevedo et al. [40] explore the use of26

expensive colour 3D printing (specifically powder bed fusion)27

to create diffusion tensor MRI visualization models, employ-28

ing thick image-based slabs as support. Their initial experi-29

ments suggest that physical models enhance usage and analysis30

of their digital equivalents.31

Within the field of medicine, physicalization has manifested32

itself most commonly in the form of 3D printing [41]. The33

scope of interest in previous visualization applications mainly34

focuses on fabricating (patient-specific) anatomical structures.35

Creating these 3D printed models usually consists of the follow-36

ing steps [4]: (1) acquisition of a volumetric imaging dataset;37

(2) segmentation of the structure(s) of interest [42], typically38

with some kind of open source or commercial software; (3)39

conversion into suitable file format such as STL; (4) 3D print-40

ing; and (5) finishing, which includes removing excess support41

material. This whole process is often rather expensive (both in42

money and time) [7], which begs the question – what is the ben-43

efit of 3D printing medical data versus visualizing it in a tradi-44

tional way (e.g. with 2D images or using computer software)?45

Giannopoulos et al. [5] report that fabricated 3D models pro-46

vide the advantage of haptic feedback, direct manipulation, and47

enhanced understanding of cardiovascular anatomy and under-48

lying pathologies. Sun and Lee [7] provide a systematic review49

on cardiovascular 3D printing applications, highlighting find-50

ings in three main areas: (1) representing patient data with high51

diagnostic accuracy, (2) serving as an educational tool for par-52

ents, clinicians, healthcare professionals and medical trainees,53

and (3) using 3D printing as a tool for pre-surgical planning,54

medical device design, and simulation of diseases. In summary,55

previous work has investigated 3D printing in numerous med- 56

ical applications and demonstrated its utility; however, specifi- 57

cally creating a physical representation of blood flow data is a 58

void which we explore in this paper. 59

3. Slice-based design 60

The goal of this work is to design a physical representation 61

of blood flow. The blood flow data, obtained from 4D Flow 62

MRI, can be represented as a vector-valued function defined on 63

a subset Ω of R3 over time, that is, 64

f : Ω × R+ → R3. (1) 65

The segmented volume, Ω, is the chamber or vessel of inter- 66

est; in our work, Ω represents the left ventricle. Determin- 67

ing Ω based on 4D Flow MRI data alone is challenging due 68

to its known low anatomical contrast; therefore, we obtain Ω 69

using an established semi-automated algorithm: the LV is seg- 70

mented from cine SSFP MRI by manually tracing endocardial 71

contours, then this segmentation is automatically registered to 72

the 4D Flow MRI velocity data by a mutual information algo- 73

rithm [43]. Note that 4D Flow MRI provides direct in vivo 74

measurements of instantaneous voxel-wise 3D vector field in- 75

formation covering the heart and spanning over the cardiac cy- 76

cle. Masking the 4D Flow data with the registered LV segmen- 77

tation provides us with the input data to our system: a given 78

subject’s blood flow data within the LV at snapshots in time 79

over the cardiac cycle (for each snapshot, f : Ω→ R3). 80

Given this input, we are faced with a challenging question: 81

how does one convert volumetric flow data into a fabricable 82

model? To begin, we decided to target two styles of visual- 83

ization that are relatively common in traditional flow visualiza- 84

tion: (1) glyphs, which represent the “raw” vector field data, 85

and (2) streamlines (a type of integral line), which portray the 86

flow character at a snapshot in time. A glyph, for our usage 87

within the context of this paper, is a visual symbol or represen- 88

tation of a vector at a given point in space. Perhaps the most 89

common glyph used for vectors is an arrow, as it naturally en- 90

codes the concept of direction. The orientation of the glyph at 91

a point p ∈ Ω can be defined using f(p). A streamline is an 92

integral curve s(τ) = (x(τ), y(τ), z(τ)) which is tangent to the 93

vector field everywhere (τ parameterizes the curve). That is, it 94

satisfies the following: 95

ṡ(τ) = f(s(τ)), (2) 96

with the initial condition s0 = s(0). This initial condition is 97

often called a seed, which is some point in space within the 98

vector field (s0 ∈ Ω). To calculate a streamline in practice, we 99

begin with a seed point and trace it through the vector field us- 100

ing some kind of numerical integration technique (such as Euler 101

or Runge-Kutta integration). Ultimately, we find a number of 102

points along the streamline curve which we use to represent that 103

streamline; this set of points we denote with S . 104

Both vector glyphs and streamlines are usually thin and dis- 105

parate, making them challenging to 3D print. To overcome this 106

complication, we drew from physicians’ typical use of cross 107

sections or “slices” to acquire and explore medical image data 108

[11]. Thus we arrive at the concept of our proposed design: 109

slice-based physical visualization. The core idea is to use slices1
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of the segmented volume Ω (Fig. 3) as a natural support struc-2

ture, which alleviates some of the core difficulties in 3D printing3

(e.g. supporting floating structures/objects, fragility of thinner4

features, etc.), while also providing some contextual cues (since5

the shape of the slice represents a cross section of the segmented6

volume). In addition, the slices can be spaced out such that the7

slicing frequency is suitable for the desired visualization – the8

number of slices can be as many or as few as preferred for a9

given dataset. Note that “slices” here refer to thin slabs (subsets10

of Ω), as an extremely thin 2D plane would be nearly impossi-11

ble to 3D print.12

Fig. 3. The LV (highlighted in red in the short axis images on the left) can
be segmented from MR image data (a stack of 2D slices which make up a
3D volume). Such a segmentation represents the chamber’s volume. For
physicalization, this volume can be “sliced” into thin slabs (shown on the
right), which provide a natural support structure for physicalization while
also maintaining a sense of the data.

We applied this conceptual design to both types of flow rep-13

resentations – vector field glyphs and streamlines – using seg-14

mented LV 4D Flow MRI data. The next two sections (Sections15

4 and 5) will describe each of these models in more detail, in-16

cluding their construction and fabrication. Following that, Sec-17

tion 6 describes the user study procedure and results, and Sec-18

tion 7 discusses design improvements and physicalization in the19

context of blood flow data.20

4. Glyph model21

The basic idea of our glyph model is to represent the data22

points in the LV and their associated vectors with some di-23

rectional glyphs. However, representing every data point (in24

a Cartesian grid with 1.57 x 1.32 x 4.43 mm3 spacing) with a25

glyph would result in an extremely cluttered model, not to men-26

tion the high likelihood of failure to print. Hence, only a subset27

of the data should be chosen. We select that subset using the28

slice-based design idea: each slice is a thin slab which repre-29

sents some subset of the vector field data. Data points contained30

within each of these thin volumes are candidates for the final31

model; however, converting every data point even within these32

thin slabs will still result in many overlapping glyphs. Conse-33

quently, we keep every nth data point (n = 10 for our example34

models) to convert into a directional glyph. Our goal was to35

strike a balance between comprehensiveness and comprehensi-36

bility – we want enough slices to represent the flow in its en-37

tirety (comprehensively), while limiting cognitive overload and38

visual clutter (comprehensibly). To do this, we also chose to39

evenly space the slices (for improved aesthetic quality), and to 40

linearly scale the glyphs to prevent inter-slice collisions. 41

Fig. 4. Arrow glyphs have small, fragile parts (circled in black), whereas
cones can portray directional information but are not as breakable.

In addition to slicing, selecting an appropriate glyph required 42

particular consideration. As observed in Fig. 4, arrow glyphs 43

– while common for 2D vector field visualizations – are chal- 44

lenging to print. Thin arrow tails break easily once fabricated, 45

and do not provide adequate support for the arrowhead. This is 46

unfortunate, since arrows can clearly encode direction as well 47

as potentially another variable (e.g. vector magnitude can be 48

shown with the size of the arrow). Based on these desirable at- 49

tributes, the most natural alternative glyph was a cone. Cones 50

are similar in shape to arrows and can likewise portray direction 51

and speed based on orientation and scaling, but are more print- 52

able since they do not have fragile features. Once the glyphs are 53

embedded into a slice, a collection of glyphs becomes much 54

easier to print. Moreover, scaling the glyphs based on vector 55

magnitude gives a clear impression of the predominant flow di- 56

rection (Fig. 5). 57

Fig. 5. Cone glyphs are embedded within a slice for printability. Un-
scaled glyphs (top) only show the direction of the vectors whereas scaling
the glyphs based on vector magnitude (bottom) give a distinct impression
of the primary flow direction (jet).

4.1. Physicalization of relative and anatomical context 58

The slice-based model described so far accounts for many of 59

the challenges associated with affordable 3D printing, but a col- 60

lection of mere slices won’t hold up in the real world – however 61

nice a virtual model may seem, once physicalized it must stand 62

the test of gravity. Therefore, some additional design consider- 63

ations were necessary. 64

Firstly, we needed some additional physical parts which 65

would support the model’s existence in the real world without 66

losing spatial context (i.e. the position of one slice relative to 67

another). We achieved this by designing slice handles and a 68

stand with a wheel and axle-type mechanism (Fig. 6). The base, 69

a rectangular prism with a small cylinder, holds a vertical post. 70

The vertical post, in turn, holds the slices of the model: a “han- 71

dle”, made up of a thin rectangular piece and a hollow cylin- 72

der, is affixed to each slice, and each cylinder can be slid onto 73

the vertical post. The cylinder heights are designed such that1

the spatial relationships between slices are preserved. Although2
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this design is relatively simple, it includes some important fea-3

tures: the relative spatial positions of the slices are maintained,4

and having the post inside each handle cylinder (similar to a5

wheel and axle) allows for rotation and inspection of individual6

slices while preserving contextual awareness.7

Secondly, we wanted to provide some basic anatomical con-8

text by creating a representation of the LV’s endocardial layer.9

Generation of the LV shape was kept simple: the data had al-10

ready been segmented (based on endocardial contours), so we11

formed a surface from the volumetric data itself (i.e. Ω). Be-12

cause the voxels were relatively coarse, smoothing was applied.13

Since the anatomical structure is not the main focus of this vi-14

sualization, we did not want it to impede interaction with the15

flow model; therefore, the surface was cut using a plane to form16

a “half-shell” shape. To 3D print the surface, it was also neces-17

sary to add some thickness to the model, which was achieved by18

extruding 2mm along the surface normals. Finally, the anatom-19

ical context was embedded into the base, thus completing the20

physical model (Fig. 6).21

Fig. 6. Each slice model includes a supplementary handle (shown in blue,
top left), which allows for easy assembly into a stack of slices (bottom left).
The LV anatomical shell is attached to the rectangular base (right).

4.2. Fabricated glyph model22

Two glyph models were created from two datasets (i.e. two23

time frames), both derived from a 4D Flow MRI scan of one24

healthy subject. The models were printed using the MakerGear25

M2. Because the cone glyphs were embedded in each slice and26

could appear on either side of the slice (Fig. 5), we printed27

each slice model in halves and then glued the slices together.28

This prevented the need for additional support material. The29

final physical models were completely 3D printed except for30

the vertical post used to support the slices; we used a wooden31

dowel for this post. Spacing between slices was approximately32

12 mm and the thickness of each slice was 2 mm.33

Although an individual fabricated model represents a single34

snapshot in time, we wanted to incorporate the idea of time-35

varying data as well. For this, we acknowledge the importance36

of key events in the cardiac cycle [44]; for example, during ven-37

tricular diastole, there is early filling (when the ventricles relax 38

and blood flows in from the atria due to pressure difference) 39

and late filling (when the atria contract and push blood into the 40

ventricles). Thus, our two models represent key time frames, 41

which aligns with common practice in medical textbooks and 42

research publications. Since our focus was the LV, we chose to 43

use early filling and late filling. Both models were sliced with 44

the same spacing so that the slices would be comparable (Fig. 45

7). To get a finer sense of the flow evolution over time, one 46

could print each time frame in between, similar to how LAIKA 47

studio creates models for stop-motion animation [45]. 48

Fig. 7. Picture of fabricated LV late filling (left) and early filling (right)
vector field glyph models; both are sliced such that corresponding slices
can be compared between the two.

5. Streamline model 49

Although representing the raw vector field may be the most 50

faithful to the original data, it might not be the easiest to inter- 51

pret. For this reason, we also developed a method for creating 52

a physical streamline model. However, producing a physical- 53

izable streamline representation is not simple: careful thought 54

must first be given to how the streamlines are seeded, and once 55

the streamlines are formed, each of them must be converted into 56

a mesh which can be 3D printed. 57

5.1. Generating streamlines 58

When generating streamlines, one is always faced with com- 59

peting goals. Tracing many streamlines can reveal interesting 60

flow characteristics, such as areas of vortical flow, sources, 61

sinks, saddles, etc. Unfortunately, a large number of stream- 62

lines quickly clutters the visual field, ultimately obscuring 63

whatever feature(s) we originally intended to discover. To man- 64

age these competing goals, we adopted the idea of generating 65

streamlines using a similarity-guided placement strategy [12], 66

as this technique reportedly achieved a balance between uncov- 67

ering interesting flow behaviour and limiting visual clutter. 68

The streamlines generated by this method [12] have some 69

natural spacing (a minimum Euclidean distance between lines) 70

to reduce clutter and occlusion, but also represent interesting 71

features in the flow. Streamlines with similar trajectory are re- 72

duced in number, whereas streamlines with distinct directions 73

and shapes are more likely to be preserved in the final visualiza- 74

tion. Chen et al. [12] define similarity distance between a point1

p on a growing streamline S i to another (existing) streamline2
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S j (Fig. 8). The closest point q on S j is found and two sample3

windows of the same size are formed, one about point p and the4

other about point q, which are then uniformly sampled with m5

samples along the streamline. If a symmetric window cannot6

be formed about one or both points p and/or q (e.g. the point7

is at the end of a streamline), one-sided windows are used in-8

stead. Once these two sets of sample points have been formed,9

the similarity distance is calculated [12]:10

dsim = ||p − q|| + α

m

m−1∑

k=0

|||pk − qk || − ||p − q||| . (3)11

The more distinct two streamlines are, the greater the similar-12

ity distance between them. A new streamline S i which has a13

large similarity distance between all existing streamlines indi-14

cates that S i should be included in the final visualization.15
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Fig. 8. The similarity distance is measured in a local neighbourhood at the
point p where the streamline S i is growing.

To obtain a set of streamlines for physicalization, seed point16

locations are initialized in a Cartesian grid covering the volume17

and each streamline is traced (both forwards and backwards) us-18

ing the Runge-Kutta-Fehlberg (RKF45) method [46]. Growing19

a given streamline is stopped if it is too similar to an existing20

streamline (dsim < dmin) or too similar to itself (dsim < dsel f ).21

When comparing the final set of streamlines to a set of stream-22

lines created without any filtering, the number of streamlines23

generated using the similarity-guided strategy is at least 90%24

less (e.g. 646 lines vs. 59 lines), but the overall flow behaviour25

is still captured (Fig. 9). Furthermore, the user-established 26

thresholds (e.g. dmin and dsel f ) offer flexibility when creating 27

a printable set of streamlines; for example, they can be cus- 28

tomized to suit a specific 3D printer’s resolution. 29

5.2. From lines to meshes 30

Once a set of streamlines has been generated, it is necessary 31

to convert it into a mesh for 3D printing. We used sweep sur- 32

faces to accomplish this task. A cross section shape is selected 33

and “swept” along each streamline (trajectory curve), adjusting 34

its orientation using the parallel transport approach [47]. For 35

simplicity, we used a circular cross section since it generates a 36

tube (Fig. 10), which is a natural three-dimensional extension 37

of a line; however, any arbitrary 2D curve could be used. We 38

used a cross section diameter of 3 mm to ensure printability, at 39

the cost of some overlap with voxels surrounding the stream- 40

line. Specifically, a given cross section might partially overlap 41

with at most 9 voxels based on the spatial resolution of the data, 42

though we would expect a typical overlap of 2-4 voxels. 43

Fig. 9. Naı̈vely growing all streamlines for a given set of seed points results
in a very cluttered visualization (left), whereas applying the similarity dis-
tance metric when generating the streamlines from the same seed points
results in a cleaner, physicalizable collection (right).

Many previous streamline visualizations do not seem to in- 44

clude directional information [18], making the overall character 45

of the flow somewhat ambiguous. Therefore, we enhance our 46

model by adding conical arrowheads at the end of each tube. 47

These were constructed by interpolating the vector field at the 48

endpoint of each streamline (vi) and attaching a cone whose 49

axis aligns with vi (Fig. 10). 50

v
i

S
i

Fig. 10. We build each streamline mesh by sweeping a circular cross sec-
tion along the streamline (left). Rather than having an ambiguous stream-
line mesh (middle), we add a conical arrowhead (right) to indicate the di-
rection of the streamline.

After obtaining a complete set of streamline meshes, we ap- 51

ply our proposed slicing method to provide intermediate sup- 52

port for the streamlines (see Section 4.1). Slicing reduces the 53

total amount of support material required and allows for as- 54

sembling into a model that maintains the overall shape of the 55

streamlines. Unlike the vector field model, the streamlines do 56

not need to be embedded in the slice. Consequently, we chose 57

to use fewer slices than the vector field model: too many slices 58

in the streamline model becomes obtrusive, as they interrupt the 59

shape of any streamline spanning multiple slices. 60

5.3. Fabricated streamline model 61

The final model was printed using the MakerGear M3-ID. 62

One advantage of the M3-ID over the M2 is that it is equipped 63

with two extruders, making it possible to print with two colours 64

in the same model. We leveraged this by using a translucent 65

filament for the slices and support material, and using a red 66

filament for the streamlines themselves. This highlights the 67

streamlines compared to the slices, support, and base, thus em- 68

phasizing the flow features in the model (Fig. 11). To assist1

with inspection of the data, the model was scaled up 1.5x in all2
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dimensions within Simplify3D. The complete streamline model3

was fabricated with a total print time of approximately 1.4 days4

and required about 330 grams of PLA filament. In the printed5

model, spacing between slices was approximately 22 mm and6

streamline radii were 2.25 mm each.7

Fig. 11. Picture of the printed LV streamline model (early filling).

6. User study8

We conducted a user study to evaluate our physical visual-9

ization prototypes. The goal of the study was to discover how10

people would interact with the physical visualization models,11

and to see how they differ with respect to comparable digital vi-12

sualizations (specifically using a freely available, conventional13

scientific visualization software, Paraview [48]). We had 1614

subjects (8 male, 8 female) who participated in the study, all15

of whom had some prior medical training/knowledge. Fourteen16

participants were second-year medical students (all with vary-17

ing prior backgrounds), one was a family medicine resident and18

one was a general internal medicine doctor.19

6.1. Procedure20

Users had the opportunity to view and interact with the phys-21

ical models (two vector field glyph models and one streamline22

model), as well as comparable digital models of each (see Fig.23

12) during the three phases of the study: (1) tasks, (2) post-task24

questionnaire/survey, and (3) qualitative interview. A brief de-25

scription of the basic interaction controls (i.e. rotating, panning,26

and zooming in/out using a mouse) for Paraview was provided27

as none of the participants had prior experience with Paraview.28

For the task phase, users were asked to complete three dif-29

ferent tasks. Tasks marked with * indicate comparative tasks,30

which were executed once using the appropriate physical model31

and once using the corresponding digital model.32

1. Between two slices of the vector field glyph model, deter-33

mine which has the higher flow magnitude. *34

2. After viewing and interacting with both physical and dig-35

ital streamline models, select one and use it to briefly de-36

scribe what you see happening in the flow.37

3. Compare two streamlines (as identified by the experi- 38

menter) and report which one you believe is closer to you, 39

using your initial viewpoint as a reference. (Users are al- 40

lowed to interact with the model.) * 41

Fig. 12. (A) User study setup, with screenshots of corresponding digital
visualizations for (B) the glyph models and (C) the streamline model.

The post-task questionnaire had four statements which were 42

ranked on a scale from 1-5 (1-strongly disagree, 3-neutral, 5- 43

strongly agree) for each of the four visualization types (physical 44

glyph model, digital glyph model, physical streamline model, 45

and digital streamline model). The first three statements were 46

the same for all visualizations, the last statement differed only 47

between glyph/streamline models: 48

1. The visualization was clear and easy to understand. 49

2. The visualization was easy to interact with. 50

3. It was easy to see/navigate different parts of the data. 51

4. The interaction technique allowed me to easily compare 52

different parts of the data (glyph models) / understand the 53

shape and direction of the data (streamline models). 54

Finally, the user study concluded with three questions in the 55

interview phase: 56

1. In general, what do you think of working with physical 57

models vs. digital models? 58

2. What is your overall opinion about physical visualization? 59

3. What do you think of the physical glyph model vs. stream- 60

line model? 61

6.2. Results 62

When comparing slices using the glyph models (Fig. 13, 63

top), users were generally faster when using the physical model 64

over the digital version of the same (statistical p-value = 0.031). 65

Based on the scores of the post-task questionnaire, it appeared 66

that users generally favoured the digital glyph models over the 67

physical models (average score of 17 vs. 16.25); however, this 68

difference was not statistically significant (p-value = 0.150). 69

Given these results, we consider the physical glyph model to 70

be at least comparable to a digital representation, with the ad- 71

vantage of enabling faster comparisons between slices.1

As for the streamline models, slightly more participants (102

of 16) chose to use the digital version to describe the flow be-3

haviour, rather than the physical. Those who chose the physical4
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Fig. 13. For both the glyph model comparative tasks (top) and the stream-
line model comparative tasks (bottom), most users were faster using the
physical model (blue) over the digital model (grey). Three users chose the
incorrect streamline when working with the digital model (red).

model tended to gesture with their hands while describing the5

flow. Regardless of which model was chosen, all participants6

described some aspect of the flow accurately. For the compar-7

ative task, it appeared that majority of participants were faster8

using the physical model over the digital (Fig. 13, bottom) but9

this was not considered statistically significant at the 5% signif-10

icance level (p-value = 0.062). (Only 15 participants’ data were11

used since one participant’s records of working with the stream-12

line models were partially lost due to equipment malfunction.)13

However, perhaps more importantly, depth perception accuracy14

was 100% when using the physical model, as opposed to 80%15

when using the digital model. This supports the idea of physical16

visualization enabling better, more natural depth perception. In17

terms of the questionnaire results, although more users ranked18

the digital streamline visualization higher than the physical (av-19

erage scores of 16.25 and 15.22 respectively), this difference20

was not statistically significant either (p-value = 0.096).21

Overall, the results related to the streamline models seemed22

inconclusive; there was no distinct advantage of physical over23

digital or vice versa. Nonetheless, this user study gave us some24

key insight into our physical streamline model design. We had25

originally hypothesized that the intermittent slices (which nec-26

essarily split most streamlines over at least two sections) would27

not interfere with perceiving each line as a whole. This hy-28

pothesis was based on the ideas of Gestalt theory [49], which29

suggest that people tend to understand things as a whole rather 30

than as individual parts. But, at least three participants men- 31

tioned that they found the slices obtrusive and/or that the lines 32

were difficult to follow through the model. Since there are quite 33

a number of lines, it makes sense that the cognitive demand of 34

interpreting the lines within each slice and simultaneously try- 35

ing to combine the lines between slices would be quite high. 36

During the interview phase, majority of participants ex- 37

pressed appreciation for both physical and digital models. 38

Some noted that they found manipulation easier with the dig- 39

ital model (e.g. being able to rotate freely) while handling the 40

physical model was less fluid due to the stand design. Oth- 41

ers mentioned that they appreciate the tangibility of physical 42

models and indicated its particular usefulness for “hands-on” 43

learners. The idea of physical size was also highlighted dur- 44

ing the interview phase; at least seven of the participants noted 45

the importance of understanding real-world scale using physi- 46

cal models, which is a difficult concept to grasp digitally (since 47

most manipulation methods allow for easy zooming in and out). 48

Two participants mentioned lack of portability as a drawback 49

to using physical models in the context of healthcare. However, 50

a different participant (who had previous experience working 51

in pediatrics) liked the idea of interacting with patients using a 52

physical model over a digital one. This participant described 53

prior experience of using a laptop with children: the presence 54

of a laptop would often introduce distraction to children who 55

simply wanted to play video games. Furthermore, the partic- 56

ipant anecdotally explained their frustration with technology 57

that would sometimes fail to work; this experience resonates 58

with the idea of physical visualizations being always “on”. An- 59

other participant believed that physical models would have less 60

of a learning curve, especially for those who are not technolog- 61

ically inclined. 62

7. Design improvements and discussion 63

Physicalization of medical blood flow data has been largely 64

unexplored up to this point, but based on the proof-of-concept 65

we present, we believe that it is an area with interesting pos- 66

sibilities. In this section, we describe further design improve- 67

ments based on the feedback from the user study, followed by 68

a summary of informal discussions with medical experts that 69

took place after the updated streamline model was developed. 70

From this feedback, we present two more examples of physi- 71

cal flow models. Finally, we apply our methods to a patient’s 72

dataset, demonstrating the use of physical visualization as a tool 73

for exploring abnormal flow patterns. 74

7.1. Two colour glyph model 75

During the user study, a few participants mentioned that it 76

would be nice if the glyphs and slices had distinct colours. This 77

was not possible using the MakerGear M2 since it has a single 78

extruder, but it is possible with the M3-ID. A sample long-axis 79

slice was printed to illustrate the potential (Fig. 14). 80

7.2. Single slice streamline model 81

Using the results and observations from our user study, 82

we decided to revisit the slice-based design of the streamline1

model. In particular, we wanted to know if there was an al-2

ternative set of slices that could adequately support the stream-3

lines but with less obstruction of the streamline data. During the4
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Fig. 14. Printed glyph model (long-axis slice) using a dual extrusion
printer.

user study, we also noticed that the wheel-and-axle construction5

seemed more natural when handling the glyph model (e.g. for6

comparing slices or inspecting a specific subset of data); the7

idea of comparison between slices using the streamline model8

is not that valuable. The slice(s) in the streamline model pri-9

marily provide support and anatomical/data context.10

In light of this, we decided to use a single slice design. We11

chose a slice that approximates a long-axis cross sectional view,12

since it is one of the basic cardiac imaging views. Addition-13

ally, it has a relatively large cross sectional area, which provides14

enough support for the streamline structures. Once printed and15

assembled (Fig. 15), the model can be handled with relative16

ease. Furthermore, the long-axis slice combined with the over-17

all extent of the streamlines seem to provide sufficient anatom-18

ical context, so no additional stand or structures were printed.19

By creating a somewhat irregular shape (akin to a “potato”) we20

hope to encourage user interaction with the model – picking21

it up, inspecting it, etc. [33]. The user study also elucidated22

the benefit of physical scale, so we ensured that the single slice23

streamline model was printed to scale.24

Fig. 15. Screenshots from Paraview showing (A) unfiltered streamlines
(generated within Paraview), and (B) the filtered streamline model for
printing. Pictures of the fabricated single slice LV streamline model in
(C) its final form, and (D) printed in two halves.

7.3. Expert feedback25

After developing the single slice streamline model, we re-26

ceived some feedback from four medical experts, primarily ra-27

diologists (three experts in cardiac MRI and one surgeon). Al-28

though some of the more senior radiologists did not feel that29

a physical representation was necessary (after many years of30

experience, they felt that they could adequately reconstruct 3D31

geometry from 2D images in their minds), some of the radiolo- 32

gists specifically involved with pediatrics expressed interest in 33

having physical models to complement digital visualizations. 34

This aligns with the user study results and supports the idea 35

of using physicalization, particularly for pediatric applications. 36

One expert also noted that more simplified models would also 37

be useful. 38

7.4. Summary models 39

Our original glyph and streamline models aimed to be as 40

comprehensive as possible, without becoming overly cluttered. 41

This comes from the mindset of representing as much data as 42

possible. However, expert feedback suggests that another ap- 43

proach would also be useful, i.e. creating more simplified flow 44

models. We explore this idea with two example cases: a path- 45

line predicate model, and a vortex core model. Both of these 46

can be considered as “summary models”, designed to give a 47

simplified overview of (some aspect of) blood flow character 48

over the cardiac cycle. 49

7.4.1. Pathline predicate model 50

Pathlines are integral lines, very similar to streamlines, which 51

are derived for time-varying, unsteady vector fields. A path- 52

line is often described as the trajectory that a massless particle 53

would follow in the flow field over time. As such, a pathline 54

p(t) is defined similarly to a streamline (Eq. 2) but is parame- 55

terized by t (physical time) rather than τ. We create an initial 56

set of pathlines P as follows: we use the same spatial seeding 57

strategy described in Section 5 at t = 0, then we trace pathlines 58

from the seeds over the cardiac cycle (t ∈ [0, t f ]) using RKF- 59

45 [46]. Note that t = 0 represents early diastole and t = t f 60

corresponds to end systole. 61

The set of pathlines, P, is likely to be dense, confusing, and 62

nearly impossible to 3D print. As with glyphs and stream- 63

lines, minimizing clutter is always desirable and pathlines are 64

no exception. Moreover, the goal of this model is to create a 65

summarized depiction of the flow and should arguably be even 66

less cluttered than the glyph and streamline models. Hence, 67

to filter P into a printable and simplified set of pathlines, we 68

chose to use pathline predicates. Pathline predicates [22, 24] 69

are Boolean functions which can classify and filter pathlines 70

based on user-defined attributes (e.g. residence time, maximum 71

velocity, passing through a region of interest, etc.). Combining 72

different predicates using Boolean logic allows users to answer 73

questions, such as “which pathlines pass through a particular 74

region and have the highest speed?”. For our example pathline 75

predicate model, we decided to ask the question “which path- 76

lines have the highest speed and are the longest?”, thus com- 77

bining a predicate for maximal speed (at some point along the 78

pathline) and length. We define our predicates based on the 79

length and maximum velocity predicates described by Jankowai 80

et al. [24]. 81

Thus far, our physical models have represented flow be- 82

haviour at a snapshot in time. However, since pathlines are 83

derived from time-varying data, the physical model can be de- 84

signed to reflect this. We modified our sweep surface algo- 85

rithm (Section 5.2) such that the cross-sectional radius is lin- 86

early scaled based on the time that the “particle” has travelled1

along the pathline. This gives the pathtube a tapered appear-2

ance, suggesting the idea of movement over time; these are3

similar to motion lines which are common in traditional comic4

book art [50].5

                  



Preprint Submitted for review / Computers & Graphics (2019) 13

By leveraging the single slice technique described in Sec-6

tion 7.2, we create a physicalizable pathline predicate summary7

model (Fig. 16). The summary print has only ten pathlines but8

provide an overview of the predominant flow behaviour – for9

instance, three of the pathlines are seen merging into one gen-10

eral direction, corresponding to ejection during systole.11

Fig. 16. Picture of 3D printed pathline predicate model for a healthy sub-
ject.

7.4.2. Vortex core model12

Up to this point, we have focused on some of the fundamental13

flow/vector field visualization techniques, such as glyphs and14

integral lines. However, there are also a number of flow-related15

features and hemodynamic parameters, such as pressure, wall16

shear stress, etc. One feature that has garnered particular inter-17

est within the context of blood flow in recent years is vortical18

flow [51, 52, 53]. Pedrizzetti et al. [51] suggest that maladap-19

tive intracardiac vortices may be involved in LV remodelling20

and could provide early indications of long-term outcomes. As21

such, vortex cores seemed to be a suitable flow feature worth22

exploring in the context of cardiac blood flow.23

Robust vortex extraction is a challenging problem, with a for-24

mal definition of a vortex still lacking [54]. Numerous methods25

for vortex core detection have been proposed [54]; the method26

presented by Jeong and Hussain [55] known as the λ2 method, is27

generally regarded as the most suitable for vortex core extrac-28

tion for blood flow in the cardiovascular system [52]. There-29

fore, we chose this method for vortex core extraction.30

We extract vortex cores during early diastole using the λ231

method [56], and subsequently convert the vortex core voxels32

into surfaces for 3D printing. The long-axis single slice tech-33

nique described in Section 7.2 is again suitable for supporting34

the 3D printed vortex core structures (Fig. 17). Moreover, a35

summary trajectory line (e.g. a pathline derived from a combi-36

nation of various predicates, such as seeding plane, maximum37

velocity and/or length) to provide time-varying information can38

be included in the physical vortex core model. Since it is not39

the focus of the visualization, it can be projected onto the slice40

plane, acting as part of the model’s context.41

7.5. Patient example42

To further test our improved designs, we applied them to a 43

dataset of a patient with cardiomyopathy (a disease of the heart 44

muscle). Fig. 18 shows comparisons between the healthy sub- 45

ject and patient using three of the different flow models (stream- 46

lines, pathline predicates and vortex cores). In Fig. 18A, the 47

Fig. 17. Pictures of healthy vortex core summary model. (A) Long-axis
view, with vortex cores marked by arrows. (B) Short-axis view, a vortex
core ring structure (C) can be observed.

difference in streamline flow pattern structure show the disor- 48

ganized flow in the patient’s LV during early filling when com- 49

pared to the healthy subject. Fig. 18B shows that a greater 50

proportion of blood flow enters/exits the LV within one cardiac 51

cycle in the healthy subject as compared to the patient, sug- 52

gesting that the healthy subject can transport oxygenated blood 53

more efficiently. Finally, in Fig. 18C, an early vortex ring-like 54

structure can be seen in both cases but the vortex core struc- 55

ture of the patient is not as well-formed. Hence, these examples 56

show the potential of using physicalization to portray the hemo- 57

dynamics of different cases. 58

8. Implementation 59

For creating the glyph models, a macro was written in Par- 60

aview to automatically generate the slice-based model with 61

user-specified orientation, slice spacing, and glyph size scaling 62

(to prevent collisions between slices). Meshmixer was used for 63

building the handles and base, as well as for ensuring that the 64

models would be 3D printable (i.e. having no open boundaries). 65

To print, we used Simplify3D for automatically generating sup- 66

port structures and gcode (instructions for the printer) and Mak- 67

erGear’s M2/M3-ID printers with AMZ3D PLA filament. The 68

programs for creating the streamline, pathline and vortex core 69

models were implemented in MATLAB (R2016a). 70

9. Conclusions and future work 71

4D Flow MRI is an exciting technology which captures vol- 72

umetric blood flow data over time and has much potential for 73

both research and clinical use. One of the important pieces 74

of the 4D Flow MRI processing pipeline is flow visualiza- 75

tion, which can help various users (e.g. doctors, patients, re- 76

searchers, students, etc.) better understand the data. There are 77

many ways to visualize flow data, including vector field maps,1

integral lines, and feature-specific displays. However, to truly2

grasp the three-dimensional (or four-dimensional, when consid-3

ering time) nature of the data, it may be beneficial to explore it4

using a tangible three-dimensional visualization. To this end,5
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Fig. 18. Comparison between LV of healthy subject (left) to cardiomyopa-
thy patient (right) in photos of (A) two printed streamline (half-)models,
(B) pathline predicate models, and (C) vortex core summary models.

we designed a novel slice-based physicalization method for vi-6

sualizing 4D Flow MRI data, specifically focusing on blood7

flow within the left ventricle.8

Overall, this study provides a proof-of-concept on the feasi-9

bility of a novel physical visualization of blood flow within an10

actual human heart. We demonstrate that our proposed slice-11

based design is easily fabricable, and has the potential to be12

useful for physicalizing blood flow data. Since this area has13

not yet been extensively explored, we initially focused on two14

styles of visualization, glyphs and streamlines: one can con-15

sider glyphs as the lowest level of visualization since they most16

closely correspond with the raw vector field data, and stream-17

lines can be thought of as one level higher, being derived from18

the vector values in space. Beyond these two styles, we ex-19

plore two simplified summary model designs, which represent20

the time-varying aspect of the data as well. These models could21

have utility in patient/trainee education, which we hope to study22

in more depth (e.g. with longitudinal user studies).23

While our presented workflow (as-is) is not intended for rou-24

tine clinical use, it provides a tool for research applications,25

particularly in studies which utilize 3D printing. As an exam-26

ple, specific flow features (for instance, regurgitant flow) could 27

be modelled to complement other anatomical 3D prints, thus 28

augmenting structural information with hemodynamics. Vari- 29

ous clustering techniques have been applied to 4D Flow stream- 30

line data [25, 26]; these could be used to create more simplified 31

flow overviews for physicalization as well. We hope to investi- 32

gate such future designs in collaboration with clinical experts, 33

tailored to potential use cases and audiences (e.g. pediatrics). 34
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