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CHAPTER 1
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Multiresolution has been extensively used in many areas of computer
science, including biometrics. We introduce local multiresolution filters
for quadratic and cubic B-splines that satisfy the first and the second
level of smoothness respectively. For constructing these filters, we use a
reverse subdivision method. We also show how to use and extend these
filters for tensor-product surfaces, and 2D/3D images. For some types of
data, such as curves and surfaces, boundary interpolation is strongly de-
sired. To maintain this condition, we introduce extraordinary filters for
boundaries. For images and other cases in which interpolating the bound-
aries is not required or even desired, we need a particular arrangement
to be able to apply regular filters. As a solution, we propose a technique
based on symmetric extension. Practical issues for efficient implementa-
tion of multiresolution are discussed. Finally, we discuss some example
applications in biometrics, including iris synthesis and volumetric data
visualization.

1. Introduction

Multiresolution provides a tool for decomposing data into a hierarchy of

components with different scales or resolutions. This hierarchy can be used

for noise removal, compression, synthesizing and recognition of the objects.

An efficient and economical multiresolution is associated with wavelets.

Therefore, this kind of multiresolution has been employed in many areas

such as image processing13, biomedical21 and computer graphics18.

Noise removal, data synthesis and feature recognition are common prob-
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lems in biometrics. Multiresolution techniques have been employed in iris

identification7,9,23, iris synthesis22, feature extraction from fingerprints and

irises3,10,14, and for detecting faces in images24.

To date, Haar wavelets have primarily been used in biometric appli-

cations due to their simplicity. Haar wavelets are based on zero-degree

B-splines. Unfortunately, zero-degree B-spline functions and their wavelet

functions are not even continuous and consequently they are not well suited

when we need a “smooth multiresolution representation” for data.

In this chapter, we introduce multiresolution representations for

quadratic and cubic B-spline that satisfy the first and the second level

of smoothness respectively. To keep the simplicity and efficiency of the re-

sulting techniques, we build and describe local multiresolution filters from

a condition for biorthogonal wavelets using the general approach of reverse

subdivision . Consequently, the purpose of this work is not only describing

the construction method (Secs. 3 –5), but also discussing practical imple-

mentation issues (Secs. 6–8).

2. Wavelets and Multiresolution Background

Multiresolution operations are specified by a set of filter matrices Ak, Bk,

Pk and Qk. Consider a given discrete signal Ck, expressed as a column

vector of samples. A lower-resolution sample vector Ck−1 is created by a

down-sampling filter on Ck. This process can be expressed as a matrix

equation

Ck−1 = AkCk .

The details Dk−1 lost through the down-sampling are captured using Bk

Dk−1 = BkCk .

The pair of matrices Ak and Bk are called analysis filters and the process

of splitting a signal Ck into Ck−1 and Dk−1 is called decomposition. Recov-

ering the original signal Ck is called reconstruction. It involves refinement

of the low-resolution sample Ck−1 and details Dk−1 using the synthesis

filters Pk and Qk, which reverse the operations of Ak and Bk

Ck = PkCk−1 + QkDk−1 .

The matrices Ak, Bk, Pk and Qk form the core of the multiresolution

approach, and the efficiency of the resulting techniques depends on the

structure of these matrices. For an efficient and useful representation, the

following properties are desired:
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• All matrices should be banded, with repetitive row/column entries.

• Ck−1 is a good approximation for Ck.

• The storage requirement for storing Ck−1 and Dk−1 is not more

than that of Ck.

• The time required to decompose and reconstruct the signal is lin-

early dependent on the size of Ck.

Decomposition and reconstruction operations take place in some un-

derlying function spaces Vk−1 ⊂ Vk wherein Ck defines some function

fk =
∑

i c
k
i φ

k
i in the large space, Ck−1 defines an approximation fk−1 =∑

i jc
k−1
j φk−1

j to that function in the smaller space, and Dk−1 defines the

difference gk−1 =
∑

i jd
k−1
j ψk−1

j in the complement space Vk \ Vk−1. The

basis functions ψk−1
i are conventionally called wavelets and the φj are called

scale functions.

Wavelet systems are usually classified according to the relationship be-

tween the wavelets and the scaling functions. Stollnitz et al. provide an

excellent overview of wavelet classifications18, which we summarize here.

Orthogonal wavelets. An orthogonal wavelet system is one in which “the

scaling functions are orthogonal to one another, the wavelets are orthogonal

to one another, and each of the wavelets is orthogonal to every coarser

scaling function.” In such a setting, the determination of the multiresolution

filters is quite easy. Unfortunately, orthogonality is difficult to satisfy for

all but the most trivial scaling functions.

Semiorthogonal wavelets. Semiorthogonal wavelets relax the orthogo-

nality conditions, only requiring that each wavelet function is orthogonal

to all coarser scaling functions. By relaxing the constraints on the wavelets,

it is easier to derive a Qk filter (note that there is no unique choice of Qk,

but there are some choices that are better than others). The drawback of

semiorthogonal wavelets is that while Pk and Qk will be sparse matrices

(meaning that reconstruction can be done in linear time), the decomposi-

tion filters Ak and Bk offer no such guarantee. It often turns out that the

decomposition filters are full matrices while these matrices are very simple

and banded in the case of Haar wavelets18.

Biorthogonal wavelets. Finally there are biorthogonal wavelets, which

have many of the properties of semiorthogonal wavelets but enforce no

orthogonality conditions. The only condition in a biorthogonal setting is

that
[
Pk|Qk

]
is invertible, which implies that the decomposition filters Ak
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and Bk exist such that

[
Ak

Bk

] [
Pk Qk

]
=

[
I 0

0 I

]
. (2.1)

Simply having a matrix Ak that satisfies (2.1) does not necessarily pro-

duce coarse data Ck−1 that is a good approximation of Ck. Consequently,

this condition should also be taken to account in our construction of Ak.

Wavelet transform. We can repeatedly decompose a signal Ck to

C`, C`+1, . . . , Ck−1 and details D`, D`+1, . . . , Dk−1 where ` < k. The orig-

inal signal Ck can be recovered from the sequence C`, D`, D`+1, . . . , Dk−1;

this sequence is known as a wavelet transform. Based on the properties

mentioned above the total size of the transform C`, D`, D`+1, . . . , Dk−1 is

the same as that of the original signal Ck. In addition, the time required to

transform Ck to C`, D`, D`+1, . . . , Dk−1, and vice versa, is a linear function

of the size Ck.

Details interpretation. If Ck represents a high-resolution approxima-

tion of a curve, then C` is a very coarse approximation of the curve showing

the main outline, and Di consist of vectors which perturb the curve into

its original path. As Fig. 8(b) demonstrates, if we eliminate Di, the re-

constructed curve becomes much smoother but without any of the curve’s

individual finer structure. In fact, Di can be considered as characteristic

of the curves. It is possible to apply Di to a new coarse curve to obtain a

new curve but with the same character (see Fig. 8(d)). Consequently, Di

at different levels are important features for synthesizing techniques.

B-spline multiresolution. B-splines are often chosen as scaling

functions6. The first order (zero degree) B-splines form a set of step func-

tions and Haar functions are their associated wavelets18,19. The resulting

matrix filters are very simple and efficient. However, these scaling functions

and wavelets are non-continuous. This is a problem when we have discrete

data that is a sample of smooth signals and objects. Higher order B-splines

and their wavelets can be considered for smooth signals6,8,16.

A common knot arrangement, the standard arrangement, for B-splines

of order k is to have knots of single multiplicity uniformly spaced every-

where except at the ends of the domain where knots have multiplicity k1,15;

this arrangement produces endpoint-interpolation. Conventionally, B-spline

wavelets are constructed with a goal of semiorthogonality, which results in

full analysis matrices.

An alternative approach to generating multiresolution matrices is re-

verse subdivision, originally introduced by Bartels and Samavati2. Based
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on this approach, it is possible to obtain banded matrices for biorthogonal

B-spline wavelets whose bands are narrower than the ones conventionally

produced. In this work, we construct and report multiresolution filter matri-

ces for quadratic and cubic B-splines, which are important practical cases.

Because of the similarity in the constructions, we just describe the process

in detail for cubic B-splines.

Notation. For clarity of notation, the remainder of the chapter will forgo

the superscript k for denoting the k-th level of subdivision. Let C = Ck

and F = Ck+1, such that

C = {c1, . . . , cn} ,

F = {f1, . . . , fm} .

Further, let P = Pk, Q = Qk, A = Ak, and A = Ak. These matrices

are assumed to be of the proper size so that the following equations hold

C = AF (2.2)

D = BF (2.3)

F = PC + QD . (2.4)

3. Review of Construction

We construct multiresolution of B-splines by reversing their subdivision

schemes. In general, a subdivision process takes some coarse data as input.

To this is applied a set of rules that replace the coarse data with a finer

(smoother) representation. The set of rules could again be applied to this

finer data. In the limit of repeated application, the rules yield data with

provable continuity. The standard midpoint knot insertion process results

in a subdivision scheme for B-splines1,15.

Though subdivision is usually discussed in the context of curves and

surfaces, it is a general process that can operate on any data type upon

which linear combinations are defined. Thus we will consider subdivision to

operate on some “coarse set” C of samples, and the process of subdivision

is expressed in matrix form as F = PC, whereby C is converted into a

larger “fine set” F by the subdivision matrix P.

The construction of multiresolution assumes that F is not the result of

subdivision; that is, F 6= PC for any vector C. In this case we wish to find

a vector C so that F ≈ F̃ ≡ P C, so that the residuals F − F̃ are small,

and so that complete information about these residuals can be stored in

the space used for {f} \ {c} (or one of an equivalent size). Informally, this
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describes the features of a biorthogonal multiresolution built upon P, which

is the goal of the construction.

If the components of C and F are arranged in sequence, the subdivision

matrices will be banded, repetitive, and slanted. That is, each column j of

P has only a finite number of nonzero entries, located from some row rj

through a lower row rj + `; these nonzero numbers appear in all columns

save for a few exceptions (corresponding to the boundaries of the data {c}),

and the entries of each succeeding or preceding column are shifted down or

up by some fixed number of rows (which is determined by the dilation scale

of the nested function spaces underlying the subdivision).

P =




1
2

1
2 0 0 0

1
8

3
4

1
8 0 0

0 1
2

1
2 0 0

0 1
8

3
4

1
8 0

0 0 1
2

1
2 0

0 0 1
8

3
4

1
8

0 0 0 1
2

1
2




ci−1

ci

ci+1

(3.1)

cj−1 cj cj+1

We demonstrate the construction of multiresolution by reversing cubic B-

spline subdivision. For this construction, we take the subdivision provided

by midpoint knot insertion for uniform cubic B-splines (which provides a

2-scale dilation for a nesting of uniform-knot spline spaces). A finite (7-

row, 5-column) portion of the interior of the P matrix for this subdivision

is given in (3.1).

A biorthogonal multiresolution based upon P consists of the matrix P

together with matrices A, B, and Q that satisfy (2.1). The construction

method of Bartels and Samavati2 is directed toward finding examples of A,

B, and Q that are also banded, repetitive, and slanted; specifically, these

characteristics should be true of the columns of Q and of the rows of A

and B.

The construction is staged as follows:



May 18, 2006 15:54 WSPC/Trim Size: 9in x 6in for Review Volume multiresolution

Local B-spline Multiresolution 7

(1) a matrix A is produced that satisfies AP = I;

(2) trial versions of B and Q are produced, containing partially constrained

symbolic entries, that satisfy BP = 0 and AQ = 0;

(3) the final step to fix B and Q by solving BQ = I.

In each stage, we can take advantage of the fact that the matrices are

banded, repetitive, and slanted. This means that any scalar equation that

forms a part of the matrix equation (2.1) is entirely characterized by the

interaction of a row of the left-hand matrix with only one of a small num-

ber of adjacent columns of the right-hand matrix. (Alternatively, the scalar

equations can be studied by looking at the interaction of a column of the

right-hand matrix with only a small number of adjacent rows in the left-

hand matrix.) The repetitiveness offers us the benefit of being able to char-

acterize the entire matrix-matrix product (or at least, all of it except for a

few special cases at the boundary) by studying how one representative row

(or column) interacts with a small number of columns (or rows).

The construction is, of course, carried out only once for each choice

of regular subdivision and connectivity. The rows of A, B, P, and Q are

treated as filters that decompose the fine data F as in (2.2) and (2.3)

cj =
∑

λ

aλfλ d` =
∑

µ

bµfλ

and to reconstruct it as in (2.4)

fi =
∑

ρ

pρcρ +
∑

σ

qσdσ .

As an example, the following illustrates the complete setup of equations

to specify the elements of any general, interior (regular) row of A for cubic

B-spline subdivision under the assumption that there are 7 nonzero ele-

ments in the row, and that in the row defining the value of cj they are
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centered on the position corresponding to fi

[ ai−3 ai−2 ai−1 ai ai+1 ai+2 ai+3 ]




1
2

1
2 0 0 0

1
8

3
4

1
8 0 0

0 1
2

1
2 0 0

0 1
8

3
4

1
8 0

0 0 1
2

1
2 0

0 0 1
8

3
4

1
8

0 0 0 1
2

1
2




= [ 0 0 1 0 0 ] (3.2)

These are the only nontrivial scalar equations obtainable from the interior

rows of A and interior columns of P, assuming this width and positioning

for the elements in each row of A. The interaction of this row of A with any

other interior column of P involves only sums of products with one factor

in each product equal to zero. Interactions coming from the boundary will

produce a small number of scalar equations distinct from the ones in (3.2).

These distinct equations have no effect on the ones shown in (3.2). They

will be solved separately to yield A values that are to be applied only to

specific samples at the boundary. An example of this will be given in Sec. 5.

By solving the equations implied by (3.2) for the elements ai which yield

a minimum Euclidean norm(to have a good coarse approximation), we find

that [ai−3 · · · ai+3] is
[

23
196 − 23

49
9
28

52
49

9
28 − 23

49
23
196

]

The sample cj = ai−3fi−3 + · · · + ai+3fi+3 represents a local least squares

estimate based upon the 7 consecutive fine samples fi−3, . . . , fi+3
2. Figure 1

illustrates that in a curve, these 7 consecutive fine samples are those that are

physically nearest to and symmetrically placed about cj . This is arguably

the configuration of choice for estimating cj in a least squares sense from a

local neighborhood about fi. With the same motivation, 1, 3, 5, 9, or more

consecutive samples fi±λ could be chosen for the estimate, producing other

options for A, and then correspondingly for B and Q.

To handle the second matrix equation, BP = 0, scalar equations corre-

sponding to the nontrivial interactions of one row of B with the columns of

P are set up in a similar way, assuming a number of nonzeros in a row of B

and a position for those nonzeros in the row defining the generic element dλ.

These scalar equations (along with any additional ones desired to enforce,
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c-1

f-2

c0 c1

c2

f-1

f0

f1

f2

f3

f4

Fig. 1. The filters are based on a local indexing centered about a representative sample
c0.

for example, symmetry in the values of the row elements) are solved using

a symbolic algebra system. Enough elements should be assumed in a row

of B so that the solution is not fully defined and has free variables.

To handle the third matrix equation, QA = 0, scalar equations corre-

sponding to the nontrivial interactions of one column of Q with the rows

of A are set up in a similar way, with assumptions about number and po-

sition of nonzeros being made. Additional conditions of symmetry are also

possible. The equations are solved in symbolic algebra, and the result must

also contain free variables.

The final matrix equation, BQ = I, is handled by using the symbolic

results of the preceding two steps to generate the scalar equations repre-

senting the nontrivial interactions of a single row of B with the columns of

Q (or a single column of Q with the rows of B), and the resulting (bilinear)

equations are solved. Any remaining free variables may be fixed at will (our

preference being to establish a norm of approximately unity for any column

of Q).

A consistent set of solutions for cubic B-spline subdivision yields A as
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follows (a 5 × 7 slice)

A =




9
28 − 23

49
23
196 0 0 0 0

9
28

52
49

9
28 − 23

49
23
196 0 0

23
196 − 23

49
9
28

52
49

9
28 − 23

49
23
196

0 0 23
196 − 23

49
9
28

52
49

9
28

0 0 0 0 23
196 − 23

49
9
28




ckj−1

ckj

ckj+1

ck+1
i−1 ck+1

i ck+1
i+1

A corresponding (5 × 7) slice of one possible B matrix is

B =




39
49 − 26

49
13
98 0 0 0 0

13
98 − 26

49
39
49 − 26

49
13
98 0 0

0 0 13
98 − 26

49
39
49 − 26

49
13
98

0 0 0 0 13
98 − 26

49
39
49

0 0 0 0 0 0 13
98




dk
`−1

dk
`

dk
`+1

ck+1
i−1 ck+1

i ck+1
i+1

And a corresponding (7 × 5) portion of a possible Q matrix is

Q =




1 − 23
52 0 0 0

− 63
208 − 63

208 − 23
208 0 0

− 23
52 1 − 23

52 0 0

− 23
208 − 63

208 − 63
208 − 23

208 0

0 − 23
52 1 − 23

52 0

0 − 23
208 − 63

208 − 63
208 − 23

208

0 0 − 23
52 1 − 23

52




ck+1
i−1

ck+1
i

ck+1
i+1

dk
`−1 dk

` dk
`+1
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The construction of B and Q ends with the selection of leftover free

parameters, and it is our custom to use these so that the maximum magni-

tude element (the infinity vector norm) of each column of Q is comparable

to 1 in magnitude, expecting that this means the contribution of each d` in

any residual will be comparable to the magnitude of d` itself. The residuals

fi − f̃i to which d` contributes are those corresponding to the nonzero ele-

ments of the `th column of Q. The number of elements in {f} corresponds

to the number of rows in P. The number of columns of P corresponds to

the number of elements in {c} and the number of columns of Q corresponds

to the number of elements in {d}. If the columns of P and Q are adjoined,

the result is a square matrix (whose inverse is the matrix with the rows

of A adjoined below by the rows of B). The number of columns of [P Q],

being the number of elements in {c}
⋃
{d}, is also the number of elements

in {f}.

Throughout the remainder of this chapter we shall be using the term

matrix to refer to the decomposition information, A and B, and the recon-

struction information, P and Q, in its entire matrix format; i.e., capable

of acting simultaneously on all the information {f}, {c}, and {d}, as laid

out in vectors, in the manner of (2.2), (2.3), and (2.4). We shall be using

the term filter to refer to the nonzero entries in a representative row of A

and B and a representative column of P and Q. We simply denote theses

filters by a,b,p and q. This helps us to compactly represents all involving

filters of cubic B-spline as

a =
[

23
196 − 23

49
9
28

52
49

9
28 − 23

49
23
196

]

b =
[

13
98 − 26

49
39
49 − 26

49
13
98

]

p =
[

1
8

1
2

3
4

1
2

1
8

]

q =
[
− 23

208 − 23
52 − 63

208 1 − 63
208 − 23

52 − 23
208

]
.

(3.3)

An important caveat to the filter vector notation in (3.3) is that a and b

represent regular rows of A and B, while p and q represent regular columns

of P and Q. Thus the application of a (or b) to a sample vector is similar to

convolution, as the filter vector is slid along the sample vector. Conversely,

the application of p (or q) is two convolutions, with one kernel consisting of

the even entries and another filled with the odd entries (due to the column

shift required by a 2-scale dilation). Section 6 illustrates how to interpret

these filters algorithmically.
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4. Other B-spline Multiresolution Filters

The construction in Sec. 3 is general enough to be used for other subdivision

methods, particularly B-spline subdivisions. Due to the fact that having

two levels of smoothness is enough for most applications in imaging and

graphics, only quadratic and cubic B-spline subdivisions are considered

here. However, the multiresolution filters obtained from this method of

construction are not unique and there are variety of options. For example,

the filters in (3.3) are result of starting with the width seven for A. Different

filters can be derived by changing the width of A. Wider filters result in

a better coarse approximation of the fine samples but they are harder to

implement and require more computations. In addition, it is possible to add

constraints to the construction to obtain better filter values, such as inverse

powers of two. Here we report some other alternative filter sets that may

be useful in different applications.

4.1. Short Filters for Cubic B-spline

If we start with a width of three for A in the construction, we obtain

a =
[
− 1

2 1 − 1
2

]

b =
[

1
4 −1 3

2 −1 1
4

]

p =
[

1
8

1
2

3
4

1
2

1
8

]

q =
[

1
4 1 1

4

]
.

(4.1)

Although these filters are very compact and easy to implement, they

often fail to generate a good coarse approximation.

4.2. Cubic B-spline Filters: Inverse Powers of Two

Having powers and inverse powers of two is desirable for implementing mul-

tiresolution in hardware. It is possible to add constraints to the construction

that is described in Sec. 3 to obtain filter values as inverse powers of two.

This is not always successful, but it is certainly gratifying when it is. The

construction is nicely successful for cubic B-spline with a width of seven for

a

a =
[

1
8 − 1

2
3
8 1 3

8 − 1
2

1
8

]

b =
[
− 1

8
1
2 − 3

4
1
2 − 1

8

]

p =
[

1
8

1
2

3
4

1
2

1
8

]

q =
[

1
8 − 1

2
3
8 1 3

8 − 1
2

1
8

]
.

The quality of the coarse approximation in this case is near to optimal

filters in (3.3).
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4.3. Short Filters for Quadratic B-spline

The local filters of quadratic B-spline can be constructed based on revers-

ing Chaikin subdivision5, for which the underlying scale functions are the

quadratic B-splines. The smallest width that can generate a non-trivial

filters is four, which results in the following filters

a =
[
− 1

4
3
4

3
4 − 1

4

]

b =
[
− 1

4
3
4 − 3

4
1
4

]

p =
[

1
4

3
4

3
4

1
4

]

q =
[
− 1

4 − 3
4

3
4

1
4

]
.

(4.2)

These filters are appealingly simple, yet their quality is reasonably good

(see Sec. 8).

4.4. Wide Filters for Quadratic B-spline

Starting with a width of eight for a, the following filters are obtained

a =
[

3
40 − 9

40 − 1
40

27
40

27
40 − 1

40 − 9
40

3
40

]

b =
[
− 27

160
81
160 − 81

160
27
160

]

p =
[

1
4

3
4

3
4

1
4

]

q =
[
− 1

9 − 1
3

1
27 1 −1 − 1

27
1
3

1
9

]
.

(4.3)

As shown in Sec. 8.1, these filters generate very high compression rates for

images compression.

5. Extraordinary (Boundary) Filters

All multiresolution filters in Sec. 3 and 4 are regular, meaning they are

applicable only to data with full neighborhoods. Using symmetric extension

(Sec. 7.3.1), we can apply such regular filters to curves, surfaces, and images

with boundaries. However, boundary interpolation is often strongly desired.

To have this property, we must sacrifice the regularity of the filters near to

the boundary.

To fulfill the interpolation condition for B-spline representations, mul-

tiple knots are used at the ends of the knot sequence, corresponding to the

beginning and ending portions of any data that the filters might operate

on. This knot multiplicity creates irregular or extraordinary parts in the

subdivision matrix. We use a block matrix notation to separate the bound-

ary filters from the regular filters. For example, the P matrix for cubic

B-Splines with the interpolation condition is shown in (5.1). In this nota-

tion Ps shows the extraordinary parts of the subdivision matrix near to the
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start of the sample vector. Similarly, Pe refers to the extraordinary parts

near to the end. And finally, Pr shows the regular portion of this matrix.

P =




Ps

Pr

Pe


 , (5.1)

where

Ps =




1 0 0 0 0 0 · · ·

1
2

1
2 0 0 0 0 · · ·

0 3
4

1
4 0 0 0 · · ·

0 3
16

11
16

1
8 0 0 · · ·



,

Pr =




0 0 1
2

1
2 0 0 0 0 0 · · ·

0 0 1
8

3
4

1
8 0 0 0 0 · · ·
...



,

Pe =




· · · 0 0 1
8

11
16

3
16 0

· · · 0 0 0 1
4

3
4 0

· · · 0 0 0 0 1
2

1
2

· · · 0 0 0 0 0 1



.

5.1. Boundary Filters for Cubic B-Spline

Again we present our construction in the context of cubic B-Spline subdi-

vision.

5.1.1. Construction of A

Having extraordinary filters at the boundary of P affects our construction

method and usually causes extraordinary filters for A, B and Q too. In the

first step, we would like to find A such that AP = I. Any width of A filter

can be investigated, but we have tried to find a width consistent with the

regular filters’ widths. For the first row of A consisting of only a0, the only

interaction with P corresponds to the first P column.
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By the way the subdivision is defined at the boundary, investigating a

minimal A filter is the obvious thing to do, since the subdivision simply re-

produces the extreme samples cmin = fmin. Nevertheless, for completeness,

the setup for determining that fact is:

cmin = a0 fmin ⇒ a0 = 1.

The second row of A , for estimating the second coarse sample, is more

interesting. The A filter investigated is five elements long, which is the clos-

est possible to the seven-element filter being used for the interior samples.

For the five-element A filter being investigated, there are only four relevant

P columns, and the equations that are generated by forming the relevant

section of AP = I are

1 a0 +
1

2
a1 = 0

1

2
a1 +

3

4
a2 +

3

16
a3 = 1

1

4
a2 +

11

16
a3 +

1

2
a4 = 0

1

8
a3 +

1

2
a4 = 0 .

This creates the second row of A

a2 =
[
− 49

139
98
139

135
139 − 60

139
15
139

]
.

The third row A can be found with the same method; for this row a

seven element filter [a0, a1, a2, a3, a4, a5, a6] can be considered. This row has

non-zero interaction with the first five columns of P, resulting in

a3 =
[

9
50 − 9

25 − 2
25

32
25

43
100 − 3

5
3
20

]
.

If we use the same kind of the blocked matrix notation for A, where

As, Ar and Ae respectively refer to the extraordinary block near to the

start, the regular block and the extraordinary block near to the end, then

the result of the boundary analysis is:

As =




1 0 0 0 0 0 0 0 · · ·

− 49
139

98
139

135
139 − 60

139
15
139 0 0 0 · · ·

9
50 − 9

25 − 2
25

32
25

43
100 − 3

5
3
20 0 · · ·


 ,
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Ar =




0 0 23
196 − 23

49
9
28

52
49

9
28 − 23

49
23
196 0 0 · · ·

0 0 0 0 23
196 − 23

49
9
28

52
49

9
28 − 23

49
23
196 · · ·

...


 ,

Ae =




· · · 0 0 3
20 − 3

5
43
100

32
25 − 2

25 − 9
25

9
50

· · · 0 0 0 0 15
139 − 60

139
135
139

98
139 − 49

139

· · · 0 0 0 0 0 0 0 0 1


 .

5.1.2. B and Q

To establish B filters near the boundary, we proceed in the way that we

did for A. To begin, we would try solving for the fist row of B making it as

near to the size of interior B filters as possible in that position. The first B

filter configuration that yields nontrivial elements has the width five. The

interactions of such a filter with the boundary P filter contribute to the

equations BP = 0 as

1 b0 +
1

2
b1 = 0

1

2
b1 +

3

4
b2 +

3

16
b3 = 0

1

4
b2 +

11

16
b3 +

1

2
b4 = 0

1

8
b3 +

1

2
b4 = 0 .

For the second boundary row of B filter, we have:

3

4
b0 +

3

16
b1 = 0

1

4
b0 +

11

16
b1 +

1

2
b2 +

1

8
b3 = 0

1

8
b1 +

1

2
b2 +

3

4
b3 +

1

2
b4 = 0

1

8
b3 +

1

2
b4 = 0 .

Similar steps will be set up to generate the equations AQ = 0. In

addition, we need to the set up for contributing to the equations BQ = I

from a Q columns. When all equations have been generated and solved,
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proceeding as we have done in terms of the lengths chosen for the boundary

filters, we obtain the boundary B and Q. The resulting filter for B is

Bs =

[
− 45

139
90
139 − 135

278
30
139 − 15

278 0 0 0 0 · · ·

0 0 57
490 − 114

245
171
245 − 114

245
57
490 0 0 · · ·

]
,

Br =




0 0 0 0 13
98 − 26

49
39
49 − 26

49
13
98 0 0 0 · · ·

0 0 0 0 0 0 13
98 − 26

49
39
49 − 26

49
13
98 0 · · ·

...


 ,

Be =



 · · · 0 0 0 57
490 − 114

245
171
245 − 114

245
57
490 0 0

· · · 0 0 0 0 0 − 15
278

30
139 − 135

278
90
139 − 45

139



 .

And the resulting filters for Q are

Qs =




0 0 0 0 0 0 · · ·

1 0 0 0 0 0 · · ·

− 2033
3000 − 49

152 0 0 0 0 · · ·

2137
12000 − 289

608 − 23
208 0 0 0 · · ·

139
500 1 − 23

52 0 0 0 · · ·

139
2000 − 347

912 − 63
208 − 23

208 0 0 · · ·

0 − 115
228 1 − 23

52 0 0 · · ·

0 − 115
912 − 63

208 − 63
208 − 23

208 0 · · ·




,

Qr =




0 0 − 23
52 1 − 23

52 0 0 · · ·

0 0 − 23
208 − 63

208 − 63
208 − 23

208 0 · · ·
...


 ,
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Qe =




· · · 0 − 23
208 − 63

208 − 63
208 − 115

912 0

· · · 0 0 − 23
52 1 − 115

228 0

· · · 0 0 − 23
208 − 63

208 − 347
912

139
2000

· · · 0 0 0 − 23
52 1 139

500

· · · 0 0 0 − 23
208 − 289

608
2137
12000

· · · 0 0 0 0 − 49
152 − 2033

3000

· · · 0 0 0 0 0 1

· · · 0 0 0 0 0 0




.

5.2. Boundary Filters for Short Cubic B-Spline

Using the same kind of construction as Sec. 5.1, we can construct extraor-

dinary filters for the narrow cubic B-Spline filters of Sec. 4.1. In this case,

A becomes

As =

[
1 0 0 0 0 0 0 · · ·

−1 2 0 0 0 0 0 · · ·

]
,

Ar =




0 0 − 1
2 2 − 1

2 0 0 0 0 0 · · ·

0 0 0 0 − 1
2 2 − 1

2 0 0 0 · · ·
...



,

Ae =

[
· · · 0 0 0 2 −1

· · · 0 0 0 0 1

]
.

The corresponding B matrix is

Bs =
[

3
4 − 3

2
9
8 − 1

2
1
8 0 · · ·

]

Br =




0 0 1
4 −1 3

2 −1 1
4 0 0 0 0 0 · · ·

0 0 0 0 1
4 −1 3

2 −1 1
4 0 0 0 · · ·

...



,
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Be =
[

· · · 0 0 0 0 1
8 − 1

2
9
8 − 3

2
3
4

]
.

And finally, the Q matrix is

Qs =

[
0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

]
,

Qr =




1 0 0 0 0 · · ·

1
4

1
4 0 0 0 · · ·

0 1 0 0 0 · · ·

0 1
4

1
4 0 0 · · ·
...




,

Qe =

[
0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

]
.

5.3. Boundary Filters for Short Quadratic B-Spline

By the same method, we can generate a full set of multiresolution matrices

for quadratic B-spline subdivision (commonly referred to as Chaikin sub-

division). The P filter for quadratic B-spline subdivision is p =
[
1
4

3
4

3
4

1
4

]
.

The blocked matrix notation for the synthesis filter P is

Ps =

[
1 0 0 0 0 · · ·

1
2

1
2 0 0 0 · · ·

]
,

Pr =




0 3
4

1
4 0 0 · · ·

0 1
4

3
4 0 0 · · ·

0 0 3
4

1
4 0 · · ·

0 0 1
4

3
4 0 · · ·

...




,
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Pe =



 · · · 0 0 0 1
2

1
2

· · · 0 0 0 0 1



 .

Similarly, the A matrix becomes

As =

[
1 0 0 0 0 0 · · ·

− 1
2 1 3

4 − 1
4 0 0 · · ·

]
,

Ar =




0 0 − 1
4

3
4

3
4 − 1

4 0 0 · · ·

0 0 0 0 − 1
4

3
4

3
4 − 1

4 · · ·
...


 ,

Ae =



 · · · 0 0 − 1
4

3
4 1 − 1

2

· · · 0 0 0 0 0 1



 .

And B is

Bs =

[
− 1

2 1 − 3
4

1
4 0 0 0 · · ·

0 0 − 1
4

3
4 − 3

4
1
4 0 · · ·

]
,

Br =




0 0 0 0 1
4 − 3

4
3
4 − 1

4 0 0 · · ·

0 0 0 0 0 0 1
4 − 3

4
3
4 − 1

4 · · ·
...


 ,

Be =
[

· · · 0 0 1
4 − 3

4 1 − 1
2

]
.

Finally, for Q we have

Qs =




0 0 0 0 · · ·

1
2 0 0 0 · · ·

− 3
4

1
4 0 0 · · ·

− 1
4

3
4 0 0 · · ·

0 − 3
4 − 1

4 0 · · ·

0 − 1
4 − 3

4 0 · · ·




,
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Qr =




0 0 3
4 − 1

4 0 0 · · ·

0 0 1
4 − 3

4 0 0 · · ·

0 0 0 3
4 − 1

4 0 · · ·

0 0 0 1
4 − 3

4 0 · · ·
...




,

Qe =


 · · · 0 0 0 1

2

· · · 0 0 0 0


 .

5.4. Boundary Filters for Wide Quadratic B-Spline

In the case of boundary filters for wide quadratic B-Spline, P is the same

as Sec. 5.3 . The A matrix is

As =




1 0 0 0 0 0 0 0 0 · · ·

− 41
141

82
141

45
47 − 5

141 − 15
47

5
47 0 0 0 · · ·

41
425 − 82

425 − 41
425

287
425

297
425 − 11

425 − 99
425

33
425 0 · · ·


 ,

Ar =




0 0 3
40 − 9

40 − 1
40

27
40

27
40 − 1

40 − 9
40

3
40 0 0 0 · · ·

0 0 0 0 3
40 − 9

40 − 1
40

27
40

27
40 − 1

40 − 9
40

3
40 0 · · ·

...


 ,

Ae =




· · · 0 33
425 − 99

425 − 11
425

297
425

287
425 − 41

425 − 82
425

41
425

· · · 0 0 0 5
47 − 15

47 − 5
141

45
47

82
141 − 41

141

· · · 0 0 0 0 0 0 0 0 1


 .

The second decomposition matrix, B, is

Bs =
[
− 27

80
27
40 − 81

160
27
160 0 0 · · ·

]
,
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Br =




0 0 − 27
160

81
160 − 81

160
27
160 0 0 0 0 · · ·

0 0 0 0 − 27
160

81
160 − 81

160
27
160 0 0 · · ·

...


 ,

Be =
[

· · · 0 0 27
160 − 81

160
27
40 − 27

80

]
.

And Q is

Qs =




0 0 0 0 0 · · ·

4000
3807 − 400

1269 0 0 0 · · ·

− 2296
3995 − 1928

21573 − 88
765 0 0 · · ·

− 328
323595

21416
21573 − 88

255 0 0 · · ·

164
765 − 49

51
58

2295 − 1
9 0 · · ·

164
2295 − 11

459
254
255 − 1

3 0 · · ·




,

Qr =




0 1
3 −1 1

27 − 1
9 0 0 · · ·

0 1
9 − 1

27 1 − 1
3 0 0 · · ·

0 0 1
3 −1 1

27 − 1
9 0 · · ·

0 0 1
9 − 1

27 1 − 1
3 0 · · ·

...




,

Qe =




· · · 0 1
3

254
255 − 11

459
164
2295

· · · 0 1
9

58
2295 − 49

51
164
765

· · · 0 0 − 88
255

21416
21573 − 328

323595

· · · 0 0 − 88
765 − 1928

21573 − 2296
3995

· · · 0 0 0 − 400
1269

4000
3807

· · · 0 0 0 0 0




.
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6. Efficient Algorithm

We show how an efficient algorithm can be made based on the multires-

olution filters for quadratic B-spline subdivision, according to the matrix

forms presented in Sec. 5.3.

For all algorithms, we have focused on doing just one step of decom-

position or reconstruction. Each algorithm can be used multiple times to

construct a hierarchical wavelet transform. In all cases F represents the

vector of high-resolution data, C represent low-resolution data and D rep-

resents the detail vector.

Conceptually, a multiresolution algorithm performs the matrix-vector

operations specified in (2.2), (2.3), and (2.4). However, A, B, P, and Q are

regular banded matrices, so using matrix-vector operations is not efficient.

By using the blocked and banded structure of these matrices, more efficient

(O(n) versus O(n2)) algorithms can obtained.

The first algorithm is reduce-resolution. In this algorithm, F [1..m]

is the input fine data and the vector C[1..n] is the output coarse approxi-

mation. The index i traverses F and j traverses C.

reduce-resolution(F [1..m])

1 C1 = F1

2 C2 = − 1
2F1 + F2 + 3

4F3 −
1
4F4

3 j = 3

4 for i = 2 to m− 5 step 2

5 Cj = − 1
4Fi + 3

4Fi+1 + 3
4Fi+2 −

1
4Fi+3

6 j = j + 1

7 endfor

8 Cj = − 1
4Fm−3 + 3

4Fm−2 + Fm−1 −
1
2Fm

9 Cj+1 = Fm

10 return C[1..j + 1]

Lines 1–2 in reduce-resolution correspond to the As matrix, while lines

8–9 correspond to the Ae matrix. The for loop represents the application

of the regular Ar block.

The second algorithm is find-details. We can again identify blocks

corresponding to Bs, Br, and Be.

find-details(F [1..m])

1 D1 = − 1
2F1 + F2 −

3
4F3 + 1

4F4

2 D2 = − 1
4F3 + 3

4F4 −
3
4F5 + 1

4F6

3 j = 3
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4 for i = 5 to m− 5 step 2

5 Dj = 1
4Fi −

3
4Fi+1 + 3

4Fi+2 −
1
4Fi+3

6 j = j + 1

7 endfor

8 Dj = 1
4Fm−3 −

3
4Fm−2 + Fm−1 −

1
2Fm

9 return D[1..j]

For reconstruction, we need to compute PC+QD. The 2-scale column shift

property causes to have two kinds of regular rows(odd and even) for P and

Q. This only requires a simple odd/even regular rules as demonstrated by

the algorithm reconstruction.

reconstruction(C[1..n], D[1..s])

1 E1 = 0D1

2 E2 = 1
2D1

3 E3 = − 3
4D1 + 1

4D2

4 E4 = − 1
4D1 + 3

4D2

5 E5 = − 3
4D2 −

1
4D3

6 E6 = − 1
4D2 −

3
4D3

7 j = 7

8 for i = 3 to s− 1

9 Ej = 3
4Di −

1
4Di+1

10 Ej+1 = 1
4Di −

3
4Di+1

11 j = j + 2

12 endfor

13 Ej = 1
2Ds

14 Ej+1 = 0Ds

15

16 F1 = C1 +E1

17 F2 = ( 1
2C1 + 1

2C2) +E2

18 j = 3

19 for i = 2 to n− 2

20 Fj = ( 3
4Ci + 1

4Ci+1) +Ej

21 Fj+1 = ( 1
4Ci + 3

4Ci+1) +Ej+1

22 j = j + 2

23 endfor

24 Fj = ( 1
2Cn−1 + 1

2Cn) +Ej

25 Fj+1 = Cn +Ej+1

26 return F [1..j + 1]
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Lines 1–14 in reconstruction construct the E = QD term. Lines 1

through 6 correspond to Qs, and lines 13–14 apply Qe. The for loop at

line 8 is for the regular block Qr. In line 1, E1 has been set to 0D1 instead of

0 to have general algorithm that can work for the data with any dimension

induced by D. Lines 24 trough 37 make F = PC +E. Again the terms Pe,

Pr and Pe are distinguishable in the algorithm.

Note that m, the size of the high-resolution data F , is equal to n+ s; it

is clear that the running time of all three algorithms is linear in m.

7. Extensions

The regular and extraordinary filters presented thus far are intended for

use on non-periodic data sets, such as open-ended curves. For many appli-

cations, we may have data that does not fit this definition; for example,

periodic curves, tensor-product surfaces, or 2D and 3D images. In this sec-

tion, we show how to use the local filters for these kinds of objects.

7.1. Periodic (Closed) Curves

For many applications, boundary-interpolating filters are not desirable. For

closed curves (isomorphic to a circle), we can instead use periodic filters. In

periodic (equivalently closed) curves, the regular filter values are applied to

all samples; there is no concept of a boundary, as the signal F is assumed to

wrap around on itself. For F = {f1, . . . , fm}, we implicitly set fm+x = fx

for x ≥ 1 and fx = fm−x for x < 1. Figure 2 illustrates this wrapping.

1 2 3 m–2 m–1 m

Boundaries

f1 f2 f3 fm-2
fm-1 fm f1 f2fmfm-1

0-1 m+1 m+2

Wrapped Wrapped

Fig. 2. For periodic curves, the left and right boundaries are implicitly connected,
wrapping the sample vector back on itself.

In the matrix form of periodic subdivision, the regular columns of P

will wrap around the top and bottom of the matrix, rather than being

terminated with the special boundary filters in the non-periodic (open) case.
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Consider the matrix corresponding to periodic cubic B-spline subdivision

Pperiodic =




3
4

1
8 0 · · · 0 1

8

1
2

1
2 0 · · · 0 0

...

· · · 1
8

3
4

1
8 0 · · ·

· · · 0 1
2

1
2 0 · · ·

...

1
8 0 · · · 0 1

8
3
4

1
2 0 · · · 0 0 1

2




The remaining matrices A, B, and Q are formed by a similar wrapping of

the rows or columns.

From an implementation perspective, periodic data is easier to work

with because there are no special boundary cases. We need only modify the

indexing of the samples to ensure that the wrapping is done correctly.

7.2. Tensor Product Surfaces

Multiresolution schemes for 1D data, such as the cubic or quadratic B-

splines schemes developed earlier, can be applied to surface patches by a

straightforward extension.

A surface patch is defined by a regular 2-dimensional grid of vertices.

The regularity allows the patch to be split into two arbitrary dimensions,

usually denoted as the u and v directions. Each row aligned along the u

direction is referred to as a v-curve (because the v value is constant), and

vice versa.

To apply a multiresolution filter to the patch, all u and v curves can

be considered as independent curves to which the ordinary multiresolution

algorithms can be applied. For instance, to decompose a grid of vertices,

the reduce-resolution algorithm could be called for all rows in the grid,

and then for all columns in the smaller grid that results from reducing the

resolution of all rows.

As discussed in the previous section, we can interpret a set of point

samples as defining an open (non-periodic) or closed (periodic) curve. With
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a tensor product surface, there are three unique ways to interpret the point

grid.

7.2.1. Open-Open Surfaces

In an open-open tensor product surface, both the u and v curves are con-

sidered to be open curves. Open-open surfaces are isomorphic to a bounded

plane (sheet). See Fig. 3(a).

7.2.2. Open-Closed Surfaces

We can treat a tensor-product surface as a set of open curves in one di-

rection, and a set of closed curves in the other. In this case, the surface is

isomorphic to an uncapped cylinder (see Fig. 3(b)).

7.2.3. Closed-Closed Surfaces

The final configuration of the u and v curves in a tensor product surface

is when both dimensions are closed or periodic. In this configuration, the

surface will be isomorphic to a torus, as shown in Fig. 3(c).

7.3. 2D Images

Conceptually, there is no need to distinguish between tensor product sur-

faces and 2D images. Each is a collection of samples (nD points and intensity

values, respectively) arranged in a regular grid, and linear combinations are

valid operations on each sample type. Multiresolution filters can be applied

to 2D images just as with tensor product surfaces: by treating all rows, and

then all columns, of the image as independent 1D sample vectors.

In practice, however, there are some subtle but important differences

that should be accounted for. In an image, positionality is implied by the

location of a pixel, rather than the content of the pixel. As well, multireso-

lution operations on images are usually employed for filtering purposes, so

having boundary interpolation gives incongruous importance to the image

boundary. Thus our typical approaches to handling boundaries – interpo-

lation or periodicity – make little sense in the image domain.

7.3.1. Symmetric Extension

The wrapping of samples done in the periodic case is a particular case of a

more general approach called symmetric extension. The goal of symmetric
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u

v

u

v

u

v

(a) (b) (c)

Fig. 3. There are three unique isomorphs for a tensor product surface, depending on

how the u and v curves are interpreted: (a) open-open (bounded plane); (b) open-closed
(uncapped cylinder); (c) closed-closed (torus).

extension is to avoid special boundary case evaluations by filling in sensible

values for samples outside of the bounds of the real samples.

While wrapping may make sense for tileable images, in general it will

not give a logical result because mixing the intensity values of the left and

the right boundaries of the image is not reasonable. Due to the implied

positionality of samples in images, the most natural “neighbor” sample

when none exists would be the mirrored neighbor from the other side12.

More formally, if F = {f1, . . . , fm}, then we could set fx<1 = f1+(1−x) to

mirror about the lower boundary, and similarly set fx>m = fm−(x−m). See

Fig. 4(top) for a diagrammatic representation of this type of symmetric

extension, referred to as Type A.

An alternative approach is to mirror exactly about the boundary, which

would produce duplicate entries of the first and last samples f1 and fm. In

particular, we set fx<1 = f1−x to mirror about the lower boundary, and

similarly set fx>m = fm−(x−m)+1. This is known as Type B symmetric

extension; see the bottom image of Fig. 4.

The appropriate choice of symmetric extension depends on the mul-

tiresolution scheme. Consider cubic B-spline, with the filters given in (3.3).
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1 2 3 m–2 m–1 m

Boundaries

f1 f2 f3 fm-2
fm-1 fm fm-1 fm-2f2f3

Extension Extension

0-1 m+1 m+2

1 2 3 m–2 m–1 m

Boundaries

f1 f2 f3 fm-2
fm-1 fm fm fm-1f1f2

Extension Extension

0-1 m+1 m+2

Fig. 4. Symmetric extension mirrors samples near the boundary. Top: mirrored about
the first and last samples (Type A); Bottom: mirrored about the boundary (Type B).

Cubic B-spline is known as a primal or edge-split scheme, meaning that

each coarse point and coarse edge has a corresponding fine point. For such

schemes, Type A symmetric extension can be used for decomposing F . For

reconstruction, the correct interpretation is achieved by using Type A for

extending C and Type B for extending D (see the shaded entries in Fig. 5).

1 2 3

f1 f2 f3f2f3

0-1

c1

F f4

C+D

f4

c2c2 d1d1 d2

4-2

1 2 30-1 4

Boundary

Mirror axis

(a) (b)

Fig. 5. Symettric extension for cubic B-spline. Left: Type A symmetric extension can
be used when interpreting the samples in both decomposition and reconstruction, but
Type B is required to interpret the details. Right: this is because the desired mirror axis
is the same in both cases.

The Chaikin scheme is classified as a dual or vertex-split scheme, be-
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cause each coarse sample is split into two fine samples, and there is no

unambiguous relationship between points at each level. To use symmetric

extension on such a scheme, we need both Type A and Type B. During

decomposition, it is more natural to use Type B because the coarse vertex

corresponding to the first fine vertex is split into a left and right compo-

nent; see Fig. 6(b). During reconstruction, however, Type A extension for

C and Type B extension for D provide the proper relationships.

1 2 3

f1 f2 f3f1f2

0-1

c1

F f3

C+D

f4

c2c2 d1d1 d2

4-2

1 2 30-1 4

Boundary Mirror axis

(a) (b)

Fig. 6. Symettric extension for Chaikin multiresolution. Left: Type A and Type B
symmetric extension are used in reconstruction (for the samples C and the details D,
respectively), while Type B is used to decompose F . Right: this is because the desired
mirror axis is different in each process.

7.4. 3D Images

Multiresolution techniques for 3D images, such as volumetric data, natu-

rally follow from 2D images. Consider the 3D image to have three axes: u,

v, and w. Each w “curve” is actually an ordered set of samples (Fig. 7).

To apply multiresolution techniques to 3D image data, we can use the

2D image approach for each “slice” along the w direction, followed by each

u-v curve aligned with w (highlighted in grey in Fig. 7).

As an example, consider a 3D image to be a set of still images from a

video sequence. If the w axis quantifies time, then applying subdivision to

each “slice” would smooth the image and subdividing each curve aligned

with w would compute intermediate frames in the sequence. Conversely,

decomposing a set of still images would reduce the resolution of each frame,

while also removing every other frame.
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u

v

w

Fig. 7. Multiresolution techniques for 3D images are similar to those for 2D images:
the appropriate filter is applied along each dimension independently.

8. Results, Examples and Applications

Multiresolution provides a tool for decomposing data into a hierarchy

of components with different scales or resolutions. This hierarchy can

be used for noise removal, compression, synthesizing and recognition of

the objects13,18,21. In particular, multiresolution of smooth scalings and

wavelets can nicely be used for smooth objects. Here we show some exam-

ples and applications of the quadratic and cubic B-spline multiresolution

filters. We discuss iris synthesis and real-time visualization of volumetric

data in detail.

8.1. Example Applications

Curves by example. We can use multiresolution filters on curves, such as

those representing artistic silhouettes and line hand-gesture styles. Using

analysis filters, we can extract styles (based on the characteristic details)

from the curves, and these styles can then be applied to new base curves.

Figure 8 shows an application of this, based on the interpolating quadratic

B-spline wavelets from Sec. 5.3. This example illustrates the use of mul-

tiresolution for the common biometric task of feature extraction.

Removing noise from Curves. If we reconstruct a data set without

using any (or using only a small portion) of the details, a simple de-noising

is achieved as demonstrated in Fig. 9. In this example the cubic B-Spline

filters of Sec. 5.1 have been used.

Image Compression. After decomposing an image to a low-resolution

approximation and corresponding details Di, we can lossily compress the
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(a) (b) (c) (d)

Fig. 8. Capturing stroke styles: (a) the original curve. (b) the curve from (a), recon-
structed without Di. (c) A new base curve. (d) The reconstructed curve with the (c) as
the base curve and details Di from (a).

Fig. 9. Left: original silhouette from an inner-ear mesh. Right: the silhouette is de-
noised after decomposing twice with cubic B-spline filters and then reconstructing with
partial details.

image by removing small magnitude details. This is one major step in cur-

rent image compression techniques such as JPEG. We have compared our

filters with Haar filters. All of our filters reported in Sec. 4 and (3.3) have

better compression rates. We have also compared our filters with more suc-

cessful image compression filters, D9/7 and D4, that have been used in

JPEG200011. Although our local filters are based on smooth scalings and

wavelets (in contrast to D9/7 and D4), the resulting compression rate is

comparable; see Fig. 10. In this comparison, we have removed the same

amount of the details and compared the PSNR of the reconstructed im-
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ages; higher PSNR indicates better detail retention. In particular, the wide

quadratic B-spline filters given in (4.3) perform very close to the D9/7 filter.

Fig. 10. Comparison of quadratic B-spline wavelets image compression with established
techniques: (a) a sample image containing high-frequency data; (b) the resulting com-
pression rates for various filters.

Terrain by Example. Terrain is typically represented with a height map

(a regular grid of elevation data), which directly maps to an open-open

tensor-product surface. Multiresolution helps us to use an existing terrain

to synthesize new terrain by transferring the characteristic details4. For

terrain synthesis, we can capture the details of a high-resolution target

terrain and use them for a smooth base terrain to add realistic and more

predictable noise. Figure 11 shows the application of the quadratic filters

of (4.2) to terrain synthesis.

8.2. Iris Synthesis

Biometrics conventionally involves the analysis of biometric data for iden-

tification purposes. Due to logistical and privacy issues with collecting and

organizing large amounts of biometric data, a new direction of biometric

research concentrates on the synthesis of biometric information. One of the
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Fig. 11. Left: A smooth base terrain. Middle: a model terrain with high-frequency
details. Right: the synthesized terrain has low-frequency characteristics of the base terrain
and high-frequency traits of the model terrain.

primary goals of the synthesis of biometric data is to provide databases upon

which biometric algorithms can be tested25. Along this direction, Wecker

et al. employ the quadratic B-spline filters of (4.2) to augment existing

iris databases with synthesized iris images22. Looking at any iris image,

it is apparent that most of its characteristics are made of high frequency

data. In addition, underlying sweep structures seems to be smooth (circular

curves). Therefore, using smooth multiresolution filters for capturing these

details is a promising technique. In this method, extracted details from dif-

ferent irises are combined to generate new irises. In fact, because we just

combine portions of real irises, realistic iris are obtained. Because of the

circular structure of iris, it is better to transform the iris images into polar

coordinates, as shown in Fig. 12. For a 256x256 iris image, four levels of

decomposition was found to produce good experimental results. Given a

database of N input images, we decompose each of these images into their

five components (four levels of details, and the very coarse approximation).

Therefore, when synthesizing an iris image, we have N choices available

for each of the necessary components which allows us to create a total of

N5 possible combinations. The original N iris images are included in these

new combinations, as they are recreated when each of the selected compo-

nents is from the same iris image. Clearly, given even a reasonable small

database to start with, this method can generate an exponential increase

in size. Some of these combinations may not result in good irises and extra

conditions should also be taken to account22.

Figure 13 shows a sample iris database, and Fig. 14 presents some of

the iris images synthesized from the originals.
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Fig. 12. A polar transform is used to unwrap the iris image.

Fig. 13. A sample database of iris images.

8.3. Real-Time Contextual Close-up of Volumetric Data

Medical image data sets can be very large. For instance, a CT scan of the

head can have spatial dimensions up to 512x512x256 voxels, while an MRI

dataset can be as large as 2563 voxels. Although many graphics display

devices are now equipped with enough memory to store the entire volume,

few commodity devices are actually capable of rendering the full resolution

volume with the desired quality at interactive rates. Taerum et al.20 propose

a method based on B-spline filters that allow the data to be viewed and

manipulated in real-time, while still allowing for full resolution viewing

and detailed high resolution exploration of the data. In this method, the

three different resolutions of the data-set are used. The lowest resolution is

used during user interaction to maintain real-time feedback (Fig. 15). The
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Fig. 14. Some synthetic iris images generated by combining elements of the original iris
images from Fig. 13.

medium resolution is considered for presenting the overall context, while

a “super-resolution” is used when rendering the contents of a user-defined

lens, as demonstrated in Fig. 16. The method is based on the representation

of volumetric data set as described in Sec. 7.4. Both quadratic (4.2) and

cubic B-spline filters (3.3) have been used in this work.

9. Conclusion

We have presented several local multiresolution filters that can be employed

in biometric applications involving discrete samplings of smooth data. Un-

like Haar wavelets, these filters satisfy either the first or second level of

smoothness. The biorthogonal construction also produces compact filters

than semiorthogonal constructions, leading to more efficient algorithms.
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Fig. 15. Rendering CT scan data at multiple resolutions allows for real-time interactions
while preserving visual clarity. Left : the lowest resolution is used for real-time interaction.
Right : a medium resolution is shown when the data is not being manipulated.

Fig. 16. The highest resolution of the CT scan data is used for generating contextual
close-up views of the data.

We also consider several situations for the boundary, including interpo-

lating and symmetric extension. With these considerations, the filters can

be employed on many types of data, such as open and closed curves and

surface patches, images, and volumes.

Finally, we discussed several applications of these filters to biometric-

related problems, such as de-noising, feature (characteristic) extraction and

transfer, data synthesis, and visualization.
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