
Multiresolutions Numerically from Subdivisions

Richard Bartelsa, Faramarz Samavatib

aComputer Graphics Laboratory, David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

bComputer Science Department, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Abstract

In previous work we introduced a construction to produce multiresolutions from given subdivisions.
A portion of that construction required solving bilinear equations using a symbolic algebra system.
Here we replace the bilinear equations with a pair of linear equation systems, resulting in a completely
numerical construction. Diagrammatic tools provide assistance in carrying this out. The construction
is shown for an example of univariate subdivision. The results for a bivariate subdivision are given to
illustrate the construction’s ability to handle multivariate meshes, as well as special points, without
requiring any modification of approach. The construction usually results in analysis and reconstruction
filters that are finite, since it seeks each filter locally for the neighborhood of the mesh to which it
applies. The use of a set of filters constructed in this way is compared with filters based on spline
wavelets for image compression to show that the construction can yield satisfactory results.
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1. Introduction

Multiresolution methods receive important
mention in most reference works on graphics and
computer-aided geometric design; e.g., [1, 2, 3].
This paper derives multiresolutions directly from
subdivisions defined on mesh data. It improves
upon [4], and uses the diagrammatic tools of [5].
The approach in [4] required solving a system of
bilinear equations using symbolic algebra. The
present work replaces this with a construction
that is entirely numerical. This is done by solving
two linear systems of the form

xG = ix

with given matrices G for unknowns x, where ix
is an appropriate portion of a row of the iden-
tity, and obtaining a nontrivial solution, y, of one
linear system of the form

My = 0

for a given matrix M. These can be easily solved
by appealing to the Singular Value Decomposi-
tion [6], whose implementation is included in most
modern, numerical libraries for linear systems;
e.g. [7].

To keep the presentation short by avoiding var-
ious complications, we shall be considering here
only finite meshes and subdivisions consistent
with tessellation of the mesh domain.

Section 2 places the construction in context.
Section 3 reviews multiresolution matrices. Sec-
tion 4 presents the construction’s computations
in outline. Section 5 reviews the use of dia-
grams in the construction. Section 6 fills in de-
tails, illustrated using a regular, univariate sub-
division. Section 7 gives an example of bivariate
subdivision on regular triangular meshes. In Sec-
tion 8, as an indication that the construction has
some merit, we make a few comparisons between
the multiresolution derived in Section 6 and a
multiresolution based on semiorthogonal B-spline
wavelets. Section 9 will sum up our results.
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2. Context and Literature

Using MathSciNet, the American Mathemat-
ical Society’s search engine, to locate the word
multiresolution in titles yields, as of this writing,
518 hits. Using the Association for Computing
Machinery’s search engine in a like manner cur-
rently yields 734 hits. A comprehensive review
in the short space of a single paper has become
impossible. Nevertheless, we can touch on two ap-
proaches for multiresolution: function-based mul-
tiresolution and data-based multiresolution. Our
construction falls in the latter approach.

In the former approach to multiresolution, one
function space F is the direct sum of a subspace
C and its complement D, and these give a single
stage in a nested chain of spaces of the same genre
(e.g. all in L2). The main goal is that of approx-
imating functions of F by functions of C and ex-
pressing the approximation error using functions
of D. The approximation and the error are char-
acterized by an inner product on the spaces, and
the approximation and error expressions are facil-
itated by the judicious choice of bases {φF}, {φC}
and {ψD} for the spaces of F, C, and D respec-
tively. The goal is to have mappings pC and qD
that will reconstruct any f ∈ F from its approxi-
mation c ∈ C together with its error complement
d ∈ D

pC : c ⊕ qD : d→ f (1)

to have mappings aF and bF that will act in reverse

aF : f → c

bF : f → d
(2)

and to have the form of these mappings be par-
ticularly elegant in terms of the chosen bases. An
aspect of this elegance is that the mappings can
be realized as simple decomposition and recon-
struction filters that apply to the coefficients of
the representations of f , c, and d in terms of the
bases. That elegance is achieved by the properties
of orthogonality that can be engineered for these
bases with respect to the genre of space they oc-
cupy. Obvious examples here would be provided
by the work of Daubechies [8], Gori and Pitolli

[9], Dahmen and Micchelli [10], Cohen and Dyn
[11], or Chui [12, 13].

In the latter approach to multiresolution, the
data is paramount, and it is usually encountered
in the form of k-dimensional meshes. One is con-
fronted with a coarse mesh, c, having some con-
nectivity, C, and a subdivision process, pC, that
expands it into a fine mesh, f , having a connec-
tivity, F , that is related to C in some sense. In the
literature that relationship is clarified with vari-
ous definitions of subdivision connectivity. The
construction of a multiresolution consists of re-
versing this process by finding a mapping aF that
will deliver an approximation c suitable for con-
nectivity C from any f of connectivity F , even if
the fine mesh f was not produced by subdivision.
To cover the case in which the subdivision of the
resulting c only produces the mesh f corrupted
by a mesh of errors r of F−connectivity, another
pair of processes are desired: bF that will extract
error information d that may be associated with
the “difference connectivity” F \C, and qF\C that
will map that error information back to r. In
other words, (1) and (2) reappear as (3) and (4)

pC : c ⊕ qF\C : d→ f (F−connected) (3)

aF : f → c (C−connected)

bF : f → d (F \ C−connected)
(4)

As in the function-based orientation, the goal is
to express the mappings in the form of decom-
position and reconstruction filters. But the focus
is on data mappings. If any functions or func-
tion spaces underlie the meshes, they might be
ignored, or they might be invoked secondarily as
a means of constructing the mappings, or they
might be replaced by spaces constructed for the
single purpose of delivering convenient filters for
the meshes in question.

Some of the work in data-based multiresolu-
tion has been carried out by purely procedural
means; that is, the processes of subdivision and
approximation are defined in terms of operations
on the mesh (e.g. vertex insertion or edge col-
lapse), while the error processes appear as infor-
mation retained in data structures. Examples of
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this approach would include the progressive mesh
methods due to Hoppe [14], the mesh decimation
of Schroeder, et. al. [15], and the kite trees of Xu,
et. al. [16]. This type of data-based approach will
not concern us here.

Some of the data-based work has been carried
out by establishing ad-hoc function spaces to un-
derlie the mesh data (e.g. piecewise linear func-
tions on the facets of the mesh) so that the tools
of the functional approach can be used to con-
struct the mappings of (3) and (4). This might
be done, even when pre-existing function spaces
exist, if the ad-hoc spaces are easier to deal with.
The landmark work of Lounsbery, DeRose, and
Warren [17] would be a good example of the ad-
hoc space approach.

Another data-based approach makes use of lift-
ing, due to Sweldens [18, 19, 20, 21]. In lifting,
the multiresolution processes of aF , bF and qF\C,
and even pC, can be bootstrapped directly from
the data. This may be done without appealing to
any function-space tools, if desired, or one may
guide the bootstrap process towards filling some
function-space requirement (e.g. zero moments
for {ψD}). Lifting can also be used to modify
an existing multiresolution into one having ad-
ditional properties. Lifting appears as a tool in
a number of works; e.g., Schröder and Sweldens
[22], Qin [23, 24], and Bertram [25, 26, 27], and
Olsen, et. al. [28].

Our previous work [4, 5], though firmly in the
data-oriented camp, stands somewhat apart from
any described above, although it has a spiritual
affinity with the matrix approaches employed in
lifting. Both can achieve their ends by purely ma-
trix means without appealing to function spaces.
However, lifting is capable of creating the sub-
division, pC, along with the other mappings aF ,
bF , and qF\C, whereas our construction never at-
tempts to do this. We always start with a pre-
existing pC. Lifting allows for a wide range of
strategies in developing the multiresolution map-
pings, although the strategies are relatively gen-
eral, flexible, even vague, in their description.
Our construction, on the other hand, concentrates
specifically on data approximation as its driving
force; i.e., minimizing ‖r‖ = ‖f − (pC : c) ‖ with

respect to some norm ‖·‖. Indeed, if the goal is to
determine c to be as close as possible, in some ap-
proximative sense, to a mesh that would produce
f under the given subdivision pC, then lifting is
not a particularly convenient strategy. The goal
in our construction is to begin with a given pC and
its associated subdivision connectivity {C,F}, to
completely ignore the use of any possible under-
lying function-space tools, to construct aF as a
form of data approximation designed upon the
given pC, and to construct qF\C and bF in strict
consequence for representing the approximation
error. The construction is carried out with the in-
tention of producing finite decomposition and re-
construction filters, where possible, and satisfying
biorthogonality relationships. It offers a construc-
tive approach that may be carried out unchanged
on meshes of any dimensionality. The intent is to
start with works that introduce a particular sub-
division, such as Stam and Loop [29], Stam [30],
Loop [31], Doo [32], Dyn, et. al., [33, 34] or survey
a selection of subdivisions, such as Ma [35], and
to end with multiresolutions having finite filters
that incorporate the given subdivisions.

Four important uses for multiresolutions have
historically been: (1) as a means of displaying ge-
ometry at various scales and distances; e.g., as in
Certain, et. al., [36]; (2) as a means of support-
ing multi-level editing; e.g., as in Kobbelt, et. al.,
[37], Zorin, et. al., [38], Finklestein and Salesin
[39]; (3) as a means of analyzing signals to local-
ize components by time and frequency; e.g., as is
discussed in the book by Strang and Nguyen [40],
and (4) to provide a means of compressing data,
usually images or audio and video streams, an in-
troduction for which can be found in the book by
Stollnitz, et al. [2]

3. Underlying Matrices

We can revisit equations (3) and (4) in matrix
terms. In a subdivision, the n points c of a coarse
mesh are mapped into the m > n points f of a fine
mesh, by the m×n matrix-vector transformation

Pc→ f (5)
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If the fine points f are given arbitrarily, not
mapped from points c, then it is to be expected
that

Pc + r→ f (6)

for any coarse mesh c, with a residual r that would
depend on f and the choice of c. A single stage
of a multiresolution involving the subdivision (5)
seeks to determine a good approximation c from
f in the form

Af → c (7)

where A is n × m. The measure of goodness is
that that ‖r‖ be small and r can be derived from
f in the form

Bf → d (8)

so that

Qd→ r (9)

The matrix Q is m × (m − n) and the matrix B
is, correspondingly, (m− n)×m.

As a result, (7) and (8) together provide a de-
composition of f while

Pc + Qd→ f (10)

provides a reconstruction, and together the de-
composition and reconstruction comprise a stage
of the multiresolution. Equations (7), (8), and
(10) represent (3) and (4) re-phrased, but with-
out any connectivity information. The rows of P
and Q act as the reconstruction filters, and the
rows of A and B act as the decomposition (or
analysis) filters, as they are usually presented in
the literature.

Equations (7), (8), (9), and (10) imply that the
matrices A and B form the inverse of P and Q,
so that together they satisfy the biorthogonality
relationships A

B

 [ P Q
]

=

 I O

O I

 (11)

and, consequently,

[
P Q

]  A

B

 = I (12)

Conversely, if (11) holds, we have one stage of a
multiresolution: (7), (8), and (10).

4. Construction Outline

Our earlier version of the construction, which
used symbolic algebra, is covered in detail in [4],
and we have used successfully it for a number of
multiresolutions for 1D, 2D, and 3D data; see [41]
for examples, applications, and further references.

In this paper we proceed as follows:

1. Obtain each row a separately for the matrix
A to form a left inverse of P; that is, AP = I,
and a is chosen so that the point c obtained as
af → c is a least-squares approximation from
the components of f confined to a neighbor-
hood.

2. Obtain each column q separately for Q to be
in the nullspace of A. Each q will be chosen
to have nonzeros confined to a neighborhood.

3. Obtain each row t separately of a matrix T
to form a left inverse of Q; that is, TQ = I.
Each t is chosen to have nonzeros confined to
a neighborhood.

4. Obtain each column of B by applying an ap-
propriate submatrix of T to the correspond-
ing nonzero entries in the corresponding col-
umn of I−PA.

All steps can be carried out numerically, and the
justification comes from (12) by the following

QB = I−PA
TQ = I

⇒ B = T (I−PA)
(13)

Since the entire construction is numerically based,
this opens the possibility of implementing the
construction in code for use dynamically, on the
fly, for the input of a variety of subdivisions and
meshes.

Each row a of A will be associated with one
of the nodes of C. Most of the elements of each
row a of A will be zero, and the nonzero elements
will be based on the structure of P. They corre-
spond to the components of f in an F -connectivity
neighborhood, where the neighborhood takes into
account the points of f whose positions are in-
fluenced by the coarse point c associated with a.
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Everything is arranged to produce a least-squares
approximation to that point c from those compo-
nents of f . It is only necessary to solve

asubvec ×Psubmtx = isubvec (14)

for the unknown nonzeros in asubvec, where isubvec
is the corresponding row portion of the corre-
sponding columns of the identity matrix. The re-
lationship between (14) and least-squares fitting
is covered extensively in [4] and [42].

Each column, q of Q is found individually in
Step 2 of our construction. Only a subvector of
q will have nonzero unknowns, corresponding a
neighborhood in the F -connectivity; the column
q will be associated with a fine point in the F \
C connectivity, and the unknowns are found by
solving

Asubmtx × qsubvec = 0 (15)

In order that the solution be nontrivial, these
equations are solved as a nullspace problem rather
than as a system of linear equations

Step 3 of our construction mimics Step 1, using
connectivity to find each row, t, of T by solving

tsubvec ×Qsubmtx = isubvec (16)

for the unknowns in tsubvec. Unlike Step 1, where
the rows were associated with points of C, these
rows are associated with points of F \ C.

Step 4 of our construction assembles the final
matrix B by multiplying each row of T onto each
column of I−PA. The structure of the rows and
columns results in many of such products being
trivially zero, for which no computation is needed.

The three linear problems (14), (15), and (16)
can all be solved using the Singular Value Decom-
positions (SVD) [6] of the respective matrices in
the problems. Any k×` matrix M can be factored
into

M = USVT

where U is a k×k orthogonal matrix (UTU = I),
V is an `× ` orthogonal matrix, and S is a k × `
matrix whose diagonal entries (si,i = σi, i =
1, . . . ,min(k, `)) are the square roots of the eigen-
values of MTM (known as the singular values of

M) and all of whose other entries are zero. Fur-
ther, if r is the rank of M, then σr+1, . . . , σk = 0;
that is, M can be put in the form

[U1 U2]


σ1

. . . O

σr

0 0


 VT

1

VT
2



U1 represents the first r columns of U and V1 the
first r columns of V. This is the SVD of M.

Equations of the form

xM = y

are solved for x as

y [V1 V2]



1
σ1

. . . O
1
σr

0 0



T  UT
1

UT
2



Moreover, for nullspace problems,

Mv = 0

the columns of the submatrix of V2 provide a full,
orthonormal basis for the nullspace of M.

The SVD is convenient in being the only single
matrix decomposition that can solve both equa-
tions and nullspace problems and do so in a nu-
merically accurate and stable manner. For exten-
sive details on the theory and use of the SVD, see
[6]. For an example of its implementation in a nu-
merical subroutine library, see [7]. For its use in
analyzing the approximations c produced in Step
1, see [42].

5. Structure and Connectivity

The structure of the subdivision matrices and
the connectivities of the meshes play an important
role in the construction. This is easiest to discuss
when the subdivision connectivity corresponds to
tessellation of the mesh domain. Figure 1 shows
a coarse tessellation of a portion of a domain, and
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Figure 1: Coarse Tessellation Mesh

Figure 2 shows that portion divided further into
a fine tessellation. Many, but not all, multireso-
lutions conform to tessellation connectivity. Our
construction has been used on other forms of sub-
division; e.g. [43], but we confine ourselves to
tessellation here for simplicity.

The geometric position of the points in the
mesh are not revealed in such figures, but to each
circle-node in Figure 1 there is associated one
of the points c of c, and to each circle-node or
square-node in Figure 2 there is associated one of
the points f of f . We can connect these figures
with the matrix P in the following way. Each

Figure 2: Fine Tessellation Mesh

node of Figure 1, being associated with one geo-

metric point cj, can be connected to the column
pj of P whose elements multiply cj

Pc = · · ·+ pjcj + · · · → f

Each node of Figure 2, being associated with one
geometric point fi, can be connected to the row
pi of P whose elements produce fi

pi · c =
∑
j

pi,jcj → fi

There is one node of Figure 1 for each column of
P, and consequently all nodes of Figure 1 together
can be put in one-to-one correspondence with the
entries in any chosen row of P. There is one node
of Figure 2 for each row of P, and consequently all
nodes of Figure 2 together can be put in one-to-
one correspondence with the entries in any chosen
column of P.

To be complete, the diagrams we use should
employ both coarse connectivity figures such as
Figure 1 and the corresponding fine figures such
as Figure 2, and for more general subdivision con-
nectivities this is done. However, with connec-
tivities coming from tessellation, it is possible to
economize. Figure 2 clearly has Figure 1 embed-
ded within it, and we can make do with just Fig-
ure 2; e.g., writing entries of a row of P simply on
the circle-nodes of Figure 2 or writing the entries
of a column of P on both the square-nodes and
circle-nodes of that figure.

Figure 3: Loop P Row Diagram
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To illustrate, we will use the P for the sub-
division due to Loop [31], which is based upon
tessellation connectivity. Figure 3, for example,

Figure 4: Loop P Column Diagram

shows the entries of the row of P that is con-
nected to the shaded circle-node, which is acting
as a fine-mesh node associated with a correspond-
ing point f• of f . Figure 4 shows the entries of
the column of P that is connected to the shaded
circle-node, which is now acting as a coarse-mesh

Figure 5: Loop A Row Diagram

node associated with a corresponding point c• of
c. In these figures wn, for any positive integer
n, stands for 5

8
− (3

8
+ 1

4
cos(2π

n
))2. Figure 3 is,

in fact, an example of the kind of mask that is
generally found in references to Loop subdivision,

and the appearance of such masks, having nodes
representing associations with coarse or fine mesh
points depending on context, is quite common in
the subdivision literature.

Figure 6: Loop Q Column Diagram

In [5] we introduced the terms row diagram and
column diagram on the one hand to be able to
name diagrams more informatively as to their role
in the construction and on the other hand to avoid
confusion the common term mask. In the litera-
ture a mask is typically a depiction of the row of
a matrix, and we need depictions of columns as
well.

Similar considerations, presented in [5], provide
the connection between any row of A and the
circle-nodes, any row of B and the square nodes,
or any column of Q and the square-nodes. The
diagrams of Figure 5, Figure 6, and Figure 7 show
examples that are consistent with Figure 4 in the
sense of (11) and (12).

In short: Figure 2 can present all the impor-
tant connectivities: C, F , and F \ C. The circles
alone, together with the solid edges, provide C.
The circles and squares, together with the solid
and dashed edges combined, give F . The squares
without the circles, and all edges necessary to join
up the squares, show F \ C.

This economization comes in particularly
handy in formulating the computations needed
for the construction, all of which are based on
matrix-row times matrix-column products. With
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Figure 7: Loop B Row Diagram

two appropriate diagrams juxtaposed on a single
figure, the row correspondence of the left-hand
matrix in a product and the column correspon-
dence of the right-hand matrix in a product, it
is possible to determine easily what the outcome
of the row-column multiplication will be. Simply
multiply the corresponding left-hand and right-
hand entries appearing in common on any node,
and sum all resulting products. The economiza-
tion also governs the steps of the construction: as-
sign one P column and one A row to each circle-
node; assign one Q column and one B row to
each square-node; equations (11) and (12) dictate
that the A-P and B-Q interactions on common
nodes produce 1, and all other interactions im-
plied by those equations produce 0. See [5] for
more details. We shall be using these conventions
in Section 6.

6. Multiresolution Construction

Here we will present our construction by car-
rying it completely through using the 1D (uni-
variate) subdivision displayed in Figure 8 as an
illustrative example. C is shown at the top, with
the associated geometric points c indicated along-
side. F is in the middle, with associated f indi-
cated, shown with the affine combinations that
produce the points associated with F \ C (the
squares: [1

2
, 1

2
]) and the remaining points (the

circles: [1
8
, 3

4
, 1

8
]). The corresponding P column

Figure 8: A 1D Subdivision

diagram for cj as its connected “home” node is
shown on a separate copy of F at the bottom.

While the use of diagrams for a simple, 1-
dimensional subdivision is over-kill, and while the
construction in this case is almost trivial, and
while 1-dimensional meshes may not seem very
interesting, we are hoping that the details to this
simple example make our construction clear in
general.

6.1. The Reversal Approximation A

Figure 9 expands Figure 8 to what is neces-
sary for deriving (14), the problem to find the
nonzero elements in the row of A represented by
the diagram on the copy of F at the top of the
figure. The row of A is the one whose connected
“home” node is the darkened point corresponding
to cj, and its (as yet unknown) nonzero column
elements are shown on their corresponding nodes
of F . The A row diagram of Figure 8 has width 3.
(The width of a diagram is the maximum number
of edges in any shortest path from the diagram’s
home node to any of its labeled nodes.) Each
successive row of A will be similarly connected
to each successive circle-node and will have some
chosen width; the width of any A row diagram
can be chosen independently of the width of any
of the other A row diagrams, though in a regular
setting such as this there is no reason nor need to
do that.

Every nearby P column diagram is shown on
the repetitions of F drawn below the A row di-
agram. The row-diagram × column-diagram in-
teractions represented by Figure 9 are the sums
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Figure 9: A Row Interaction with P Columns

of the products of the numeric labels on corre-
sponding mesh points. These amount to a vector
× matrix product of the form mentioned in (14).
The results for Figure 9 are shown in (17).

[ai−3 ai−2 ai−1 ai ai+1 ai+2 ai+3]×

×



1
2

1
2

0 0 0
1
8

3
4

1
8

0 0

0 1
2

1
2

0 0

0 1
8

3
4

1
8

0

0 0 1
2

1
2

0

0 0 1
8

3
4

1
8

0 0 0 1
2

1
2


(17)

To obtain the corresponding row of the iden-
tity, the row-diagram × column-diagram interac-
tion involving the diagrams with the same home
node must be 1 and all other interactions must be
zero; that is, the vector isubvec in (14) corresponds
to [ 0 0 1 0 0 ] for (17).

This is how the entire construction proceeds:
diagram interactions, with one diagram having
unknown labels, lead to matrix problems from
which the unknowns are determined. Solving (17)

for the a-values using [ 0 0 1 0 0 ] as a right-hand
side yields[

23

196
,−23

49
,

9

28
,
52

49
,

9

28
,−23

49
,

23

196

]
It is usual to select connectivity neighborhoods

incrementally by width. For A we would begin
with a neighborhood of width 0 (the point la-
beled ai by itself) and look at the resulting Psubmtx

that interacts with this lone nonzero. Then we
repeat for a neighborhood of width 1 We may
stop at the first width for which the corresponding
Psubmtx has full rank and at least as many rows as
columns. We may also continue past this width to
make a wider approximation to the coarse point
being sought.

The construction starts with a width that de-
livers a least-squares approximation of the point
cj from fine points in the smallest neighborhood
about fi for which the system (14) has a matrix
(17) that is overdetermined and of full rank, and
it runs incrementally up to the the classical least-
squares approximation of the point cj from the
entire vector of data f , for which the matrix of
(17) is the entire matrix P.

The best width for a subdivision will depend
not only on the subdivision, but also on the ap-
plication to which the multiresolution will be ap-
plied. The use of the multiresolution for data
compression, for example, might require a differ-
ent width from a multiresolution used for multi-
level model editing. The width sets the amount of
data from f used in making a local least-squares
approximation to cj. How much is optimal for
any application is an open research question; how-
ever, our paper [42] may be of use, since it of-
fers a way of comparing how the approximations
vary with width and how they compare to classi-
cal least-squares. Another approach to analyzing
the issue is to note that local least-squares ap-
proximations amount to discrete-data versions of
quasi-interpolation; e.g. see [44].

For the subdivision in question, we could stop
successfully at width 1, but we have chosen to go
on to width 3 for this example of our construction.
In Section 8 we also use results for width 5 (the
points labeled ai−5, . . . , ai+5).
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Figure 10: Multiresolution: Adding A

The incremental process will certainly termi-
nate, if not before, then when the width of the
A row corresponds to the length of a column of
P; that is, the entire finite mesh of fine points
is used for the approximation, in which case the
“subproblem” (14) reduces to a full, least-squares
approximation of c by f with design matrix P.

In this case, A =
(
PTP

)−1
PT . Subdivisions are

assumed to produce full-rank matrices P, so the
process ends here trivially. Width 3 will suit the
purposes of illustration, and the result is shown
in Figure 10.

6.2. The Residual Representation Q

Here the construction we are presenting im-
proves upon the one found in [4]. Rather than
finding Q and B together so as to satisfy

QB = I

AQ = O

BP = O

Q is first found independently and separately, fol-
lowed by the B.

Each column of Q is to be found individually
with the goal of establishing AQ = O. Figure 11
shows the A-row × Q-column interaction with
the A row diagram we found in Section 6.1 when
the width of the Q column diagram is 3. The Q
column diagram is shown at the top with its con-
nected “home” node darkened. This width would
be chosen incrementally, stopping at a width for
which the matrix derived from the interaction;
e.g., the submatrix of A shown in (18), has a non-
trivial nullspace.

Figure 11: Interactions for A and Q



−23
49

23
196

0 0 0 0 0
52
49

9
28
−23

49
23
196

0 0 0

−23
49

9
28
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×



q`−3

q`−2

q`−1

q`
q`+1

q`+2

q`+3


=



0

0

0

0

0

0

0


(18)

The process eventually ends, since a width cor-
responding to all the nodes in F would interact
with all of A, which has a nontrivial nullspace;
i.e.,

[
AT (AAT )−1A− I

]
. Equation (18) has the

form given in (15).
The solution process for (18) will yield one or

more q vectors which will together provide an or-
thonormal basis for the nullspace of the A sub-
matrix. Any one of these basis vectors can be
taken to provide the q-values unless the basis vec-
tor is linearly dependent on the q vectors that
have been found for prior subproblems. This must
be checked, though the check is often trivially ac-
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Figure 12: Multiresolution: Adding Q

complished by looking at the nonzero structure of
the q vectors alone. If dependence is found, the
width of the Q diagram must be increased.

Figure 13: Interactions for T and Q

For this example, however, the only one basis
vector is found, and it is a suitable solution. It is
shown in Figure 12, where

γ0 = − 104
2471

√
353

γ1 = 9
706

√
353

γ2 = 46
2471

√
353

γ3 = 23
4942

√
353

6.3. The Residual Analysis B

Finally, each row of B is to be found. This
is done via the intermediate step of finding a
left inverse T for Q, and then obtaining B from

T(I−PA). Determining T from Q mimics the
determination of A from P. Both determine left
inverses of a known matrix row-by-row.

The appropriate diagrams for rows of T having
width 2 is shown in Figure 13. The interaction
of the column diagram of Q and the row diagram
of T with the same home node will be 1, and the
interaction of all other column diagrams of Q with
the row diagram of T will be zero. That is, the
right-hand vector for (19) will be [ 0 0 1 0 0 ].

We may proceed by incrementally investigating
successive widths for T row diagrams. The first
width that yields a full-rank Qsubmtx as in (19)
may be chosen.[

tr−2 tr−1 tr tr+1 tr+2

]

×



γ2 γ0 γ2 0 0

γ3 γ1 γ1 γ3 0

0 γ2 γ0 γ2 0

0 γ3 γ1 γ1 γ3

0 0 γ2 γ0 γ2


(19)

Again, it may be that the incremental process ter-
minates only when the full mesh is involved, in

which case T =
(
QTQ

)−1
QT .

The solution to (19) is given in (20).

tr−2 = tr+2 = − 1
112

√
353

tr−1 = tr+1 = 1
28

√
353

tr = − 3
56

√
353

(20)

A local portion of I−PA is shown in (21).
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(21)
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The portion of B in (22) corresponds to the
portion of I−PA shown in (21).

1
28
− 1

112
0 0 0

1
28
− 3

56
1
28
− 1

112
0

0 − 1
112

1
28
− 3

56
1
28

0 0 0 − 1
112

1
28

 (22)

(Note: each element in (22) has been scaled by
being divided by

√
353.) This example is slightly

unusual in that B = T, which is not often the
case.)

The final results of the construction make up
the diagrams of Figure 14 for which

β0 = − 3
56

√
353

β1 = 1
28

√
353

β2 = − 1
112

√
353

Figure 14: Multiresolution: Adding B

6.4. Diagrams vs. Filters

When the diagrams of A, Q and B have been
found, together with the diagrams of P, they may
be used directly as the decomposition and recon-
struction filters of the constructed multiresolu-
tion, provided they are properly interpreted.

The column diagrams for P and Q act as update
filters ; that is, referring to Figure 9, for example,
the fourth P column diagram, whose identified

node is cj, serves to incrementally update points
fi−2 through fi+2:

fi−2

fi−1

fi

fi+1

fi+2


+ cj



1
8

1
2

3
4

1
2

1
8


→



fi−2

fi−1

fi

fi+1

fi+2


The final position of fi will be the result of start-
ing with zero and applying this update associ-
ated with cj as well as the those updates given
by the P column diagrams associated with cj−1

and cj+1, since it is these three updates, and only
these three, that have any influence on fi.

Similarly, referring to Figure 12, the column di-
agram shown for Q expresses an update for the
residuals for fi−2 through fi+4:

ri−2

ri−1

ri

ri+1

ri+2

ri+3

ri+4


+ dk



γ3

γ2

γ1

γ0

γ1

γ2

γ3


→



ri−2

ri−1

ri

ri+1

ri+2

ri+3

ri+4


The row diagrams for A and B, on the other

hand, act as convolution filters ; that is, referring
to Figure 14, the row diagram shown for A pro-
vides an approximation to the coarse point cj as:

23

196
fi−3 −

23

49
fi−2 +

9

28
fi−1

+
52

49
fi +

9

28
fi+1 −

23

49
fi+2

+
23

196
fi+3 → cj

Similarly, referring to the same figure, the value
of dk is found as:

β2fi−1 + β1fi + β0fi+1 + β1fi+2 + β2fi+3 → dk

12



7. Higher Dimensions: Loop in 2D

Section 5 used Loop subdivision [31] on a mesh
of points of mixed degree as a way of reviewing
the material on diagrams in [5]. However, it is
more common to see Loop subdivision, along with
many other subdivisions, used on meshes that are
mostly regular. In Loop’s case, regions of reg-

Figure 15: Loop P Column Diagram

Figure 16: Loop A Row Diagram for Width 1

ularity correspond to 2D meshes whose domain
is tessellated uniformly into triangles so that all
points have degree six. Exceptional points to this
are small in number; for example, points along the
boundary will fall into a second class of points all
of degree four, those at the corners into a third

and possibly a fourth, all of degree three or possi-
bly of two, and there may be a few isolated points
in the interior of degrees different from six. For
such meshes, it is only necessary to carry out one
construction for the generic situation in the inte-
rior of the region of regularity, and a few more
times for exceptional points and their neighbor-
hoods. The A, Q, and B that result contain only

Figure 17: Loop Q Column Diagram for A in Figure 16

a few different kinds of rows/columns, which can
be pre-computed and stored, and these may be
re-used throughout an entire multiresolution on
any appropriate mesh; for example, for infinite 1D
meshes involving the subdivision of Section 6, all
decompositions and reconstructions of all points
at all scales of fineness/coarseness may simply use
the results that were constructed, one each for A,
Q, and B together with the given P. The early lit-
erature associated with function-based multireso-
lution addressed only the regular case, and much
of the multiresolution literature for both functions
and data still expects that only a few points or
functions, if any, will be exceptional.

As an example, then, of the regular case in 2D
and the results of our construction, we present di-
agrams in Figures 15 through 18 for Loop subdi-
vision on a regular triangular mesh of infinite ex-
tent. (Note: The diagrams of Figures 17 through
18 have all been scaled. All numeric entries in
those figures have been divided by

√
102 for sim-

plicity of display. Note also: the home positions
of the Q and B diagrams correspond to node po-

13



Figure 18: Loop B Column Diagram for Q in Figure 17

sitions on vertical lines. The diagrams for node
positions on slanted lines, for example, would ap-
pear tilted by ±60 degrees from the vertical.)

Further examples of 2D meshes, with attention
to special points, are given in [5], where points on
the boundary of a hexagonally connected mesh
are studied.

8. A Comparison

We have established a method of finding matri-
ces A, Q, and B for a given P so that equations
(11) and (12) hold. The approach works directly
with the given matrix P without any consider-
ation of an underlying function space, or even
whether such a function space exists. To em-
phasize this, we will now reveal that the subdi-
vision P that we used as an example to present
the construction in Section 6 is the two-scale rela-
tion of midpoint knot insertion for uniform cubic
B-splines. The reader should note that absolutely
no properties of splines, “B” or otherwise, “cubic”
or otherwise, were used or needed in our example
construction beyond the 2-scale relation.

In this section we compare the results of our
example construction with the multiresolution
due to Quak and Weyrich [45]. It is a con-
venient comparison to make, because both are
based on the same subdivision system. The mul-
tiresolution due to Quak and Weyrich carries the

semiorthogonal spline wavelets from the book by
Chui [12] over to closed, bounded intervals, and
the wavelet multiresolution is deeply dependent
on the function-space properties of B-splines. Our
multiresolution uses as P only the 2-scale relation
for cubic B-splines, and it ignores all other prop-
erties of splines. If our method can compare in
any modest way, perhaps it has merit.

As for the comparison application, spline
wavelets have been used for graphics most notably
in image processing and image compression, so we
chose a brief comparison in this area of applica-
tion, namely the one given in [45], as a sensible
one to offer. This choice has the added advantage
of indicating that applications for our multiresolu-
tions to pixel data are as possible as applications
to geometric point data, even though most of our
discussion here, and our previous published ap-
plications; e.g., [4, 5, 41, 43], was motivated by
geometric data.

We make the comparison in three ways: (1)
visual differences in a processed image, (2) quality
of approximating a coarse image c from a given
image f in terms of the size of r = Pc− f , and (3)
quality of producing an approximate fine image f̂
from compressed d in terms of the size of f̂ − f .

The multiresolution proposed by Quak and
Weyrich uses cubic B-splines on the unit inter-
val. The knot structure and its refinement pat-
tern are as follows: at stage k, the spline knots
are at locations i

2k for i = 1, . . . , 2k − 1, but with
the first, the last, and the middle of these knots
removed. Additionally, 0 and 1 always appear as
quadruple knots. Such a knot structure supports
2k B-splines for each positive integer k ≥ 3, and
the B-splines for k form a basis for a space con-
taining the space generated by the B-splines for
k − 1 as a proper subspace. The corresponding

Figure 19: Tessellation: 4 to 8 Nodes

mesh-domain tessellation is exemplified by Fig-
ure 19. That is; in words, each interval except
the middle one is split into two, and the middle
interval is split into three.
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The 2k × 2k−1 matrix that expresses the B-
splines, φk−1

j , for k − 1 as linear combinations of

the B-splines, φki , for k is the transpose of the
matrix Pk for the Quak-Weyrich multiresolution.
The columns of this matrix are described in Table
2.3 of [45] (though there is one error: the entry
for k = 4 should have the value l = 6). The
transpose of the Qk matrix corresponding to this
Pk is the matrix that expresses the semiorthog-
onal, cubic B-spline wavelets, ψk−1

j , for k − 1, in

terms of those for k, ψkj . The elements of Qk

are given in Table 2.4 of [45]. We have chosen
to scale the columns of the Quak-Weyrich matrix
Qk so that each column has Euclidian norm 1.
The induces a corresponding scaling on the rows
of Bk, but the scalings are inessential to any of
the properties of the multiresolution. Since our
construction, if implemented using the Singular
Value Decomposition [6], conveniently produces a
Q with unit-length columns, this will make the
resulting detail coefficients for the two methods
more comparable.

The Quak-Weyrich matrix Ak can be expressed

as (Φk)−1PkTΦk, where Φk is the Gram matrix
of the B-splines with the special knot pattern de-
scribed; that is, the matrix whose r, s element is∫
φkrφ

k
s . The final matrix Bk can be expressed

as (Ψk)−1QkTΦk, where Ψk is the Gram matrix
of the wavelets. Neither the A nor the B filters
in this system are finite; that is, all elements of
the Ak and Bk matrices are nonzero, but their
values decay in magnitude quite quickly off the
“diagonal” positions (i, 2i). For efficiency of im-
plementation, the matrices Ak and Bk are not
formed. Rather the factors (Φk)−1 and (Ψk)−1

are applied through backsolving via their LU fac-
torizations. This converts the application of Ak

and Bk to any set of data as a sequence of multi-
plications/backsolves involving banded matrices.
Nevertheless, each application involves process-
ing every item of the fine data, unless the fil-
ters are truncated, in which case the multiresolu-
tion reconstruction will involve some error. Many
multiresolutions constructed from function-space
tools do require truncation to be practical; e.g., as
in [12, 17]. For our multiresolution, by contrast,

no truncation is required; all filters are finite and
even relatively short.

For our multiresolution we apply the construc-
tion beginning with Pk and use the connectivity
induced by the Quak-Weyrich system of knots.
Their version of P corresponds to the one we have
used in our example construction throughout Sec-
tion 6, except in the first four, the last four, and
the middle four columns in order to reflect their
special knot structure. Choosing the A filters to
be of width 3, most of the elements of our Ak

will be the same as those in Subsection 6.1. The
only exceptions are for the first three, last three,
and middle four rows, since these must reflect the
special knot structure in these positions. Similar
statements hold for the remaining filters. We shall
also show some results for a version of our mul-
tiresolution for which the width of the A filters is
chosen to be 5 .

Figure 20: 512× 512 Image of Lena

The example results all use tensor-product
data, so a single stage of the decomposition pro-
cess is as indicated in (23).

G ← AF

C ← GAT

H ← BF

D ← GBT

(23)

and a single stage of the reconstruction process is
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as indicated in (24).

M ← CPT + DQT

F ← PM + QH
(24)

The fine geometric data is F, the coarse geometric
data is C, and D and H represent the detail in-
formation. G and M are intermediate quantities
that may be discarded.

Figure 21: Quak-Weyrich Compression

B-spline wavelet multiresolutions are important
for image compression. An image is decomposed
one or more times to provide a coarse image, C,
and several stages of detail information, D and
H. As many of the less important components of
the detail information are then set to zero as can
be done without visually impacting the version
of the full-sized image that can be reconstructed
from C and the adjusted detail information. The
more detail information that can be set to zero,
the higher the compression and the better the
multiresolution is regarded to be. The current
“gold standard” in this regard, at least according
to Unser [46], is represented by the multiresolu-
tions based upon spline wavelets, so we should
expect the Quak-Weyrich multiresolution to be a
very good test for our multiresolution.

Figure 20 shows the image used by Quak and
Weyrich, the well-known 512 × 512 black and
white version of “Lena” that has been used in a
wide number of other papers as well.

Figure 22: Our Compression with Width-3 A

Figure 21 shows the result of decomposing this
image by Quak-Weyrich through two stages to
produce a 128×128 image together with 128×128
and 256 × 256 detail information, D128 and D256

respectively, and 128 × 256 and 256 × 512 detail
information H128 and H256 respectively. All el-
ements of D256 and H256 were set to zero (this
had no visible effect on the reconstruction), and
as many of the smaller elements of D128 and H128

were set to zero as possible without causing no-
ticeable degradation in the reconstruction. Fig-
ure 21 represents a reconstructed image using only
the 128×128 coarse image, 8243 elements of D128

and 13663 elements of H128 for a total of 38290
elements out of a possible 512 × 512 = 262144;
that is, only 14.6 per cent of the amount of the
original image data. Removing any more detail
information leads to some faint but noticeable ar-
tifacts. Figure 22 shows what is achievable with
our multiresolution using a width-3 A; that is,
using the results of the construction in Section 6.
We set detail information to zero in the style de-
scribed above for Quak-Weyrich compression to
achieve an image with only 14.6 per cent of the
amount of the original data, which is the same
level of compression as that of Figure 21. The
quality of our result is slightly lower than that for
Quak-Weyrich.

Figure 23 shows a compression with 14.6 per
cent of the amount of the original data achieved
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Figure 23: Our Compression with Width-5 A

with our multiresolution using 5 as the width of
the A filter. There has been some slight improve-
ment in the quality of the image, suggesting that
longer A filters might yield even better results.
Indeed, the width of the Quak-Weyrich A filter is
256 for Figure 21 (as is also the case for the B fil-
ter), and truncated versions of the Quak-Weyrich
filters, which might be used in practical appli-
cations, reduce their compression quality. The
length of the A filter does correlate well with the
quality of compression. We will maintain the full
filter length in the Quak-Weyrich examples be-
low, even though this may reflect better results
for their multiresolution than would be achieved
in practice, where truncated filters might be used.

Several numeric comparisons show that Quak-
Weyrich multiresolution and our multiresolution
are not that far different. To measure how well
each multiresolution produces a coarse c approxi-
mation from a fine f in the sense that ‖f −Pc‖ is
small, we produced a simple reduction to 256×256
and subsequent subdivision to 512×512 with both
multiresolutions; that is,

C← AFAT and PCPT → F̂

The root-squared error; that is,√√√√ 512∑
i=1

512∑
j=1

|Fi,j − F̂i,j|2

for Quak-Weyrich multiresolution was 2, 773.2,
while for our multiresolution with an A filter of
width 5 it was 2, 816.4. Since there are 262,144
terms in the sum of squares, this represents an
average per-pixel error difference of 0.000165 be-
tween the two compressions. That is, there is vir-
tually no difference in the quality of approxima-
tion C provided from F by the Quak-Weyrich A
filter of width 256 and our A filter of width 5.

If F̂ is replaced by the images of Figures 21 and
23, we have a root-squared error comparison of
the images for comparable levels of compression.
In this case, for our compression the root-squared
error was 4, 577.5, which was a smaller error than
the value of 5, 560.0 due to Quak-Weyrich. A fur-
ther comparison of the degree of similarity be-
tween the two compressions is given by a his-
togram of the per-pixel errors in the images of
Figures 21 and 23 shown by Figure 24. The his-
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Figure 24: Pixel-Error Histograms

togram shows on the y axis the number of pix-
els that are at a difference shown on the x axis
from the pixels of the original image. The solid
histogram line is from our compression, and the
dashed histogram line is from the Quak-Weyrich
compression. Pixel values range from 0 to 255,
and both methods have almost all pixel differ-
ences within [−40,+20]; that is, a less than 16%
error in almost all pixels for either method. Our
compression has delivered noticeably more pixels
with error closer to zero, and with a smaller bias
towards negative pixel errors.
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Ideally, readers should be able to generate for
themselves the filters corresponding to our width-
7 A for the example of this section. It is a good
way to test understanding of the construction.
However, a MATLAB script [47] for assembling
P, A, Q, and B in full matrix format can be ob-
tained at

http://www.cgl.uwaterloo.ca/~rhbartel/QW/QW.m

No special properties of MATLAB have been
used, so the script can also be regarded as sim-
ple pseudo-code for easy transcription into other
languages.

9. Summary

We have provided a numerical construction
for multiresolutions based upon [4, 5], producing
multiresolutions from given scale relationships P
without requiring any knowledge of an underlying
function space. It employs only numerical compu-
tations. Use is made of the connectivities in the
fine and course mesh. This approach allows for
the ready application on different mesh geome-
tries, even at special points, and we have given
a comparison with a well-known, function-based
multiresolution to show that the quality of the
multiresolutions resulting from our construction
can be quite acceptable.
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