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Abstract

In this paper, we present an approximating multiresolution framework of arbitrary degree for curves on the surface of a sphere.
Multiresolution by subdivision and reverse subdivision allows one to decrease and restore the resolution of a curve, and is typically
defined by affine combinations of points in Euclidean space. While translating such combinations to spherical space is possible,
ensuring perfect reconstruction of the curve remains challenging. Hence, current spherical multiresolution schemes tend to be
interpolating or midpoint-interpolating, as achieving perfect reconstruction in these cases is more straightforward. We use a simple
geometric construction for a non-interpolating and non-midpoint-interpolating multiresolution scheme on the sphere, which is made
up of easily generalized components and based on a modified Lane-Riesenfeld algorithm.
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1. Introduction

The question of how to decrease the resolution of a curve
and restore it to its original state is a well-studied subject in
computer graphics, and falls under the purview of multiresolu-
tion frameworks. Applications include level-of-detail control,
compression, and multiscale editing for curves. Such frame-
works can be created using a combination of subdivision and
reverse subdivision [1].

In Euclidean space, subdivision schemes are linear trans-
formations that increase the resolution of a curve or surface,
while reverse subdivision schemes are linear transformations
that decrease the resolution. Many subdivision schemes are
based on B-Spline basis functions, and converge to B-Spline
curves or surfaces at the limit. Chaikin’s corner-cutting scheme
for curves [2] as well as the Catmull-Clark [3] scheme for sur-
faces are some well-known examples of B-Spline subdivision
schemes for which reverse methods have been proposed. Both
forward and reverse subdivision are often understood and im-
plemented using affine combinations of points, specified by sim-
ple linear filters.

When combined into a multiresolution framework, a given
vector of m fine points f = [ f0 . . . fm−1]T can be decomposed to
a vector of n < m coarse points c = [c0 . . . cn−1]T and associated
detail vectors (or wavelet coefficients) d = [d0 . . . dm−n−1]T [4,
5], then reconstructed using c and d. A notable property of such
a framework is that the total number of coarse points and details
is equal to the original number of points before decomposition.
As a result, no additional information is needed to fully retrieve
the high resolution data. Furthermore, these operations are both
fast and efficient.

While well understood in 2D or 3D Euclidean space, achiev-
ing multiresolution via subdivision and reverse subdivision in
other spaces is a challenging but fascinating topic of study. The
sphere, for instance, is an elegant and important geometric do-

main, and of particular interest as an approximation of the shape
of the Earth [6]. However, its surface forms a two-dimensional
non-Euclidean space in which many traditional geometric intu-
itions do not apply. Curves in spherical space — analogous to
curves in Euclidean space — are called spherical curves and are
formed by an ordered set of points fi on the sphere connected
by geodesic lines (great circle arcs).

Our work focuses on decreasing and increasing/restoring
the resolution of spherical curves (i.e. spherical multiresolu-
tion) based on B-Spline subdivision and reverse subdivision,
with an intended application in vector data representation on
the spherical surface of a Digital Earth [7, 8]. Geospatial vector
data are often very large (consisting of thousands of points) and
can benefit from multiscale representations due to their support
for compression, progressive transmission over networks, level-
of-detail control in visualization, and fast estimates for queries.

In general, the fundamental challenge in spherical multires-
olution lies in translating affine combinations of points to spher-
ical space in a manner that ensures the scheme is loss-less (i.e.
perfect reconstruction of the original fine data f is achieved).

A straightforward solution is to project the points of the
spherical curve to a Euclidean domain (e.g. using a spherical
projection from the field of cartography), apply affine combi-
nations in that domain, and project back to the sphere. Poten-
tial mappings include latitude/longitude or spherical coordinate
conversion, which is a standard projection; Snyder projection
[9], which is an equal area projection often encountered in Dig-
ital Earth frameworks; and the exponential map [10], which
maps points to a local tangent plane. Unfortunately, as the
spherical and Euclidean space are not isometric, this approach
often introduces distortions into the resulting curves (see Fig-
ure 1).

A second approach is to generalize the affine combination
p = a0q0 + a1q1 + · · ·+ an−1qn−1 (p, qi ∈ R3, ai ∈ R) to spherical

Preprint submitted to Graphical Models June 1, 2016



Figure 1: A spherical curve defined by three points is shown (on left). After
mapping the points to latitude/longitude coordinates, drawing Euclidean lines
between the resulting points, and mapping those lines back to the sphere, sig-
nificant mapping distortions are revealed (on right).

space as the (local) solution to

min
p

∥∥∥∥∥∥∥
n−1∑
i=0

ai · expp(qi)

∥∥∥∥∥∥∥ ,
as in [11], where expp(qi) is the exponential map operator that
maps qi to a vector in the tangent space of p. However, due to
the nature of non-Euclidean space, generalizing these combina-
tions in this manner does not in general result in a scheme with
perfect reconstruction. Hence, the work of [11] focuses on in-
terpolating and midpoint-interpolating multiresolution schemes,
for which perfect reconstruction can be guaranteed. As a non-
interpolating and non-midpoint-interpolating (i.e. approximat-
ing) scheme, B-Spline multiresolution is non-trivial to translate
to spherical space.

A third approach, as seen in [12, 13] and the one adopted in
this paper, is to split the affine combinations into series of two-
point interpolations. Such two-point interpolations are atomic
operations in spherical space that are analogous to the simplest
atomic operations used to create curves in Euclidean space, and
can be computed efficiently using spherical linear interpolation
(SLERP), defined by [14]

SLERP(p, q, u) =
sin[(1 − u)θ]

sin(θ)
p +

sin(uθ)
sin(θ)

q

(where θ is the angle between p and q). Unlike Euclidean space,
in which any reformulation of an affine combination into two-
point interpolations will have the same result, in spherical space
different reformulations of the affine combination give different
results. Hence, it is again difficult to ensure perfect reconstruc-
tion in this case.

We present in this paper a construction of a loss-less ap-
proximating multiresolution scheme in spherical space (inspired
by Euclidean B-Spline multiresolution) made up of sequences
of two-point interpolations (i.e. SLERP operations). This holds
for all constituent operations of the multiresolution: subdivi-
sion, reverse subdivision, detail computation (i.e. decomposi-
tion), and detail restoration (i.e. reconstruction). The construc-
tion is inspired by the Lane-Riesenfeld subdivision algorithm
for B-Spline subdivision of arbitrary degree (or smoothness) in
Euclidean space [15], which uses two atomic operations: point
duplication and midpoint finding. Although easily generalized

to the sphere, the algorithm does not have a corresponding re-
verse subdivision or multiresolution algorithm due to the non-
invertibility of the midpoint finding operation.

Our construction, which can reproduce at least some of the
B-Spline subdivisions returned by the Lane-Riesenfeld algo-
rithm, replaces pairs of midpoint-finding operations with dis-
crete smoothing operators that have local inverses in Euclidean
and spherical space. Detail vectors di are generalized to de-
tail rotations in spherical space, and are easy to compute and
restore during reconstruction.

Furthermore, our multiresolution scheme includes reverse
subdivision, detail computation, and detail restoration construc-
tions based on atomic operations; to our knowledge the first of
their kind. We expect translations of this scheme to more gen-
eral manifolds are possible as well, provided an operation anal-
ogous to SLERP is defined on the manifold.

The paper is organized as follows. In Section 2, we describe
previous works that are related to this problem. A generaliza-
tion of the Lane-Riesenfeld algorithm to spherical space from
[13] is described in Section 3, followed by a generalization to
spherical space of [16]’s modified Lane-Riesenfeld algorithm
with invertible averaging step in Section 4. In Sections 5, 6,
and 7, we present our spherical multiresolution scheme, with
some comments on analysis in Section 8. Results and compar-
isons follow in Section 9.

2. Related Work

Curves that lie on surfaces (including spheres) have been
the subject of much research [17, 7, 8]. Spherical curves are
especially important, as the sphere is an important shape in
Geomatics and GIS and serves as an important intermediate
shape for applications such as parametrization and illumination
[18, 19]. Spherical curves are particularly of interest within the
Digital Earth framework [20, 21, 22, 6], which represents the
Earth as a curved surface rather than as a flattened map.

Multiresolution for curves and surfaces is also a well stud-
ied subject [23, 24, 25]. One means of establishing a mul-
tiresolution framework is to combine subdivision and reverse
subdivision, in which the former produces a more detailed ob-
ject while the latter reduces the resolution [4, 5, 26]. The con-
vergence and smoothness of the limit curve of a subdivision
scheme can be analysed using the techniques in [27] for Eu-
clidean space and [12, 28] for manifold surfaces. In a multireso-
lution framework based on subdivision and reverse subdivision,
no details are lost and all information needed to reconstruct the
curve occupies no more memory than the original model.

These methods are usually understood and implemented in
terms of affine combinations/weighted averages. The taking of
an affine combination in Euclidean space is a fundamental op-
eration and very useful for efficient geometric processing. As a
result, redefining weighted averages within the manifold, spher-
ical, and Riemennian spaces have been studied in several previ-
ous works [29, 30].

Affine combinations on the sphere have been approached
via iterative optimization [8]. However, since the exact results
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of the weighted averages in this method are not known a priori
(due to iterative solving of the optimization), we cannot develop
a loss-less multiresolution scheme based on this method in the
approximating case.

The coefficients of an affine combination may be used as
barycentric coordinates to describe a point with respect to a set
of polygon vertices. The spherical barycentric coordinates of a
point p inside a spherical triangle may be calculated using the
method described in [17], or for a point p inside a spherical
polygon using the work of [31]. In [17], the resulting barycen-
tric coordinates may be used to represent p as a linear combina-
tion of the vertices of the spherical triangle. Unlike barycentric
coordinates in Euclidean space, the coefficients do not sum to
unity and are dependent on properties of the spherical triangle.

Subdivision for curves on general manifolds has been pro-
posed in [12, 32, 33, 34] and for spheres in particular in [13,
35]. However, these works do not present corresponding spher-
ical reverse subdivision or multiresolution schemes. Similarly,
the well-known Ramer-Douglas-Peucker algorithm [36] can be
used to reduce the number of points in a curve, but is a simple
downsampling and does not support loss-less reconstruction of
the original curve.

In [11], the authors define multiresolution schemes on gen-
eral manifolds using the exponential map. They focus par-
ticularly on interpolating and midpoint-interpolating subdivi-
sion schemes, for which perfect reconstruction may be achieved
and guaranteed. In the paper, the authors note that it is not
clear how to achieve perfect reconstruction in the approximat-
ing case. Developing multiresolution for neither interpolating
nor midpoint-interpolating scheme remains an important task.

Multiresolution for spherical domains has also been pro-
posed in wavelet form [37, 38]. These works do not represent
spherical curves explicitly — they must first be approximated
using a wavelet function. Consequently, the multiresolution in
these works is not directly defined on spherical curves but rather
on the parametrization of the sphere.

3. Spherical Lane-Riesenfeld

Instead of affine combinations, it is possible to implement
subdivision using simpler geometric operations that are easier
to translate into other spaces. In particular, there exists a con-
struction for B-Spline subdivision schemes of arbitrary degree
based on repeated averaging that uses only midpoint opera-
tions, known as the Lane-Riesenfeld algorithm [15]. The gen-
eralization of the Lane-Riesenfeld algorithm to spherical space
is noted in [13], which we reiterate here, before extending the
algorithm to a spherical multiresolution framework.

The construction for a B-Spline subdivision scheme of de-
gree k in Euclidean space operates as follows. For each appli-
cation of the subdivision scheme to a given curve, the curve’s
vertices are first duplicated, and then k averaging steps are ap-
plied to the curve. The averaging step moves each vertex to
its midpoint with its consecutive neighbour. At the limit of re-
peated applications of this method, the vertices converge to a
B-Spline curve of degree k with Ck−1 continuity.

In mathematical notation, let PLR be the desired subdivision
transformation of degree k, c be a vector of coarse points, and
f be the vector of fine points resulting from subdivision on c.
Then, f = PLR(c) and PLR = S k ◦ PH where PH is a point
duplication operation (and, in fact, a Haar subdivision operation
[24]) with matrix form (here shown for 3 coarse vertices)

PH =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


and S is the averaging transformation with matrix form

S =



1
2

1
2 0 0 0 0

0 1
2

1
2 0 0 0

0 0 1
2

1
2 0 0

0 0 0 1
2

1
2 0

0 0 0 0 1
2

1
2

1
2 0 0 0 0 1

2


.

Hence, given two consecutive points pi and pi+1, S (pi) = 1
2 pi +

1
2 pi+1.

The generalization to spherical space presented in [13] re-
places the midpoint operation with a geodesic midpoint op-
eration, so that S becomes S(pi) = SLERP(pi, pi+1,

1
2 ) and

PLR = Sk ◦ PH .
Note that the subdivision is only valid if the angle between

consecutive coarse points ci and ci+1 is less than 180◦ for all
i. If the angle is equal to 180◦, then the geodesic midpoint is
undefined, and if the angle is greater than 180◦, then this angle
cannot be computed directly from ci and ci+1 and will need to
be stored. However, this case is rarely of interest.

4. Reversing Lane-Riesenfeld with Atomic Operations

While this generalized Lane-Riesenfeld construction makes
it possible to achieve forward subdivision on the surface of the
sphere, unfortunately a similar construction for efficient reverse
subdivision (an essential component of multiresolution) does
not exist, as the averaging transformations S and S are not in-
vertible. This is due to the fact that, given an even number of
(geodesic) midpoints, the set of points with these (geodesic)
midpoints is not unique.

In [16], Sadeghi and Samavati present a class of local (i.e.
banded) fairing matrices with local (i.e. banded) inverses. As
noted in their work, an approximation of S with local inverse
can be created by employing a two-pass approach, wherein ev-
ery other point is fixed during an averaging pass, and can be
used to construct a modified version of the Lane-Riesenfeld
algorithm. Note that the authors do not present correspond-
ing reverse subdivision or multiresolution operations for their
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Figure 2: The spherical chasing game as applied to a spherical curve. A curve
is shown before (in blue) and after (in green) two applications of degree 1 sub-
division. Notice the significant skewing and clustering of vertices.

scheme, as the focus of the work is on smoothing curves in a
reversible manner.

There are several benefits to having a banded/local inverse.
The entries of global inverse matrices change as the input size
changes, whereas the entries of local inverses are consistent.
This consistency allows us to decompose the affine combina-
tions represented by such inverses into series of two-point in-
terpolations/SLERPs that can be applied to all points and are
guaranteed to invert the original fairing operation. Furthermore,
the local nature of a banded inverse can be exploited to apply
the inverse transformation in linear time (with respect to input
size), rather than quadratic time.

We introduce in this section a generalization of Sadeghi
and Samavati’s modified Lane-Riesenfeld algorithm to spher-
ical space, which we refer to as the spherical chasing game to
distinguish between this scheme and spherical Lane-Riesenfeld.
We denote it as PCG. Making use of the same basic princi-
ples behind this scheme, we later develop a novel subdivision
scheme that addresses its main problems and describe how mul-
tiresolution may be achieved.

The algorithm begins with a duplication step PH followed
by k iterations of a spherical averaging step F , hence f =

PCG(c) = F k ◦ PH(c). The averaging step in this case uses a
two-pass approach in which half the vertices at a time are fixed
in place. That is, F = F1 ◦ F0, where F0 and F1 are fairing
operations with local inverses F −1

0 and F −1
1 that move only half

the points at a time.
The action of F0 is to move each vertex with an even index

to its geodesic midpoint with its consecutive neighbour, and F1
does the same but for vertices with odd index. Hence,

F0(pi) =

{
SLERP(pi, pi+1,

1
2 ) if i is even,

pi otherwise,

F1(pi) =

{
SLERP(pi, pi+1,

1
2 ) if i is odd,

pi otherwise.

F −1
0 andF −1

1 undo the effects ofF0 andF1 (i.e. F −1
0 ◦F0(p) = p

and F −1
1 ◦ F1(p) = p) via

F −1
0 (pi) =

{
SLERP(pi, pi+1,−1) if i is even,
pi otherwise,

F −1
1 (pi) =

{
SLERP(pi, pi+1,−1) if i is odd,
pi otherwise.

Noting that SLERP(pi, pi+1, 0) = pi, these can be repre-
sented in a more compact form:

F j(pi) = SLERP(pi, pi+1,
1
2 xi j),

(where j ∈ {0, 1} and xi j = (i + j + 1) mod 2, taking a value of
0 when pi is to be fixed and 1 if it is not) and

F −1
j (pi) = SLERP(pi, pi+1,−xi j).

The main problem with PCG is the unsymmetric nature of
the resulting subdivision, causing curves to skew in one direc-
tion and distribute vertices unevenly (see Figure 2).

5. Spherical Subdivision

A more symmetric scheme with better vertex distribution
than PCG can be achieved by using a more symmetric local fair-
ing operation with local inverse. Our choice of fairing opera-
tion is motivated by a simple observation. Consider the Lane-
Riesenfeld algorithm in Euclidean space, with f = PLR(c) =

S k ◦ PH(c) and

S =



. . .

1
2

1
2 0 0

0 1
2

1
2 0

0 0 1
2

1
2

. . .


.

Note that S is not invertible. By grouping pairs of S together,
we find that

f =

{
(S ◦ S )

k
2 ◦ PH(c) when k is even,

(S ◦ S )
k−1

2 ◦ S ◦ PH(c) when k is odd

and

S ◦ S =



. . .

1
4

1
2

1
4 0 0

0 1
4

1
2

1
4 0

0 0 1
4

1
2

1
4

. . .


.

Note that S ◦ PH is the linear (or Faber; see [39]) subdivision
operator, which we will denote as PF (PF in the spherical case),
that introduces a midpoint between each pair of consecutive
points (geodesic midpoint in the spherical case).

Pairing instances of S into instances of S 2 = S ◦ S allows
us to split PLR into two different schemes: one for even degree
subdivisions and one for odd degree subdivisions. In even de-
gree subdivisions, which are dual subdivision schemes [27], we
can first apply Haar subdivision (PH) followed by k

2 applica-
tions of averaging step S 2. In odd degree subdivisions, which
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pi

pi−1

pi+1

p′i

Figure 3: The modified Laplacian smoothing operator in spherical space moves
a point pi halfway to the geodesic midpoint mi = SLERP(pi−1, pi+1,

1
2 ) of its

neighbours.

are primal schemes [27], we can first apply Faber subdivision
(PF) followed by k−1

2 applications of averaging step S 2.
It can be seen that S 2 is a discrete Laplacian smoothing op-

eration, whose action is to move each vertex halfway toward the
midpoint of its neighbours ( 1

2 pi−1 + 1
2 pi+1). In the case of S2,

these would be geodesic midpoints (see Figure 3). Note that, as
a product of singular matrices, S 2 is also not invertible. As in
Section 4, the averaging stepS2 can be modified to be invertible
with local inverse on the sphere by fixing certain points. To ac-
comodate the fundamental differences between primal and dual
schemes, we employ different approximations of S2 in the odd
and even degree cases.

5.1. Primal (Odd Degree) Subdivision

In the case of primal subdivision schemes like PLR with odd
k, which map coarse vertices to subdivided vertices, it makes
sense to fix some vertices of the curve while performing the
averaging step. Hence, we can replace S2 with the modified
Laplacian smoothing operator described in [16] as generalized
to spherical space (see Figure 3). In primal subdivisions, we
replace S2 with G0 or G1 in an alternating pattern, where G0
and G1 are spherical fairing operations with local inverses G−1

0
and G−1

1 (see Figure 4).
The action of G0 is to move each vertex with an even in-

dex to its geodesic midpoint with the geodesic midpoint of its
neighbours, and G1 does the same but for vertices with odd in-
dex. That is,

G j(pi) = SLERP(pi,mi,
1
2 xi j),

where mi = SLERP(pi−1, pi+1,
1
2 ) and xi j = (i + j + 1) mod 2.

These can be generalized using l = b k
2 c weighting param-

eters {w0,w1,w2, . . . ,wl−1} (0 ≤ w j < 1) in order to vary the
position of pi along the great circle arc between pi and mi (sim-
ilar to the tension parameter of [40]). Here, j ∈ {0, 1, 2, . . . , l−1}
and

G j(pi) = SLERP(pi,mi,w jxi j).

Thus, for odd k we define a spherical primal subdivision trans-
formation f = PPrimal(c) to be

PPrimal = Gl−1 ◦ · · · ◦ G1 ◦ G0 ◦ PF .

Note that k is implicit in l (the number of weights) and need not
be explicitly stated.

f1

f2

f3

f4

f5

f0

(a) Initial spherical curve of six
points.

f1

f ′2

f3

f ′4

f5

f ′0

(b) G0 moves the vertices with
even indices.

f ′1

f ′2

f ′3
f ′4

f ′5

f ′0

(c) G1 moves the vertices with
odd indices.

f ′1

f ′2

f ′3
f ′4

f ′5

f ′0

(d) Final curve after application
of G0 and G1.

Figure 4: Illustrative example of the averaging steps G0 and G1 applied to the
vertices of a spherical curve.

In Euclidean space, the G j have matrix form (here shown
for 6 points)

G j =



1 − w j
w j

2 0 0 0 w j

2

0 1 0 0 0 0

0 w j

2 1 − w j
w j

2 0 0
0 0 0 1 0 0

0 0 0 w j

2 1 − w j
w j

2

0 0 0 0 0 1


when j is even and

G j =



1 0 0 0 0 0
w j

2 1 − w j
w j

2 0 0 0
0 0 1 0 0 0

0 0 w j

2 1 − w j
w j

2 0
0 0 0 0 1 0
w j

2 0 0 0 w j

2 1 − w j


when j is odd.

5.2. Dual (Even Degree) Subdivision
In the case of dual subdivision schemes like PLR with even

k, which map coarse edges to subdivided edges, it makes sense
to fix the midpoints of some curve edges while performing the
averaging step. Hence, we can replace S2 with an edge shrink-
ing operator as generalized to spherical space (see Figure 5). In
dual subdivisions, we replace S2 with H0 or H1 in an alternat-
ing pattern, where H0 and H1 are spherical fairing operations
with local inversesH−1

0 andH−1
1 (see Figure 6).

The action of H0 is to shrink half of the curve’s edges by
moving each’s endpoints half of the way towards their geodesic
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p′ipi

pi+1

p′i+1

Figure 5: The edge shrinking operator in spherical space moves the edge end-
points pi and pi+1 halfway to their geodesic midpoint mi = SLERP(pi, pi+1,

1
2 ).

f1

f2

f3

f4

f5

f0

(a) Initial spherical curve of six
points.

f ′1
f ′2

f ′3
f ′4

f ′5

f ′0

(b) H0 shrinks half of the
curve’s edges.

f ′′1

f ′′2

f ′′3

f ′′4

f ′′5

f ′′0

(c)H1 shrinks the other edges.

f ′′1

f ′′2

f ′′3

f ′′4

f ′′5

f ′′0

(d) Final curve after application
ofH0 andH1.

Figure 6: Illustrative example of the averaging stepsH0 andH1 applied to the
vertices of a spherical curve.

midpoint, and H1 does the same but for the other edges. That
is,

H j(pi) = SLERP(pi, pi+yi j ,
1
4 ),

where yi j = 2[(i + j) mod 2] − 1, taking a value of -1 if pi is
the right endpoint of an edge to shrink or +1 if it is the left
endpoint.

These too can be generalized using l = b k
2 c weighting pa-

rameters {w0,w1,w2, . . . ,wl−1} (0 ≤ w j < 1) in order to vary the
position of pi and pi±1 along the great circle arc between pi and
pi±1. Here, j ∈ {0, 1, 2, . . . , l − 1} and

H j(pi) = SLERP(pi, pi+yi j ,
w j

2 ).

Thus, for even k we define a spherical dual subdivision trans-
formation f = PDual(c) to be

PDual = Hl−1 ◦ · · · ◦ H1 ◦ H0 ◦ PH .

As before, k is implicit in l and need not be explicitly stated.
In Euclidean space, the H j have matrix form (here shown

for 6 points)

H j =



1 − w j

2 0 0 0 0 w j

2

0 1 − w j

2
w j

2 0 0 0

0 w j

2 1 − w j

2 0 0 0

0 0 0 1 − w j

2
w j

2 0

0 0 0 w j

2 1 − w j

2 0
w j

2 0 0 0 0 1 − w j

2


when j is even and

H j =



1 − w j

2
w j

2 0 0 0 0
w j

2 1 − w j

2 0 0 0 0

0 0 1 − w j

2
w j

2 0 0

0 0 w j

2 1 − w j

2 0 0

0 0 0 0 1 − w j

2
w j

2

0 0 0 0 w j

2 1 − w j

2


when j is odd.

6. Spherical Reverse Subdivision

A property of the G j and H j as defined in Section 5 is that
they have local inverses G−1

j and H−1
j for all j. Hence, it be-

comes possible to undo the averaging steps. If w j = 1
2 , these

functions are given by

G−1
j (pi) = SLERP(pi,mi,−xi j),

and
H−1

j (pi) = SLERP(pi, pi+yi j ,−
1
2 ),

where, again, mi = SLERP(pi−1, pi+1,
1
2 ), xi j = (i+ j+1) mod 2,

and yi j = 2[(i + j) mod 2] − 1. See Figures 7 and 8 for illustra-
tions.

In general, given weighting parameters 0 ≤ w j < 1,

G−1
j (pi) = SLERP(pi,mi,

w j

w j−1 xi j),

and
H−1

j (pi) = SLERP(pi, pi+yi j ,
w j

2w j−2 ).

After undoing the averaging steps, we must also undo the
Haar subdivision PH or the Faber subdivision PF . While these
do not have inverses, they have corresponding multiresolution
schemes (wavelet transforms) in Euclidean space that may be
easily generalized to the sphere. The Euclidean reverse Haar
scheme replaces each pair of vertices with their midpoint (ci =
1
2 f2i + 1

2 f2i+1) [24], which in spherical space corresponds to re-
placing each pair of vertices with their geodesic midpoint. Al-
though alternatives exist, reversing the Faber scheme may be
accomplished by discarding every other point (ci = f2i). We
will denote the reverse PH operation asAH and the reverse PF

operation as AF . Notice that AH and AF are downsampling
operations.
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p′i

pi−1

pi+1

pi

Figure 7: Inverse of the modified Laplacian smoothing operator in spherical
space.

pi

p′i

p′i+1

pi+1

Figure 8: Inverse of the edge shrinking operator in spherical space.

It is now possible to define reverse subdivision transforma-
tions c = APrimal( f ) and c = ADual( f ) for the subdivision oper-
ations PPrimal and PDual described in Section 5, where

ADual = AH ◦ H
−1
0 ◦ H

−1
1 ◦ · · · ◦ H

−1
l−1

APrimal = AF ◦ G
−1
0 ◦ G

−1
1 ◦ · · · ◦ G

−1
l−1.

Note that we restrict f such that the angle between consecutive
points fi and fi+1 must be less than 90◦ for all i, as otherwise
the reverse scheme may introduce ci and ci+1 for some i with
an angle θ ≥ 180◦ between them, which invalidates the forward
subdivision operation.

7. Spherical Multiresolution

Since G j andH j are invertible for all j, high resolution de-
tails of the curve are only lost during the application of the re-
verse operations AH and AF . Hence, it is possible to achieve
multiresolution in this case using the foundations of Haar wavelets
and Faber wavelets. See Algorithms 1 to 4 for our framework’s
pseudocode.

Let f = [ f0 . . . fm−1]T be the fine points before reverse sub-
division and c = ADual( f ) = [c0 . . . cn−1]T be the coarse points
resulting from reverse subdivision on f . In Euclidean space, the
Haar detail vectors are found as di = 1

2 f2i+1 −
1
2 f2i [24]. Then,

given that ci = 1
2 f2i + 1

2 f2i+1, it should be clear that f2i = ci − di

and f2i+1 = ci + di. In spherical space, we can generalize this so
that we find detail rotations, rather than detail vectors, given by

di = half the rotation from f2i → f2i+1

= a rotation of angle
cos−1( f2i · f2i+1)

2
about axis f2i × f2i+1,

while the reconstruction is given by

f2i = ci rotated by d−1
i ,

f2i+1 = ci rotated by di.

The transformation that finds the detail rotations, which we de-
note as BH , takes place after the inverse averaging steps have
been applied but before the reverse Haar operation AH . The
transformation that restores the details (i.e. rotates the points),
which we call QH , takes place after duplication but before the
averaging steps.

Now we may define our multiresolution framework on spher-
ical curves when k is even. The reconstruction step determines
the fine points

f = Hl−1 ◦ · · · ◦ H1 ◦ H0 ◦ QH(PH(c), d)

while the decomposition step determines the coarse points and
detail rotations

c = AH ◦ H
−1
0 ◦ H

−1
1 ◦ · · · ◦ H

−1
l−1( f )

d = BH ◦ H
−1
0 ◦ H

−1
1 ◦ · · · ◦ H

−1
l−1( f ).

Now consider c = APrimal( f ) to be the coarse points re-
sulting from reverse subdivision on f . In Euclidean space, the
Faber detail vectors can be found as di = f2i+1 − ( 1

2 f2i + 1
2 f2i+2).

Given that ci = f2i, it can be seen that f2i = ci and f2i+1 =
1
2 ci + 1

2 ci+1 + di. In spherical space, the details are

di = the rotation from mi → f2i+1

= a rotation of angle cos−1(mi · f2i+1) about axis mi × f2i+1

where mi = SLERP( f2i, f2i+2,
1
2 ), and the reconstruction is de-

fined by

f2i = ci,

f2i+1 = SLERP(ci, ci+1,
1
2 ) rotated by di.

As before, we denote by BF and QF the transformations that
calculate and restore the detail rotations, respectively.

Hence, when k is odd, we define our multiresolution frame-
work on spherical curves as follows. The reconstruction step
determines the fine points

f = Gl−2 ◦ · · · ◦ G1 ◦ G0 ◦ QF(PF(c), d)

and the decomposition step determines the coarse points and
detail rotations

c = AF ◦ G
−1
0 ◦ G

−1
1 ◦ · · · ◦ G

−1
l−1( f )

d = BF ◦ G
−1
0 ◦ G

−1
1 ◦ · · · ◦ G

−1
l−1( f ).

These multiresolution operations, which operate in the spher-
ical domain, are both simple and efficient. Note that the detail
rotations can each be represented compactly as a vector of three
components whose direction indicates the axis of rotation and
whose magnitude is equal to the angle of rotation. Hence, we
have achieved a simple and efficient multiresolution framework
on the sphere without increasing the memory footprint.

8. Analysis

Two important questions when dealing with any subdivision
scheme are that of whether or not the subdivided vertices will

7



Algorithm 1 Pseudocode for spherical dual decomposition
step.
DECOMPOSE-DUAL:
Input: F[0 . . .m − 1], W[0 . . . l − 1]
Output: C[0 . . . m

2 −1], D[0 . . . m
2 −1]

P := F
for j := l − 1 to 0 step −1 do

if j is even then
for i := 1 to m − 1 step 2 do

p := P[i]
P[i] := SLERP(p, P[i + 1], W[ j]

2W[ j]−2 )

P[i + 1] := SLERP(P[i + 1], p, W[ j]
2W[ j]−2 )

end for
else

for i := 0 to m − 2 step 2 do
p := P[i]
P[i] := SLERP(p, P[i + 1], W[ j]

2W[ j]−2 )

P[i + 1] := SLERP(P[i + 1], p, W[ j]
2W[ j]−2 )

end for
end if

end for
for i := 0 to m − 2 step 2 do

C[ i
2 ] := SLERP(P[i], P[i + 1], 1

2 )
D[ i

2 ] := half the rotation from P[i]→ P[i + 1]
end for
return C,D

Algorithm 2 Pseudocode for spherical dual reconstruction step.
RECONSTRUCT-DUAL:
Input: C[0 . . . n − 1], D[0 . . . n − 1], W[0 . . . l − 1]
Output: F[0 . . . 2n − 1]

for i := 0 to n − 1 do
F[2i] := C[i] rotated by D[i]−1

F[2i + 1] = C[i] rotated by D[i]
end for
for j := 0 to l − 1 step 1 do

if j is even then
for i := 1 to 2n − 1 step 2 do

p := P[i]
P[i] := SLERP(p, P[i + 1], W[ j]

2 )
P[i + 1] := SLERP(P[i + 1], p, W[ j]

2 )
end for

else
for i := 0 to 2n − 2 step 2 do

p := P[i]
P[i] := SLERP(p, P[i + 1], W[ j]

2 )
P[i + 1] := SLERP(P[i + 1], p, W[ j]

2 )
end for

end if
end for
return F

Algorithm 3 Pseudocode for spherical primal decomposition
step.
DECOMPOSE-PRIMAL:
Input: F[0 . . .m − 1], W[0 . . . k − 2]
Output: C[0 . . . m

2 −1], D[0 . . . m
2 −1]

P := F
for j := l − 1 to 0 step −1 do

if j is even then
for i := 0 to m − 2 step 2 do

mid = SLERP(P[i − 1], P[i + 1], 1
2 )

P[i] := SLERP(P[i],mid, W[ j]
W[ j]−1 )

end for
else

for i := 1 to m − 1 step 2 do
mid = SLERP(P[i − 1], P[i + 1], 1

2 )
P[i] := SLERP(P[i],mid, W[ j]

W[ j]−1 )
end for

end if
end for
for i := 0 to m − 2 step 2 do

mid = SLERP(P[i], P[i + 2], 1
2 )

C[ i
2 ] := P[i]

D[ i
2 ] := the rotation from mid → P[i + 1]

end for
return C,D

Algorithm 4 Pseudocode for spherical primal reconstruction
step.
RECONSTRUCT-PRIMAL:
Input: C[0 . . . n − 1], D[0 . . . n − 1], W[0 . . . k − 2]
Output: F[0 . . . 2n − 1]

for i := 0 to n − 1 do
F[2i] := C[i]
F[2i + 1] := SLERP(C[i],C[i + 1], 1

2 ) rotated by D[i]
end for
for j := 0 to l − 1 step 1 do

if j is even then
for i := 0 to 2n − 2 step 2 do

mid = SLERP(F[i − 1], F[i + 1], 1
2

F[i] := SLERP(F[i],mid,W[ j])
end for

else
for i := 1 to 2n − 1 step 2 do

mid = SLERP(F[i − 1], F[i + 1], 1
2

F[i] := SLERP(F[i],mid),W[ j])
end for

end if
end for
return F

8



converge to a curve at the limit of repeated applications of the
subdivision, and what level of continuity the limit curve would
have. While a thorough discussion of the subdivision analysis
of our scheme goes beyond the scope of this paper, we briefly
touch on these issues in the following section.

Another important question, when dealing with a mulitreso-
lution scheme, is that of whether or not the wavelets are biorthog-
onal. We prove, in the second half of the section, that this is
indeed the case for our multiresolution scheme.

8.1. Subdivision Analysis
The work of [27] discusses techniques to analyse the con-

vergence and continuity of subdivision schemes in Euclidean
space using the scheme’s subdivision mask and generating func-
tion. A consequence of including weighting parameters w j is
that the subdivision matrices of our scheme

PDual = Hl−1 ◦ · · · ◦ H1 ◦ H0 ◦ PH

PPrimal = Gl−1 ◦ · · · ◦G1 ◦G0 ◦ PF

(and by extension the masks and generating functions) change
as the weights w j change.

For example, taking weight vector { 23 ,
1
4 } in the dual case

produces the subdivision mask [ 1
24 ,

7
24 ,

2
3 ,

2
3 ,

7
24 ,

1
24 ] with gener-

ating function S (z) = 1
24 + 7

24 z + 2
3 z2 + 2

3 z3 + 7
24 z4 + 1

24 z5. Using
division by (1 + z), we can find 3 difference schemes for S (z)
with row sums less than 1, which indicates G2 continuity of the
limit curve [27]. This same weight vector in the primal case
produces the mask [ 1

48 ,
1
6 ,

23
48 ,

2
3 ,

23
48 ,

1
6 ,

1
48 ], for which G3 conti-

nuity can be shown.
Interestingly, weight vector { 12 } in the dual case produces the

subdivision mask [ 1
4 ,

3
4 ,

3
4 ,

1
4 ] of Chaikin subdivision [2], which

is known to converge to a 2nd degree B-Spline curve at the limit
with G1 continuity. This same weight vector in the primal case
produces the subdivision mask [ 1

8 ,
1
2 ,

3
4 ,

1
2 ,

1
8 ] of cubic subdivi-

sion (see [4]), which converges to a 3rd degree B-Spline curve
at the limit with G2 continuity.

Higher degree B-Spline subdivision masks can be obtained
using different weights, illustrating that our construction is more
powerful than the Lane-Riesenfeld algorithm not only in terms
of providing built-in multiresolution capabilities, but also in
supporting a class of subdivision schemes including at least
some (and potentially all) B-Spline subdivision schemes.

We expect that the limit curves resulting from our spherical
subdivision scheme will have the same continuities as their Eu-
clidean counterparts. Intuitively, since the surface of the sphere
is locally isometric to a plane and is infinitely differentiable, for
sufficiently close vertices of the spherical curve our spherical
scheme will behave like the Euclidean scheme, and will hence
have the same continuity. It remains to be shown, however, that
the spherical scheme converges on the sphere (using, e.g., the
works of [12, 28]), so that this condition of sufficient closeness
is eventually satisfied.

8.2. Proof of Biorthogonality
Given a subdivision matrix P and detail restoration matrix

Q, as well as a reverse subdivision matrix A and detail calcula-
tion matrix B, the multiresolution scheme defined by P, Q, A,

and B is biorthogonal if[
A
B

] [
P Q

]
=

[
P Q

] [A
B

]
= I.

It can be verified that both the Haar and Faber schemes de-
scribed here are biorthogonal.

For our multiresolution scheme in the dual case, in addition
to PDual (see above), we have matrices

QDual = Hl−1 ◦ · · · ◦ H1 ◦ H0 ◦ QH ,
ADual = AH ◦ H−1

0 ◦ H−1
1 ◦ · · · ◦ H−1

l−1,
BDual = BH ◦ H−1

0 ◦ H−1
1 ◦ · · · ◦ H−1

l−1.

Now,[
ADual

BDual

] [
PDual QDual

]
=

[
ADualPDual ADualQDual

BDualPDual BDualQDual

]
=

[
AH PH AH QH

BH PH BH QH

]
=

[
AH

BH

] [
PH QH

]
= I

and, by uniqueness of inverse,[
PDual QDual

] [ADual

BDual

]
= I.

For our multiresolution scheme in the primal case, in addi-
tion to PPrimal (see above), we have matrices

QPrimal = Gl−1 ◦ · · · ◦G1 ◦G0 ◦ QF ,
APrimal = AF ◦G−1

0 ◦G−1
1 ◦ · · · ◦G−1

l−1,
BPrimal = BF ◦G−1

0 ◦G−1
1 ◦ · · · ◦G−1

l−1.

Now,[
APrimal

BPrimal

] [
PPrimal QPrimal

]
=

[
APrimalPPrimal APrimalQPrimal

BPrimalPPrimal BPrimalQPrimal

]
=

[
AF PF AF QF

BF PF BF QF

]
=

[
AF

BF

] [
PF QF

]
= I

and, by uniqueness of inverse,[
PPrimal QPrimal

] [APrimal

BPrimal

]
= I.

Hence, our multiresolution scheme is biorthogonal.

9. Results and Comparisons

We have experimented with applying our multiresolution
scheme on real geospatial vector data representing a political
boundary and on manually generated spherical curves. See Fig-
ures 11 through 15 for some result images.

With weight vector { 12 } allowing us to recreate the subdivi-
sion filters for 2nd and 3rd degree B-Spline curves, the output
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(a) Spherical degree 2 B-Spline
curve from PLR.

(b) Spherical degree 2 B-Spline
curve from PDual.

(c) Spherical degree 3 B-Spline
curve from PLR.

(d) Spherical degree 3 B-Spline
curve from PPrimal.

Figure 9: Spherical B-Spline curves resulting from spherical Lane-Riensenfeld
subdivision PLR and our subdivision schemes PDual and PPrimal, shown side-
by-side. The original coarse curve is shown in blue.

of our scheme PDual and PPrimal in Euclidean space matches
the output of the Lane-Riesenfeld algorithm PLR for k = 2 and
k = 3. However, some amount of deviation can be expected
in spherical space due to the different sequences of SLERPs
used in each scheme. This deviation can be measured as the
average geodesic distance between corresponding points on the
subdivided curves, and in our experiments this deviation has
been negligible. See Figure 9 for a side-by-side comparison of
a curve subdivided with PDual and PPrimal against PLR.

Figures 13 and 14 illustrate the effects of our reverse subdi-
vision on subdivided fine curves. Using our method, the origi-
nal coarse curve used to generate the subdivided fine curve can
be found. In general, this is difficult to achieve, yet our method
can accomplish this using only atomic operations.

As geospatial vector data can be very large in size, the speed
of a multiresolution scheme applied to the data could poten-
tially impact a geospatial application’s runtime. In Table 1,
we compare the runtime of our PDual scheme with the spher-
ical Dyn-Levin scheme PDL described in [11] (implemented
using the iterative algorithm A1 from [8] with an error thresh-
old of 10−7). The values shown were calculated on a 64-bit
Windows 7 machine with an Intel Core i7-4790 CPU, averaged
over 100,000 runs of each scheme on a curve with vertices at
(1, 0, 0), (0, 1, 0), and (0, 0, 1).

Note that the number of iterations for algorithm A1 con-
verges to zero as the points become closer together and the
sphere becomes locally isometric to a plane. Our scheme ap-
pears to be quite fast, taking up only half the time of the other
subdivision scheme. Even in cases where algorithm A1 does
not need to iterate, the cost of evaluating the iteration termina-

Runtime Runtime Average #
of PDual of PDL of iterations

(ms) (ms) for PDL

1st Application 0.013 0.143 4.000
2nd Application 0.024 0.109 1.000
3rd Application 0.048 0.219 1.000
4th Application 0.092 0.203 0.000
5th Application 0.183 0.409 0.000

Table 1: Runtime results from applying PDual and the spherical Dyn-Levin
subdivision scheme from [11] to a curve with vertices (1, 0, 0), (0, 1, 0), and
(0, 0, 1).

Figure 10: The coarse curve shown in Figure 9 after subdivision with PPrimal
under different weight values. Weight vector { 1

10 ,
1

10 } was used to generate the
blue curve, { 1

2 ,
1
2 } for the red curve, and { 9

10 ,
9
10 } for the green curve.

tion condition pushes the runtime above our scheme’s.
The behaviour of the multiresolution scheme can be tweaked

by varying the weight parameters w j. Lower values for the w j

(approaching 0) will result in near-interpolation of the coarse
vertices, while the reverse scheme will nearly interpolate the
fine vertices and have minimal shape exaggeration (see, for ex-
ample, Figure 15). Higher values for the w j (approaching 1)
will result in more straightening of the curve, while the reverse
subdivision will cause more shape exaggeration. Example re-
sults are shown in Figure 10.

10. Conclusions and Future Work

We have presented a new multiresolution framework for
spherical curves. Such a framework makes it possible to in-
crease and decrease the resolution of spherical curves without
leaving the spherical domain, hence avoiding distortions due to
intermediate mappings. Furthermore, the framework achieves
perfect reconstruction despite the subdivision being neither in-
terpolating nor midpoint interpolating.

The key behind our construction is the use of simple ge-
ometric transformations that are generalizable to the spheri-
cal domain and make for efficient decomposition and recon-
struction operations. The construction is based on a modified
Lane-Riensenfeld algorithm that uses locally invertible averag-
ing steps in place of the algorithm’s non-invertible midpoint op-
erator, and calculates details as detail rotations.

As a potential direction for future work, it would be inter-
esting to create adaptive subdivision and reverse subdivision
schemes in spherical space and/or extend our framework to other

10



manifolds, particularly ellipsoids and geoids. Determining those
manifolds with simple midpoint operations could be an impor-
tant first step. Another interesting avenue of research could be
to extend the Euclidean curve scheme to surfaces.
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Appendix: Proof of Inversion

In this appendix, we prove that the operations F −1
j , G−1

j ,
andH−1

j are, in fact, inverses of the operations F j, G j, andH j.

Lemma 1. Given a real value 0 ≤ w < 1 and any two points p
and q,

SLERP
(
SLERP(p, q,w), q,

w
w − 1

)
= p.

Proof. Let θ be the angle between points p′ = SLERP(p, q,w)
and q and let ψ be the angle between points p and q. Notice
that, by construction of SLERP, θ = (1 − w)ψ.

11



Now,

SLERP
(
p′, q,

w
w − 1

)
=

sin
[
(1 − w

w−1 )θ
]

p′ + sin
(

w
w−1θ

)
q

sin(θ)

=
sin

(
1

1−wθ
)

p′ + sin
(
−w

1−wθ
)

q

sin(θ)

=
sin (ψ) p′ − sin (wψ) q

sin[(1 − w)ψ]

=
sin

[
(1 − w)ψ

]
p + sin (wψ) q − sin (wψ) q

sin[(1 − w)ψ]

=
sin

[
(1 − w)ψ

]
p

sin[(1 − w)ψ]
= p.

Lemma 2. Given a real value 0 ≤ w < 1 and any two points p
and q,

SLERP
(
SLERP

(
p, q,

w
2

)
, SLERP

(
q, p,

w
2

)
,

w
2w − 2

)
= p.

Proof. Let θ be the angle between points p′ = SLERP(p, q, w
2 )

and q′ = SLERP(q, p, w
2 ) and let ψ be the angle between points

p and q. Notice that, by construction of SLERP, θ = (1 − w)ψ.
Now,

SLERP
(
p′, q′,

w
2w − 2

)
=

sin
[
(1 − w

2w−2 )θ
]

p′ + sin
(

w
2w−2θ

)
q′

sin(θ)

=
sin

(
2−w

2(1−w)θ
)

p′ + sin
(
−w

2(1−w)θ
)

q′

sin(θ)

=
sin

[
(1 − w

2 )ψ
]

p′ − sin
(

w
2ψ

)
q′

sin[(1 − w)ψ]

=
sin

[
(1 − w

2 )ψ
] [

sin
[
(1 − w

2 )ψ
]

p + sin( w
2ψ)q

]
sin(ψ)sin[(1 − w)ψ]

−
sin

(
w
2ψ

) [
sin

[
(1 − w

2 )ψ
]

q + sin( w
2ψ)p

]
sin(ψ)sin[(1 − w)ψ]

=
sin2

[
(1 − w

2 )ψ
]
− sin2( w

2ψ)

sin(ψ)sin[(1 − w)ψ]
p

=

1
2
[
1 − cos

[
(2 − w)ψ

]
− 1 + cos(wψ)

]
1
2
[
cos[ψ − (1 − w)ψ] − cos[ψ + (1 − w)ψ]

] p

=
cos(wψ) − cos(2ψ − wψ)
cos(wψ) − cos(2ψ + wψ)

p

= p.

By Lemma 1, it can be seen that F −1
j ◦ F j(pi) = pi and

G−1
j ◦ G j(pi) = pi for any i. Similarly, by Lemma 2, it can be

seen thatH−1
j ◦ H j(pi) = pi for any i.

(a) After 1 application. (b) After 2 applications

(c) After 3 applications (d) After 8 applications

Figure 11: Results from applying PDual with weights { 2
3 ,

1
4 } on a coarse curve

(shown in blue). The subdivided curve is shown in red.

12



(a) After 1 application. (b) After 2 applications

(c) After 3 applications (d) After 8 applications

Figure 12: Results from applying PPrimal with weights { 2
3 ,

1
4 } on a coarse curve

(shown in blue). The subdivided curve is shown in red.

(a) Fine curve created using
spherical subdivision.

(b) The curve from (a) after 3
applications ofADual.

Figure 13: Results from applying ADual with weights { 2
3 ,

1
4 } on a curve result-

ing from forward subdivision.

(a) Fine curve created using
spherical subdivision.

(b) The curve from (a) after 3
applications ofAMR.

Figure 14: Results from applying APrimal with weights { 2
3 ,

1
4 } on a curve re-

sulting from forward subdivision.

(a) The border of Mexico prepared for initial transmission by 6 appli-
cations of PDual with weights { 1

10 ,
1

10 }.

(b) Received coarse data subdivided 3 times without details.

(c) Received coarse data subdivided 3 times with the newly arrived
first level of details.

(d) Received coarse data subdivided 3 times with the first level and
newly arrived second level of details.

(e) Received coarse data subdivided 3 times with the first level, second
level, and newly arrived third level of details.

Figure 15: Progressive transmission allows transmitted geospatial data on the
sphere to be iteratively refined as the details arrive. Texture image for the Earth
courtesy of www.shadedrelief.com.
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