
Shape Defined Panoramas
John Brosz and Faramarz Samavati
Department of Computer Science

University of Calgary, Canada
Email: {jdlbrosz, samavati}@ucalgary.ca

Abstract—Panoramic projections are often defined by
the geometric surfaces used to derive the projections’
equations (e.g., spherical and cylindrical panoramas).
The parameterization of these surfaces greatly affects
the resulting projection equations and image properties.
Problematically, unusual parameterization can reproduce
panoramas associated with other shapes. In this paper, we
ensure an explicit link between surface shape and pro-
jection behavior by suggesting use of projection surfaces
parameterized by arc-length, binding rendering behavior
to surface modeling. This allows us to create new panorama
variations beyond the conventional for creating panoramas
of CG environments as well as for resampling panoramas
created from cameras. Further we describe an interface for
composing these panoramas and show how this technique
lends itself to controlling distortion and composition of
panoramic projections. Additionally we provide details on
rendering these projections.

Keywords-Panorama; Parameterization; Parametric
Surface; Rendering; Image generation;

1. INTRODUCTION

Generally a panorama is an image depicting a wide
angle view. In this work we specifically concern our-
selves with full-view panoramas, that is panoramas with
a single view position that encompass the entire 360
degree surroundings. For brevity, we refer to these full-
view panoramas simply as panoramas. In photography
these panoramas are created by taking several pho-
tographs while rotating the camera around a fixed point
and then stitching them together into a single image. The
word panorama was coined in the late 1700s to describe
Robert Barker’s paintings on the inside of large cylinders
[1].

Many types of full-view panorama exist; common
examples include cylindrical, spherical, and conical
panoramas. These panoramas differ from one another
both mathematically and in image characteristics. While
these descriptions in terms of shape provide hints of
definition, these are concretely defined through projec-
tion equations (i.e., mappings from three dimensions to
two). An unfortunate aspect of these equations is in
order to modify them, one must change the surface or
its parameterization and re-derive a projection equation,
a non-trivial task especially when several iterations
are required to create the desired effect. Creating a
panorama in this fashion is equivalent to “hard coding”
a scene description, while serviceable, it greatly impairs
the ability to explore other possibilities.

There are many reasons why such variations may
be useful. For instance, a panorama that combines

Fig. 1. A cylindrical panorama (top) is altered to display center of
the image in perspective (bottom).

a spherical and a cylindrical panorama reduces the
vertical distortion associated with spherical panoramas
while capturing the surroundings above and below the
viewing position that would be missed by a cylindrical
panorama. Another possibility is changing areas of the
image to behave as if created by a linear perspective
projection thus avoiding the curving of straight lines
produced in most panoramas (as shown in Figure 1).
Additionally, custom panoramas could be useful for
tailoring projections to produce images exactly suited for
specific configurations of cave or dome environments.
While customized panoramas can be useful for creating
panoramas from existing (camera) images, the primary
usefulness of this work is to provide new techniques for
creating imagery from CG environments.

In this work we create panoramas by defining a
projection surface. This can be any arbitrary surface that
encompasses the scene and viewing position. However,
the shape of the surface is not enough to define the
panorama projection; we also require some specification
of how to unwrap and flatten this surface to create a
2D image parameterization. We show that arc-length
parameterization can naturally map existing panoramas
to their characteristic surfaces (i.e., sphere for spher-
ical panorama and cylinder to cylindrical panorama).
Therefore, we use arc-length parameterization to create
a unique correspondence between the shape of the
projection surface and the characteristics of the produced
image. This correspondence makes the panoramic pro-



jections’ behavior visualizable by displaying the projec-
tion surface, allowing customized panoramas’ behavior
to be more easily understood and predicted.

To facilitate the creation of panoramas we have devel-
oped an interface for creating arc-length parameterized
projection surfaces. This system is based on Brosz et
al.’s [2] Flexible Projection Framework that provides a
basis for using parametric surfaces to define projections.
Additionally we show how the produced panoramas can
be efficiently rasterized with current GPU hardware.
Lastly, we describe several panoramas designed for
particular purposes and further applications.

This work contributes:
• a modeling based technique for composing full-

view panoramas from synthetic 3D models.
• arc-view parameterization that allows for explicit

control over the distortions necessarily present in
full-view panoramas.

• a GPU-based rasterization approach that drives
real-time single-pass rendering of panoramas.

• applications for creating panoramic projections
within virtual environments (including games and
CG generated image/video), re-sampling of real-
world photographed panoramas, and interactive lo-
cal editing of these panoramas.

2. RELATED WORK

In this work we introduce a nonlinear, non-physically
based camera. There exists a wide variety of such cam-
eras. Works such as Yang et al. [3] and Carpendale and
Montagenese [4] describe nonlinear cameras that operate
upon images. Nonlinear cameras that operate in 3D
geometry have been described by Inakage [5], Glassner
[6], and Sudarsanam et al. [7] and many others. We refer
readers to the Brosz et al. [2] where a wide overview
of many such cameras is given. For mathematical de-
scriptions of linear and nonlinear projections we refer
to Salomon’s book [8]. Salomon includes derivations of
projection equations for a several panoramas including
cylindrical, spherical, and conical.

In applying panoramas Greene [9] describes how
projection onto a cube can be used for efficient en-
vironment mapping. Glaeser and Gröller [10] describe
the use of segments of spherical projections to reduce
wide angle distortion. Polack et al. [11] perform a study
showing that cylindrical projections improve size and
depth perception. Szeliski and Shum [12] describe one
of many methods in which image sequences taken with
perspective projection can be stitched together into a
single panoramic image. Their technique is noteworthy
in that it works without explicit knowledge of camera
orientation.

Many works construct multi-viewpoint panoramas;
projections constructed by combining images from dif-
ferent viewpoints into a single image. Rademacher and
Bishop [13] create single images from long, oriented
camera paths for the purpose of replacing image se-
quences in image-based rendering. Román et al. [14]

and Agarwala et al. [15] piece together images taken
along a roughly planar path. Wood et al. [16] create
multi-perspective panoramas that provide changes in
viewing direction, position, and field-of-view within a
single image for the purpose of creating backgrounds for
cel animation. Yu and McMillan [17] create panoramas
modeled after Wood et al.’s [16] panoramic construc-
tions by combining the output from many different types
linear cameras. These cameras must be manually posi-
tioned and adjusted to achieve the desired image as well
as be placed following at set of adjacency rules to ensure
image continuity. Degener and Klein [18] describe a
technique where the 3D model is deformed rather than
the camera to create appealing images. Agarwala et al.
[15] review many other multi-viewpoint panoramas.

Several works have focused on removing distortions
in panoramic or wide-angle images. Zorin and Barr [19]
correct photographic, perspective images by adjusting
the interplay between perspective and spherical (direct
view) projections. Zelnik-Manor et al. [20] remove
distortion in single-viewpoint panoramas by stitching
together either horizontally or vertically neighboring
perspective photographs into a single image. Disconti-
nuities at seams are handled by user-assisted placement
at feature edges. Due to this technique’s ability to only
stitch in one direction it cannot address deformation near
the poles of the panoramic projections. Most recently
Carroll et al. [21] perform optimization on wide angle
images with the guidance of user-provided indications
of straight lines. This work is not demonstrated for
full-view panoramas and cannot resolve distortions in
images that feature parallel lines that converge at on-
image vanishing points [21].

In our work we have chosen to constrain ourselves to
single-viewpoint panoramas that encompass the view-
point’s entire 360 degree surroundings. A strongly re-
lated variety of this type of projection are the many
projections that have been used in making maps [22].
Most related to our work is Trapp and Döllner’s [23]
system for creating full view panoramas. In their work
single-center projections, including but not limited to
panoramas, are created by specifying a normal map.
The normal map controls the projection, specifying the
direction from the center of projection where objects
will be projected. Rendering is accomplished in realtime
by creating a cube environment map that is resampled
with hardware in a second rendering pass to create the
projected image.

In comparison, our technique has several strengths.
The first is that we describe an object space-based ren-
dering technique that avoids image sampling issues. The
second is that our technique uses surface modeling rather
than normal maps to specify our panoramic projections;
this allows the use of existing modeling tools to ease
the task of specifying panoramic projections.

2



Fig. 2. A cylindrical panoramic projection surface with marked seam
and center of projection (left) and projected image (right).

Fig. 3. Perspective views of the city model used to demonstrate the
panoramas.

3. PANORAMAS

Panoramas can be described as projections onto cylin-
ders, spheres, cubes, or other surfaces that surround
a viewing point. This viewing point, also known as
the center of projection, is a point at which we might
imagine the viewer’s eye to be positioned. The up axis is
the axis around which the viewing direction is rotated so
that the entire 360 degree surroundings can be viewed.

The process of creating a panorama can be broken
into two steps: projection through the eye onto some
sort of projection surface; then mapping that surface to
a flat, usually rectangular, image. This mapping relies
on a 2D parameterization of the projection surface onto
a rectangle; creating a seam by splitting the surface and
flattening it. A difficulty is that many such mappings
can exist depending on the 2D parameterization.

Our intention in this work is to develop a geometric
technique for creating new panoramas that builds on
the specification of existing panoramas. To provide the
reasoning behind our chosen technique we begin by
examining common types of panoramas: cylindrical,
spherical, and cubic.

A cylindrical panorama is most often the result
of projection onto an open-ended cylinder; its center
coincident with the eye position and its primary axis
of aligned with the panorama’s up axis (Figure 2). The
original model is shown in perspective in Figure 3.
After projection onto the cylinder, the parameterization
is created by cutting the cylinder’s surface to form a
seam and then unrolling a flat image.

Let us consider this projection as if we were ray
tracing it. When tracing a row of pixels, each pixel’s
ray will be the same as the previous pixel’s, but rotated
by some constant angle around the up axis. This is
due to the one-to-one mapping between the pixels and
points spaced equally around a circle on the surface
of the cylinder. For a column of pixels the situation

Fig. 4. A spherical panoramic projection surface (left) and projected
image (right). The blue lines within the surface indicate rays used that
might be used to a column of the image.

Fig. 5. A cubic panoramic projection surface with marked seam (left)
and projected image (right).

is different since they sample a line segment parallel
to the cylinder’s primary axis. Each pixel is spaced
equidistant along the line segment causing the angle
between samples to vary. This angle will be largest
as rays near to perpendicular with the up-axis and
smaller as they approach parallel. Let us refer to the
angle between pixels’ rays (or samples) for the rows
of the image as θ and the angle between pixels of the
columns as φ. So, for this type of cylindrical panorama,
θ experiences a constant change while the change to φ
varies.

A spherical projection is created by projecting objects
onto a sphere. Flattening the sphere creates trade-offs
between preserving area, straight lines, angle, scale,
and shape [22]. For simplicity we discuss the simplest
approach, i.e., an equidirectional spherical projection.
This uses the sphere’s longitudinal and latitudinal coor-
dinates directly as x and y coordinates in the image as
demonstrated in Figure 4.

Now let us examine this projection in terms of θ and
φ. As in the cylindrical panorama θ experiences constant
change between neighboring row pixels. The change to
φ in this scenario is also constant since each pixel will
be separated by a constant arc-length.

The last panorama we review is a cubic panorama
created by projecting onto a cube with an open top and
bottom. In essence, this panorama is a concatenation of
four separate perspective projections (each rotated 90
degrees around the up axis from its neighbor). A cubic
panorama is shown in Figure 5.

Examining cubic panoramas in terms of θ and φ we
find that both angles change variably due to equidistant
steps along the planar sides of the cube. The variation
in angle is largest at the center of each face and smallest
at the cube’s edges.

By setting the properties of each of the described
surfaces we can derive projection equations (see Sa-
lomon [8] for an example) and then use these equations
to create panoramic images from virtual scenes. While

3



this derivation is straightforward it becomes markedly
more difficult if one wishes to experiment or alter these
projections. For instance, what if we desire to place the
center of projection away from the cylinder’s center? It
would be convenient if we could automate this derivation
process for a variety of shapes and possibilities.

In Figure 6 we compare the θ sampling of a cylindri-
cal to a cubic panorama. If we parameterized a cylinder
such that the θ sampling matched that of the cube’s
samples projected onto a cylinder we could exactly
reproduce a cubic panorama with a cylindrical projection
surface. This makes the projection surface unimportant
in determining the projection since changing the sur-
face parameterization is alone sufficient to control the
projection.

So if the surface does not matter, then why use a
surface? Working with and changing parametrization to
control projections is not an intuitive operation. It is
akin to using a hard coded scene description rather
than a external controlled scene description that can
be visualized and easily modified. Our approach makes
use of the ability of surfaces to be similarly visualized
and that they are already associated with conventional
panoramic projections. Consequently our goal is to
create a technique for specifying panoramic projection
surfaces that creates a fixed correspondence between
parameterization and the surface shape.

These three types of panorama introduce important
differences in image characteristics. In general panora-
mas feature trade-offs between spherical projection and
planar projections. This is exactly the observation made
about projections in general by Zorin and Barr [19].
Spherical projection provides direct viewing, making all
parts of the image appear as if they are viewed straight
on. This matches the way we rotate our eyes to examine
our surroundings. The drawback is that while isolated
areas of the image appear correct, the entire image is
viewed as a whole the result seems strange. These image
characteristics are produced by constant angle sampling
in the image (e.g., in spherical panoramas and in the
sampling of θ in cylindrical panoramas.

Planar projection maintains a global coherence, pre-
serving straight lines. Unfortunately, this projection in-
troduces distortions as one samples away from the center
of projection, leading to problems with wide angle
images, as well as in projections of circles and spheres
[19]. These characteristics are seen in cubic panoramas
and in the sampling of φ in cylindrical panoramas.

Fig. 6. Comparison of sampling of a quarter square (blue) and a
circle (red), analogous to a sphere and cube.

In deciding upon a particular panoramas one selects a
particular balance between spherical and planar projec-
tions; our aim is to provide more freedom in adjusting
this balance to create desired image properties.

4. CONTROLLABLE PANORAMAS

Our discussion thus far has lead to us to the con-
clusion that in order to control the composition of
panoramas we must have control over the sampling of
θ and φ (i.e., the spacing between the projection rays
used to create the image).

In our review of common panoramas two mechanisms
control the panorama type: the projection surface and
the parameterization of this surface. Due to conflicts
between these mechanisms we suggest constraining def-
inition of panoramic projections entirely to the shape of
the projection surface. We will accomplish this by mak-
ing the parameterization entirely defined by the surface
shape. Use of only the projection surface to control the
panorama has several benefits: modeling 3D surfaces
is a common task with a concrete physical analogy
and, in general, easier to perform than specifying or
modifying a surface parameterization; a 3D surface can
be easily visualized providing clear feedback to the
user; and common panoramas are currently described
based on their projection surface, by continuing to
define panoramas by surface shape builds upon existing
practices.

The remaining question is how to bind the parameter-
ization to the surface shape. Since our goal is to control
the sampling of θ and φ it is logical to make use of
a parametric surface Q(u, v) and assign one parameter
to θ and the other to φ. Then, to control the sampling,
construct our surface from iso curves that define the
sampling. In order to attach the sampling behavior to the
curve, we space our samples at uniform distances along
the curve thus parameterizing the curve and eventually
the surface by arc-length. Thus a flat curve will produce
a variable change sampling (as in the cubic panorama)
while a circular arc will produce a constant rate of
sampling. This follows Farin’s suggestion [24] of using
chord length to closely approximate arc-length and has
the added benefit of allowing use of a wide-variety of
analytical curves (e.g., parametric, implicit) as well as
discrete ones (e.g., user-sketched curves).

4.1 Projection Surface

We control sampling of θ with a 2D closed curve
Po(u) parameterized by arc-length. We call this curve
the outline. If we imagine a row of x pixels in our
desired panoramic image and the total arc-length of the
outline is L, then each subsequent pixel is δL = 1

x−1L
further along the outline than the previous pixel. Areas
with high arc-length will occupy more pixels of the
image than areas with lesser arc-length. A circle as an
outline produces a constant change of θ as seen in cylin-
drical and spherical panoramas. The cubic panorama has
a square outline. Flat areas of the outline cause sampling

4



Outline Profile Surface

Fig. 7. An arc-length parameterized projection surface created with
Equation 1. In outline diagrams the origin is marked; the descending
line’s intersection with the outline indicates the seam. The front of the
projection (the center of the image) is halfway along the arc-length of
the entire outline from the seam. Profile diagrams show the profile as
well as a light fill to relate the curve to the up axis.

of θ to assume the characteristics of planar projection.
The corners of the square are treated as vertices of a
piecewise curve.

For control over φ sampling we create a profile.
A profile Pp(v) is a 2D open curve parameterized
by arc-length that controls sampling of the columns
of the image. For example, the profile of a spherical
panorama would be a hemi-circle whereas the profiles
of cylindrical and cubic panoramas are vertical line
segments parallel to the up axis.

To create a surface from a profile and an outline let
us first consider using a circle as our outline. In this
case we can use a surface of revolution (see Farin [24]
for a formal description). That is, we create a surface
by revolving the profile 360 degrees around the up axis.
We can also see this surface as an extrusion of a circle
with varying scale along the up axis controlled by the
profile’s distance from the axis.

To move beyond circles, creating surfaces from other
outlines, we use the same construction of extrusion using
the given outline rather than a circle. The equation for
this surface, assuming the outline and profile have both
been defined on the XY plane, is:

Qd(u, v) =

 Po(u)xPp(v)x,
Pp(v)y,

Po(u)yPp(v)x

 , u, v ∈ [0, 1]. (1)

This surface bears similarity to the cross section overs-
ketch surface described by Cherlin et al [25]. It should
be clear that when the outline is a circle i.e., Po(u) =
(sin(2πu), cos(2πu)), that the produced surface is ex-
actly a surface of revolution. Other values for Po(u)
cause the profile to be scaled inward and outward from
the origin as shown in Figure 7.

In examining the surface created in Figure 7 we see
that outline directly controls the shape of the surface
as seen from above. If we take any slice of the surface
perpendicular to the up axis we obtain a scaled copy
of the outline. If we slice the surface with a plane
containing the up axis we obtain two copies of the
profile, one a mirror of the other.

With a surface we can evaluate θ by fixing v, allowing
u to vary uniformly, and examining the angular change
between the points. As the x and z coordinates of the
surface are determined by the orientation of ray around
the eye position, it should be clear that the outline
Po(u) provides direct control over θ as the uniform

scaling by Pp(v) does not alter the angular change.
When examining φ and fixing u the resulting curve is a
non-uniformly scaled version of the profile.

To allow greater control over θ and φ we can allow
for multiple profiles. These n profiles, p0, p1, ..., pn−1,
are associated with the u values, u0, ..., un−1 denoting
where each profile is positioned along the outline. We
order the profiles such that u0 < u1 < ... < un−1. For
a given u either the value is exactly that of one of the
specified profiles (in which case we use that profile), or
it is not. If not, we linearly interpolate between profiles
pi and pi+1 where ui < u < ui+1. This interpolation is
based on the parameter t = (u − ui)/(ui+1 − u1) thus
our profile is p = t∗pi+(1−t)pi+1. For end conditions,
u < u0 or u > un+1 we interpolate between pn+1 and
p0. Figure 8 provides an example of a projection surface
created with multiple profiles as well as the resulting
image.

While linear interpolation is adequate, we usually pre-
fer specified profiles to have more influence than merely
serving as end points of interpolation. Consequently cre-
ating a sort of ease-in, ease-out effect between specified
profiles is desirable. We achieve this using a 1D Bézier
based interpolation of p = ((1−t)3+t(1−t)2)pi+((1−
t)t2 + t3)pi+1, although other interpolation techniques
would serve equally well. This ease-in, ease-out causes
the profiles to remain similar to the defined profiles over
a larger surface area and then transition quickly. Figure
9 demonstrates both techniques.

In examining the resulting surface we can extract the
2D profile by fixing u. This means that this exact profile
creates a column of pixels in the projected image. It
is also the case that this curve exists at a particular
spherical angle θ. This allows us to align a profile to
a world object. While not immediately important this is
noteworthy later when we discuss combining multiple
profiles and multiple outlines in the same surface.

Similarly we can also allow for multiple outlines.
If we desire multiple outlines and a single profile we
can use the m outlines q0, ..., qm−1 exactly as we did
the multiple profiles by specifying the profile points at
which each outline is attached to. Because there is no
wrapping at the edges we assume q0 extends fully to the
bottom and qm−1 extends fully to the top. Elsewhere the
surface is created by interpolating between the outlines.

If we desire to have both multiple profiles and multi-
ple outlines we must choose how to attach profiles and
outlines to one another in order to form the surface. If
we choose to again use arc-length parameter values (u
and v) we preserve the effect of outlines corresponding
to rows in the image and profiles to columns. The
alternative, our preferred approach, is to attach the
curves at specified spherical coordinates (θ and φ). This
causes outlines and profiles to curve through multiple
rows/columns in the image but ensures that the profile
and outline curves exist undistorted in the surface. This
is useful as it means we directly link outlines and
profiles with objects in world space. A drawback of this

5



Fig. 8. An example of multiple profiles blended with linear interpolation. From left to right the images show the outline, the profiles, the
surface and the panoramic image. The colored lines on the surface and image indicate positions where a single profile has influence.

Fig. 9. Comparison between linear (top) and Bézier based (bottom) interpolation between profiles. Transitions between profiles are most
noticeable in the magnified area examining the crosswalk lines. With linear interpolation the crosswalk lines transition sharply; Bézier
interpolation creates a curved transition.

approach is that it limits our surfaces to those that map
one-to-one with spherical coordinates; this is not a large
drawback as rendering parts of the scene more than once
is undesirable in most applications.

With this design choice made each profile p0, ..., pn−1

is positioned by a spherical coordinate θ0, ..., θn−1 and
each outline q0, ..., qm−1 is positioned by φ0, ..., φm−1.
Interpolation between specified curves is performed as
in previous scenarios.

Our panoramic surface equation for multiple outlines
and profiles becomes:

Qd(u, v) =

 Pof(θ)(u)xPpg(φ)(v)x,
Ppg(φ)(v)y,

Pof(θ)(u)yPpg(φ)(v)x

 . (2)

where f and g are the interpolation functions used to
determine the profile and outline curves respectively thus
Pof(θ) is the outline interpolated from specified outlines
based on the spherical coordinate θ.

It is important to note that our panoramic projection
surfaces are constrained by the defining outline(s) and
profile(s) so that some enclosing surface shapes are
not possible (for instance one cannot create a twisting
around the camera’s up axis). This is a design feature
that emerged out of experimentation and finding, as also

noted by Carroll et al. [21], that panoramas are often
oriented so that the up vector is parallel to vertical lines
in the scene and that such lines should remain vertical
in the resulting image. Profiles, and their attachment to
specific θ values ensure these vertical lines; similarly
outlines maintain the horizontal orientation of lines
orthogonal to the up axis.

4.2 Outline and Profile Behavior

When manipulating outline and profile curves there
are two major operations that produce specific image
outcomes. The first is making a section of (or the entire)
curve a straight line. This creates an area of planar
projection. For true planar projection it is necessary to
have straight lines in both outline and the profile to
produce a truly flat area on the surface.

The second operation is altering the curve to change
its arc-length. Reducing the arc-length causes fewer
samples to be taken over that area of the image. This is
useful if you wish to compress an area of the image.
Increasing the arc-length of the shape causes more
samples to be taken over the corresponding area of the
image and expands an area’s resolution.

6



5. RENDERING

An important consideration in rendering is that all
projector rays originate at the eye and are then directed
outward at the entire 360 degree environment. Conse-
quently the specification of the different panoramas only
affects the distribution of these rays; visibility, lighting,
and other phenomena do not change with the alterations
to the panorama specification. Thus it is possible to
render a spherical projection of the environment and
then use two-pass rendering with image resampling
operations to achieve the desired panorama. This is the
technique described by Trapp and Döllner [23] although
they make use of a cube map rather than spherical
projection. While this technique is definitely applicable
to our panoramic projection surfaces, the use of image
resampling in this technique problematic due to changes
in resolution and aliasing issues.

The fact that our surfaces are defined in object space
provides additional rendering options that avoid the
problems from resampling images. Ray tracing, a slower
process, uses the arc-length parameterized surface to
define ray direction. Rasterization, the process of using
a projection equation to place triangle vertices and then
using fill algorithms to rapidly draw the triangles.

5.1 Ray Tracing

To ray trace these panoramas we draw upon the Flex-
ible Projection Framework [2]; defining the projection’s
viewing volume by an interpolation between a point (the
eye) and the arc-length panoramic projection surface.
This gives us a parameterized viewing volume Q(u, v, t)
where t parameterizes the depth of the projection, and
u, v correspond to the parameters of Qd. If we wish to
adjust the distance of the near and far surfaces from the
eye position we adjust the range of t. Rays are created by
casting a ray from the center of projection through the
surface at fixed u, v. To ensure the sampling specified
by the projection surface is propagated to the image we
should iterate through the u and v with equal step sizes;
for instance pixel (i, j) should be traced with the ray
Q(t) = Q(i/width, j/height, t).

While this technique is much slower than the other
techniques it is important to note that it is extremely
generic as we are only describing how rays should be
positioned and oriented. Consequently these panoramas
can be traced in anything from most efficient realtime
ray casting techniques to the most detailed and accurate
ray tracing approaches.

5.2 Rasterization

In our rasterization approach we develop a projection
equation that allows us to project triangle vertices based
on the panoramic surface Qd. This nonlinear projection
can be performed on the GPU with vertex or geometry
shaders [26] by simply substituting our nonlinear pro-
jection equation for the standard projection matrix. The
remaining work of rasterization (i.e., filling, clipping,
etc) is completed by the hardware’s default algorithms.

Qd

eye

p

p*=Qd(u,v)

p*=(u,v,t)

Fig. 10. When rasterizing we transform p from camera coordinates
(x, y, z) to parameterized volume coordinates (u, v, t). We can find
(u, v) quickly by identifying the ray (with unique spherical coordi-
nates) that passes through they eye, p, and p∗ as shown on the left.
On the right we produce interpret and rescale the volume parameters
(u, v, t) as existing in the normalized device coordinate viewbox.

Unfortunately, these algorithms assume the use of linear
projection causing two issues to be dealt with: seams and
accuracy. The remainder of this subsection discusses the
projection equation, handling seams, and the accuracy of
the filled triangles.

Projection Equation. Our main task in rasterization
is to develop a projection equation that will transform a
point in camera coordinates (x, y, z) to a projected point
on Qd and from there to normalized device coordinates.
To accomplish this we again define panorama’s projec-
tion volume by bounding it between the eye position
and Qd:

Q(u, v, t) = (1−t)(0, 0, 0)+tQd(u, v) 0 ≤ u, v, t ≤ 1.

We can create near and far depth clipping by altering the
range of t. The inverse Q−1(x, y, z) = (u, v, t) is our
desired projection equation. With Q−1 we can rescale
(u, v, t) to provide normalized device coordinates. This
inverse equation is nonlinear and, depending upon the
profile(s) and outline(s), can be difficult to analytically
derive.

To simplify the inverse calculation we limit ourselves
to surfaces that map onto spherical coordinates. While
this does introduce a restriction, it is only necessary
for rasterization and ensures that spherical coordinates
uniquely map to points on Qd; allowing us to use
spherical coordinates as an intermediate step in con-
version between (x, y, z) and (u, v, t). With spherical
coordinates of p, we can search for the point on the
surface Qd with the same spherical coordinates. As
shown in Figure 10 these coordinates uniquely identify
the ray passing through the eye, p, and p∗ on Qd.
Knowing p∗ = (x∗, y∗, z∗) on Qd and the associated
parameters (u∗, v∗) we only have to calculate depth.
Depth is the ratio between distance of the (x, y, z) from
the origin to the distance of p∗ from the origin. The
algorithm is:

1) find spherical coordinates (θ, φ) of coordinate
(x, y, z)

2) search to find point Qd(u
∗, v∗) = (x∗, y∗, z∗)

with the same spherical coordinates as (x, y, z)

7



0.785
0.774
0.763
0.753
0.7440.744

. . .

Fig. 11. Precalculation for outline and profile curves. The curve
(left) is first sampled into point by arc-length (middle) and then the
appropriate spherical coordinate (θ for outlines, φ for profiles) is stored
in an ordered array (right).

3) (u, v, t) =

(
u∗, v∗,

√
x2+y2+z2√

x∗2+y∗2+z∗2

)
.

Note that t (proportional to depth) is necessary for
occlusion testing and clipping.

Explanation is necessary to describe how we search
to find (u, v) from spherical coordinates. The first step
of this search requires precalculation on the CPU. That
is, for each outline and profile, we calculate n+1 points,
equally spaced by arc-length, along the curve. The value
n+1 should be chosen to balance the accuracy needed
for the number of pixels across the image without
requiring excessive memory; we find a value of half the
image’s larger dimension works well. We store the list
of ordered points by converting each point into spherical
coordinates, recording θ for outlines and φ for profiles
(see Figure 11). This data, along with the attachment
points for each curve (also in spherical coordinates), are
passed to the graphics card for a given Qd and only
need to be recalculated when Qd is changed.

The GPU, given this data and a point’s spherical
coordinates (θ, φ) calculates (u, v). This begins by cal-
culating u. In the case of a single outline we find the
array entries i and i+1 that bound θ and u is calculated
by interpolating between these the array values. Care
must be taken in the boundary case when θ is between
array entries 0 and n − 1. With multiple outlines we
must include the additional step of interpolating between
outlines based on φ and the interpolation function g(φ)
from Equation 2. The calculation of v is similar making
use of the profiles and φ. The only key difference are
the boundary cases. As profile curves are not closed and
do not entirely surround the center of projection there
will be points beyond the first and last array entries that
should be culled from the image by assigning values
outside the range of the surface (i.e., v /∈ [0..1]).

Seams. Seams refer to where the projection surface
has been split to be flattened. Without special handling,
triangles that intersect this seam become spread across
the image. This is the result of one of a triangle’s vertices
being projected to one side of the image, the other
vertices projected to the other side, and the linear fill
algorithm interpolating between them. With geometry
shaders this problem can be handled by testing for
triangles that overlap the seam. When found, a copy
of the triangle is created; the original is placed entirely

on the left side of the image, the copy on the right.
Accuracy. The accuracy problem is caused by the

standard algorithm’s use of linear interpolation that do
not properly handle the curving of triangle edges caused
by nonlinear projection. The effects of this are similar
to a coarse approximation of a curved surface and is
noticeable when low polygon models are used. Gascuel
et al. [27] provide an elegant solution for spherical
projections where each triangle’s maximum warped area
when projected is calculated and then shaders are used
to determine the extent of the curved triangle inside this
area. While accurate, this technique relies heavily on
the regular curving structure of spherical projections to
calculate the warped area and thus would be difficult
to adapt to our potentially irregular surfaces. Our sug-
gestion is to instead adaptively subdivide triangles with
the geometry shader when an edge’s midpoint deviates
significantly from a linearly interpolated midpoint. An-
other possibility is to use standard modeling software to
apply planar subdivision uniformly to the scene.

In our implementation, that includes handling of
seams but not adaptive subdivision, we achieve frame
rates of over 60 fps with a model of∼ 100K triangles on
an Intel Core2Duo 8400 with 4GB RAM and a NVIDIA
8800 GTS 640 MB graphics card.

5.3 Choice of Rendering Algorithm

Choosing a rendering algorithm, is a balance between
speed and quality. For the utmost in quality, ray tracing
is the clear candidate. When real-time rendering is
desired the choice between Trapp and Döllner’s cube
map resampling [23] (Cube Maps) and Section 5.2’s
rasterization algorithm (Rasterization) depends upon the
type of scene being projected, the shape of the projection
surface, and on the desired resolution of the output
image.

For scenes of extremely high numbers of polygon it is
possible that in Rasterization the number of calculations
performed per vertex on the GPU may outweigh the
Cube Maps cost of a second image pass and image
resampling. For low polygon scenes the Rasterization
technique will either yield inaccuracies in image quality
as discussed in the preceding subsection or suffer slow
downs due to planar subdivision of the scenery models.
The image based nature of the Cube Map technique will
cause speed reductions when creating higher resolution
output that will not be as noticeable in the object-
space Rasterization process. Additionally high resolution
output will cause Cube Map’s reduction in final image
quality due to greater aliasing artefacts associated with
resampling the relatively lower resolution cube map.

The Cube Maps technique will also suffer increasing
inaccuracies as the shape of the projection surface di-
verges from that of the cube map, especially for areas of
the surface corresponding to large arc-length where the
cube map lacks sufficient resolution to provide necessary
image detail for sampling. Lastly, the Cube Maps tech-
nique will suffer when the arc-length parameterization

8



Fig. 12. A cubic panorama modified by smoothing the corners of the
square outline. Resulting projection surface (left) and image (right).
Compare with Figure 5.

Fig. 13. The outline (left) and resulting projection surface (right)
used to create the image shown in Figure 1.

of the cube is significantly different from the arc-length
parameterization of the panoramic projection surface.
Differences in this parameterization indicate under/over
sampling scenarios that adversely affect image quality.

6. RESULTS

In this Section we provide several examples of how
panoramas can be tailored to create unique images.

In our first example, Figure 12, we begin with a square
outline that creates a cubic panorama. However, we then
alter the square, rounding off corners to avoid the sharp
discontinuities normally present in cubic panoramas.
The produced image provides views down each of the
streets in perspective with a smooth transition between
each of the four directions.

In motivating this work we mentioned the possibility
of altering a cylindrical panorama to contain an area
of perspective projection. Figure 1 and 13 provides an
example of this where the outline has been flattened to
make clear the rectangular nature of the building in the
scene.

Our next example begins with the goal of creating
a panorama depicting a small hallway that includes the
ceiling, floor, and walls. In Figure 15 we begin with
a spherical panorama but wish to change two aspects
of this image: first we want to minimize the outward
bulging of the wall in the middle of the image, secondly
we desire to reduce the amount of distortion at the poles

Fig. 14. The outline (left) and profile (right) used to create the
changes in Figure 15. The flattened area of the outline has been colored
orange for emphasis.

of the sphere. To solve the first problem we change the
outline, flattening it slightly into an ellipse. In the image
this horizontally compresses the walls and expands the
ends of the hallways. The second problem is corrected
by translating the outline away from the axis so that
the top of the surface will project a circle rather than a
single point.

The last example, a panorama of a train station, is
shown in Figure 16. In this example the outline was
made to be cylinder-like for the bottom third of the
image in order to minimize the presence of the dark
railway bed. The top of the outline is a hemi-circle
translated away from the axis. This provides a spherical
projection of the roof and emphasizes its arching nature.
The bottom half of the hemi-circle causes elements of
the train station at pedestrian eye level to be vertically
expanded in the image.

7. APPLICATIONS

Aside from use of this framework to specify unique
panoramas there are several possible applications that
take advantage of our panoramic projection surfaces.
Animated Panoramas. The first such application is
in creating animated panoramas. Frames from such an
animation are shown in Figure 18. An example of a
situation where this might be useful is in providing a
simulation of perceived peripheral vision for a moving
viewpoint. In such a simulation as the viewpoint moves
faster the center of projection, within a circular outline,
is moved towards the front edge (i.e., opposite the seam)
of the outline. This causes the world in front of the
viewer to enlarge in the created image and areas beside
and behind the viewer to shrink, simulating a change in
focus when moving quickly.
Panorama Reprojection. Another possible application
lies in reprojecting panoramas. That is, we can reprocess
existing panoramic images to appears as if created by
a different panorama. That is, if there is an existing
panorama this technique can be used to create a dif-
ferent panorama of the same scene. The steps of this
conversion are:

1) create a projection surface Q1(u, v) that corre-
sponds to the projection used to produce the image

2) use Q1(u, v) to find spherical coordinates for each
pixel

3) use Q2(u, v) to determine the resulting spherical
coordinates in each pixel of image produced by
the new panorama

4) use both sets of spherical coordinates to sample
and determine the pixel values.

Figure 17 provides an example where a cylindri-
cal panoramas is reprojected to another custom-made
panorama. The areas sampled outside that of the original
cylindrical panorama have been colored black.
Interactive Local Editing. The last application we
will discuss in an interactive tool for local editing
of panoramic projections. With the described realtime
rendering technique it is possible to display and change

9



Fig. 15. Altering a spherical panorama (left) of a hallway to produce customized panoramic projections (middle and right).

Fig. 16. Altering a cylindrical panorama (left) to a customized panorama (center) that vertically stretches the scene at eye level as is evident
in the scene’s doors. The projection has also been designed to reduce the amount of image displaying the railway floor while retaining the
arched roof. The outline in the altered panorama is a circle, the profile is shown in the rightmost image.

Fig. 17. Left: a cylindrical panorama created from stitched together camera images. Right: reparameterization to meet the specification of the
panorama shown in Figure 8.

Fig. 18. Four frames from an animation transitioning between a cylindrical panorama and the projection shown in Figures 1 and 13.

the arc-length panorama surface interactively in image
space.

In our proof of concept application the user begins
with any arc-length panoramic surface and then drags
the mouse over the image specifying a rectangular area
that they want altered to be projected in perspective. This
changed is accomplished by calculating the rectangular
extent in spherical coordinates. These coordinates are
used to extract outline and profile iso-curves from the
projection surface at boundaries of the specified area. We
extract four outlines and four profiles, one corresponding
to each boundary of the rectangle and another slightly
inside the rectangle to provide an area of interpolation
between the original panorama and the perspectively
projected area. The interior outlines and profiles are
flattened to produce a flat area on the surface while
the boundary curves maintain the original surface (see
Figure 20).

These new outline and profile specifications are
added to the surface definition, relayed to the geom-
etry shaders, and the specified alteration is instantly
displayed in realtime. Additionally this surface definition
can be used to produce a high quality ray traced version
of the panorama (Figure 19) This technique can easily

Fig. 19. Interactive editing a panorama in image space. Top: the
original spherical panorama. Bottom: the altered panorama. The red
lines indicate the altered image region. Right: enlarged comparison of
altered region.

be extended to allow other local alterations to be made
to a panorama’s image.

10



Fig. 20. The arc-length parameterized surface produced by the
interactive process shown in Figure 19.

8. CONCLUSION

In this work we have shown how custom panoramas
can be created for a variety of effects. Through use
of projection surfaces parameterized by arc-length we
create an explicit relationship between the easily visual-
ized surface and the projection behavior in the resulting
image. This allows for creation of a wide variety of
panoramas in a visual manner and draws upon existing
modeling tools and conventions.

Additionally we have described how these projections
surfaces can be rendered as well as described several
possible applications. Lastly we demonstrated the use of
these projections surfaces for changing existing panora-
mas into different panoramas.

8.1 Future Work

One area of future work is to expand beyond single
center of projection panoramas. While creating such
panoramas is straightforward, research is required in
providing application for such projections, mechanisms
for controlling their image characteristics that ensures
construction of visually meaningful images.

Another issue is that we have limited ourselves to
rectangular images. While alternatively shaped images
can easily be achieved through 2D transformations it
could prove useful to bind image area to arc-length (or
another measure) of the projection surface.

ACKNOWLEDGMENTS

We thank the reviewers for many helpful comments
and suggestions. We also thank Luke Olsen and Adam
Runions for their assistance preparing this work. The
support of the Natural Sciences and Engineering Re-
search Council of Canada and University Technologies
International is greatly appreciated.

REFERENCES

[1] B. Comment, The Panorama. Reaktion Books, 1999.
[2] J. Brosz, F. Samavati, S. Carpendale, and M. C. Sousa, “Single

camera flexible projection,” in Proceedings of the 5th interna-
tional symposium on non-photorealistic animation and render-
ing. ACM, 2007, pp. 33–42.

[3] Y. Yang, J. X. Chen, and M. Beheshti, “Nonlinear perspective
projections and magic lenses: 3d view deformation,” IEEE
Computer Graphics and Applications, vol. 25, no. 1, pp. 76–
84, 2005.

[4] M. S. T. Carpendale and C. Montagnese, “A framework for
unifying presentation space,” in UIST ’01: Proceedings of the
14th annual ACM symposium on User interface software and
technology. ACM Press, 2001, pp. 61–70.

[5] M. Inakage, “Non-linear perspective projections,” in Modeling in
Computer Graphics (Proceedings of the IFIP WG 5.10), 1991.

[6] A. Glassner, “Cubism and cameras: Free-form optics for com-
puter graphics,” Microsoft, Tech. Rep. MSR-TR-2000-05, Jan-
uary 2000.

[7] N. Sudarsanam, C. Grimm, and K. Singh, “Non-linear per-
spective widgets for creating multiple-view images,” in NPAR
’08: Proceedings of the 6th international symposium on Non-
photorealistic animation and rendering. ACM, 2008, pp. 69–
77.

[8] D. Salomon, Transformations and Projections in Computer
Graphics. Springer-Verlag, 2006.

[9] N. Greene, “Environment mapping and other applications of
world projections,” IEEE Computer Graphics and Applications,
vol. 6, no. 11, pp. 21–29, 1986.

[10] G. Glaeser and E. Gröller, “Fast generation of curved perspec-
tives for ultra-wide-angle lenses in vr applications,” The Visual
Computer, vol. 15, no. 7-8, pp. 365–376, November 1999.

[11] J. A. Polack, L. A. Piegl, and M. L. Carter, “Perception of images
using cylindrical mapping,” The Visual Computer, vol. 13, no. 4,
pp. 155–167, June 1997.

[12] R. Szeliski and H.-Y. Shum, “Creating full view panoramic
image mosaics and environment maps,” in SIGGRAPH ’97.
ACM Press, 1997, pp. 251–258.

[13] P. Rademacher, “View-dependent geometry,” in SIGGRAPH ’99.
ACM Press, 1999.

[14] A. Román, G. Garg, and M. Levoy, “Interactive design of multi-
perspective images for visualizing urban landscapes,” in VIS
’04: Proceedings of the conference on Visualization ’04. IEEE
Computer Society, 2004, pp. 537–544.

[15] A. Agarwala, M. Agrawala, M. Cohen, D. Salesin, and
R. Szeliski, “Photographing long scenes with multi-viewpoint
panoramas,” in SIGGRAPH ’06. ACM Press, 2006, pp. 853–
861.

[16] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and
D. H. Salesin, “Multiperspective panoramas for cel animation,”
in SIGGRAPH ’97. ACM Press, 1997, pp. 243–250.

[17] J. Yu and L. McMillan, “A framework for multiperspective
rendering,” in 15th Eurographics Symposium on Rendering
(EGSR04), 2004, pp. 61–68.

[18] P. Degener and R. Klein, “A variational approach for automatic
generation of panoramic maps,” ACM Trans. Graph., vol. 28,
no. 1, pp. 1–14, 2009.

[19] D. Zorin and A. H. Barr, “Correction of geometric perceptual
distortions in pictures,” in SIGGRAPH ’95. ACM Press, 1995,
pp. 257–264.

[20] L. Zelnik-Manor, G. Peters, and P. Perona, “Squaring the circle
in panoramas,” in IEEE International Conference on Computer
Vision (ICCV), vol. 2, 2005, pp. 1292–1299.

[21] R. Carroll, M. Agrawal, and A. Agarwala, “Optimizing content-
preserving projections for wide-angle images,” in SIGGRAPH
’09: ACM SIGGRAPH 2009 papers. ACM, 2009, pp. 1–9.

[22] J. P. Snyder, Flattening the Earth, 2nd ed. University of Chicago
Press, 1997.

[23] M. Trapp and J. Döllner, “A generalization approach for 3d view-
ing deformations of single-center projections,” in International
Conference on Computer Graphics Theory and Applications
(GRAPP), 2008, pp. 162–170.

[24] G. Farin, Curves and Surfaces for CAGD: A Practical Guide,
5th ed. Morgan Kauffman, 2001.

[25] J. J. Cherlin, F. Samavati, M. C. Sousa, and J. A. Jorge, “Sketch-
based modeling with few strokes,” in SCCG ’05: Proceedings of
the 21st spring conference on Computer graphics. ACM, 2005,
pp. 137–145.

[26] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time
Rendering 3rd Edition. A. K. Peters, Ltd., 2008.

[27] J.-D. Gascuel, N. Holzschuch, G. Fournier, and B. Peroche,
“Fast non-linear projection using graphics hardware,” in ACM
Symposium on Interactive 3D Graphics and Games. ACM,
Feb 2008.

11


