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Abstract

Reverse subdivision aims at constructing a coarser representation of
an object given by a fine polygon mesh. In this paper, we first derive a
mask for reverse Loop subdivision that can be applied to both regular and
extraordinary vertices. The mask is parameterized, and thus can also be
used in reversing variants of Loop subdivision, such as those proposed by
Warren and Litke.

We apply this mask not only to mesh geometry, but also to tex-
ture coordinates. This reverses the texture-mapping process described
by DeRose, Kass and Truong, in which a texture originally defined for
a coarse mesh was carried to the finer meshes obtained by subdivision.
Combined with the forward subdivision, the proposed technique consti-
tutes a multiresolution representation of textured subdivision surfaces.
We illustrate its use with a set of examples.

Keywords: subdivision, texture mapping, multiresolution, meshes

1 Introduction

A hierarchy of level-of-detail approximations of a surface can be applied in both
Modeling and Rendering. Subdivision methods can provide the hierarchy of
refining approximations; through the use of subdivision, a sequence of meshes
in several resolutions is constructed.

In order to have a texture mapping for subdivision surfaces, the rule of
transforming vertices of a coarse mesh to a fine one can be used for carrying
texture coordinates from the coarse mesh to the fine mesh. Figure 1 illustrates
this concept which was introduced in [4]. By using this technique, we only
need a texture map for the given coarse mesh. The texture coordinates of the
subsequent finer meshes are carried from the coarse mesh during subdivision.
This technique is more advantageous when we encounter time-consuming tex-
ture mapping methods such as those that are procedural [4] and interactive [15].



Texture mapping for subdivision surfaces has been also considered in [21] and
[16].

Here we consider the inverse problem: How can texture coordinates be car-
ried from a fine mesh over to a coarse one? We describe the possibility of
recovering coarse meshes, together with their texture coordinates, from the fine
mesh using reverse subdivision. Therefore, with this technique, it is no longer
necessary to have coarse meshes and their texture coordinates. This new tech-
nique, together with the technique of DeRose, Kass and Truong [4], can generate
a hierarchy of meshes with their texture coordinates in different levels-of-detail,
so that all meshes and their texture coordinates can be produced from a specific
mesh by the use of subdivision and its reverse rules (Figure 10).

This hierarchy is beneficial for various applications, such as view dependent
rendering and progressive transmission. Consider looking at an object from
close and distant view points. We can use a fine mesh for a close view and a
coarse mesh for a distant view; and can easily change the quality or resolution
of the mesh both ways by using this hierarchy. Texture coordinates can also be
transformed in this process and repeating the texture mapping at each resolution
can be avoided. In other words, only one approximation mesh of a surface
together with its texture coordinate is needed, and all other approximations in
different levels-of-detail, coarse or fine, can be obtained.

Therefore, our framework is a multiresolution hierarchy (MR) that is an ex-
tension of subdivision. This is consistent with the framework of [3, 13, 17, 22].
The progressive mesh (PM) [8, 20, 14], is another framework for constructing
a hierarchy of several level-of-details of an object. It can be obtained by us-
ing vertex-split and collapse operations. PM can be applied to a mesh with
an arbitrary topology, while MR can be applied directly only on those meshes
that satisfy whatever connectivity conditions are required by the subdivision
rule being used. Although, this is a restriction for the MR approach, never-
theless, subdivision methods are widely used in various graphics software and
applications. Thus, subdivision connectivity conditions are achievable and not
too restrictive in practice. In addition, several techniques have been proposed
for remeshing, [7, 9, 10], which replace meshes unsuitable for a given subdivision
into approximating meshes that are suitable, which broadens the applicability of
MR. Furthermore, each step of any subdivision scheme converts a low frequency
approximation of a surface to a high one, and analogously each step of reverse
subdivision converts a high frequency approximation to a low one. Hence, the
hierarchy obtained has a suitable configuration consistent with some specific
applications such as (MR) editing and progressive transmission.

A mask for decreasing the resolution of a mesh is an important tool for (MR)
surfaces. There is an analogous mask for refining, or increasing, the resolution
of a mesh, in the case of subdivision surfaces. While the mask of a subdivision
surface usually is a local formula, finding a mask(local formula)for the reverse
subdivision is problematic.

The multiresolution masks of Butterfly and Loop subdivision for regular ver-
tices (all vertices have the valence 6), are determined by Samavati and Bartels in
[19] and for Doo-Sabin subdivision in [18]. Here we construct a reversal for Loop



Figure 1: Carrying texture from the coarse mesh to fine mesh through Loop
subdivision scheme.

subdivision that works for extra-ordinary vertices as well. Loop subdivision is
a very good selection because its limit surface is smooth, it has a convenient
local formula for extra-ordinary vertices, and it is based on triangular meshes.
Loop subdivision has been widely used in computer graphics [24]; therefore, con-
structing a reverse mask of Loop subdivision is advantageous. There are other
variations of Loop subdivision such as Warren and Litke that we take them to
consideration as well. Therefore, we construct a parametric reverse mask that
works for all Loop style subdivisions.

Although, meshes are mostly covered by regular vertices, there are a small
number of extra-ordinary vertices on practical meshes. Therefore, determining a
local formula for a reverse process is important. This local formula or parametric
mask can be applied to both ordinary and extra-ordinary vertices. The main
contributions of this work are the construction of this mask, together with the
concept of carrying texture coordinates from a fine mesh to a coarse mesh.

The work in [19] provides both local reversal and local detail (error) masks
for ordinary vertices. The detail masks relate to the wavelet coefficients of a
MR surface constructed as a biorthogonal system. The detail coefficients are
important only if the fine mesh being reversed is not created by a subdivision,
which is not the case we are considering here. The errors or details of the reverse
method that relate to the wavelet coefficients are left for future works.

Section 2 gives the necessary background of this work. The construction of
the reverse mask is described in section 3. Section 4 demonstrates the concept
of carrying texture by using local masks.



2 Background

Subdivision is a repetitive refinement process that gradually converts a given
coarse mesh to finer meshes to generate a smooth surface at the limit. An
arbitrary mesh M can be denoted by the pair (F, V ), where F shows the faces
of M , and V denotes the vertices of M . Each element ν ∈ V has the spatial
coordinates, (x, y, z), and each element f ∈ F is assigned a list that includes all
indices of its adjacent vertices in V .

Catmull-Clarck, Doo-Sabin, Butterfly and Loop subdivisions are some im-
portant cases [2, 5, 6, 12]. The input for subdivision methods is M0 = (F 0, V 0),
a control mesh. In each step of a subdivision method, the mesh Mk = (F k, V k)
is converted to a new and finer mesh Mk+1 = (F k+1, V k+1). This conversion is
done through some local affine operations on V k, together with a mapping pro-
cess from the faces of F k to those of F k+1. The affine operations are usually de-
scribed by masks, or matrices, that are smoothing filters. Consequently, by suc-
cessively applying a subdivision method, a hierarchy M0,M1,M2, . . . ,Mk, . . .
is obtained that usually converges to a smooth surface.

2.1 Loop Subdivision

Loop subdivision is an extension of triangular B-spline subdivision to general
surfaces. In each step of this subdivision, each triangular face of F k is replaced
by four new triangles that form the faces of F k+1 (Figure 2).

The set of new vertices V k+1 includes two types of vertices; some vertices
in V k+1 have an analogous vertex in V k, and are called vertex-vertex or even
vertex (vertex νk+1 in Figure 2). Some vertices in V k+1 have an analogous edge
in V k, which is called edge-vertex or odd vertex (vertex νk+1

1 in Figure 2).
Assume that vertices νk

1 , νk
2 , . . . , νk

n are all neighbors of νk in Mk. In addi-
tion, νk+1 is the corresponding vertex-vertex of νk and νk+1

1 , νk+1
2 , . . . , νk+1

n are
the corresponding edge-vertices. Then the position of νk+1 is obtained by the
vertex-vertex mask

νk+1 = βνk + α

n∑
j=1

νk
i (1)
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1
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(2)

and
β = 1− nα.

The weight α is a function of n, and has been selected such that the limit surface
is smooth.

The edge-vertex mask is

νk+1
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3
8
νk +

3
8
νk

j +
1
8
νk

j+1 +
1
8
νj−1, (3)



Figure 2: Situation around a vertex νk before and after subdivision.

j = 1, 2, . . . , n

where indices are in module n.
For triangular meshes, a regular vertex (or ordinary vertex) has the valance

of 6, i.e. n = 6. Otherwise, the vertex is called extra-ordinary (n 6= 6). In
the regular case, α is 1

16 , and β is 5
8 and these are also obtainable from the

triangular B-spline surface. But masks 2 and 3 are more general and can be
applied for any type of vertex including ordinary and extra-ordinary. The local
formula 2 is one of the advantages of Loop subdivision. Note that both masks of
Equations 1 and 3 are affine operations. Figure 3 shows two consecutive meshes
of Loop subdivision and their limit surface.

2.2 Boundary

When we encounter boundary vertices, we need to use boundary masks that are
usually different from the interior mask. It is important that subdivision at any
point on the boundary be independent of any point in the interior of the mesh
[24]. This permits two surfaces to be joined along a boundary curve. Therefore,
cubic B-spline subdivision masks for curves can be used as the boundary masks



Figure 3: Loop subdivision.

of Loop subdivision

νk+1 = 1
8νk

1 + 3
4νk + 1

8νk
2

νk+1
1 = 1

2νk + 1
2νk

1

νk+1
2 = 1

2νk + 1
2νk

2

(4)

where νk
1 and νk

2 are two direct neighbors of νk on the boundary (see Figure 4).

Figure 4: An illustration for the boundary mask.

In Figure 11 the left one is a mesh with boundary and the middle one shows
the obtained mesh by Loop subdivision.



2.3 Loop Style Subdivisions

We derive a reverse mask for Loop subdivision. This mask is parameterized
and can also be applied in reversing other variants such as triangle averaging
of Warren and Weimer [23] and quasi-interpolation scheme of Litke, Levin and
Schröder [11]. The triangle averaging scheme can produce a smooth surface but
not necessarily at extra-ordinary vertices. The α , β values of this scheme are

α = 3
8n

β = 5
8 .

(5)

Therefore α for this scheme is simpler than (2). In Figure 5, there is a com-
parison between Warren’s scheme and the original Loop subdivision. In the
quasi-interpolation scheme different mask values are used to obtain a quasi-
interpolation limit surface. The mask values are

α = − 1
2n

β = 3
2 .

(6)

The right part of Figure 5 shows an example of this scheme.

Figure 5: From left to right: the coarse mesh, Loop subdivision, Warren’s scheme
and the quasi-interpolation scheme.

2.4 Texture Mapping

The conventional texture mapping of subdivision surfaces is close to the tech-
nique of texture mapping of polyhedron meshes. The control polyhedron M is
mapped to a fine mesh Mk such that Mk is smooth enough for the graphics
pipeline and rendering. Then texture mapping techniques of polyhedron meshes
are employed for Mk. In practical applications, sometimes we need a finer mesh,
since, it is necessary to change the view point or the object’s position. In this
situation we have to continue the subdivision process on Mk in order to obtain
a smoother mesh M ` where ` > k. Consequently, the texture mapping must



be repeated for the new mesh, Mk. DeRose, Kass and Troung [4] provide the
concept of carrying texture coordinates from the coarse mesh to the finer one by
using the same subdivision rule that is applied to the vertices. More specifically,
we assume that texture coordinates of the control mesh M0 are somehow given.
Each texture coordinate is a pair (sj , tj) assigned to the vertex νj ∈ V . These
coordinates can be obtained by some methods that are potentially expensive
such as procedural, manual and interactive textures.

The pair (sj , tj) presents a point in the texture space whose value defines
the intensity color of νj . tj and sj are numeric scalars and can be added to
the spatial coordinates of νj . Therefore, the corresponding attribute of νj is
(xj , yj , zj , sj , tj) where the first three components are the spatial coordinates
and the two last components are the texture coordinates. Now, it is sufficient
to apply the subdivision mask to elements of the five dimensional Euclidian
space E5. By using this technique, not only it is not necessary to repeat texture
mapping for finer surfaces, but also a smooth correlation between the texture of
the coarse mesh and the fine mesh is provided (Figure 1). The efficiency of this
technique is substantial when complicated texture maps are encountered. The
concept of increasing the space dimension of control points might be extended
to include other rasterization features such as multi-textures and bump maps.
DeRose at el.[4] have considered texture mapping for Catmull-Clark subdivision.
Seng and Zhiyong [21] have considered it for Doo-Sabin subdivision. Piponi and
Broshukov [16] provide a seamless texture mapping of subdivision surfaces. We
extend this concept to offer the ability of carrying texture coordinates from a fine
mesh to a coarse one. It relates to the reversal of subdivision and constructing
a MR representation.

2.5 Reverse Subdivision and Multiresolution Surfaces

Subdivision methods give a hierarchy

M0,M1,M2, . . . ,Mk, . . .

where
Mk = (V k, F k).

Each ν ∈ V has a 5 space coordinate (x, y, z, s, t). Suppose M0 is the control
mesh of an object and Mk is a good approximation of the limit surface for
rendering. Now, if the object position is changed to a new position that is closer
to the view point, it will be necessary to construct a finer mesh Mk+i , (i > 0).
Thus, it is sufficient to repeat the subdivision rule for i times over Mk. In other
words, having Mk is enough for all finer approximations. Contrarily, if the
object position is moved to a distant position, it will be better to have a coarser
approximation in respect to Mk. Therefore, we encounter this problem: ”How
can coarser meshes Mk−` be obtained from Mk?” This question is interesting in
two ways. Firstly, for 1 ≤ ` ≤ k, procedural reversal relieves us of the necessity of
storing any information about M0, . . . ,Mk−1, trading time for space. Secondly,
for ` > k, reversal provides us coarser meshes than M0, which might have been



given at a fairly high level of detail to begin with, due perhaps to the design
process.

The reverse mask together with the subdivision mask provide a (MR) of the
given object that is suitable for applications such as; view dependent rendering,
flexible editing and progressive transmission. In section 3, we construct the
reverse mask from the Loop subdivision mask. The method is general enough
to be extended to other subdivision schemes, but in this work we just focus one
Loop subdivision and its variants.

3 Reverse Mask of Loop Subdivision

For the reverse process, it is necessary to construct a mask to map V k+1 to V k.
Assume a general subdivision situation for an extra-ordinary vertex in Figure 6.
In this Figure, we know νk+1, νk+1

1 , νk+1
2 , . . . , νk+1

n and we want to find νk by a
new mask such that the following conditions are met:

1. The operation of the new mask must be affine(to obtain a mask that maps
points to points).

2. Weights of neighbors of νk+1 in the mask must be equal (similar to Loop
mask of Equation 1).

3. The new mask must be a reverse of the subdivision mask i.e. the action
of subdivision mask of Equation 1 and 2 on νk and its neighbors must
exactly reconstruct νk+1.

Figure 6: General situation for an extra-ordinary vertex.

Condition (2) provides the diagram of Figure 7 for the reverse mask. In this
diagram µ is the weight of νk+1 and η is the weight of the neighbors in the
reverse mask. Note that the weight of all neighbors are equal to η. These
weights are determined such that conditions (1) and (3), also become true.
For condition (3) (reversal), it is necessary to have

µ νk+1 + η
n∑

j=1

νk+1
j = νk.



Figure 7: Reverse mask.

By use of Equation 1, we get

µ(βνk) + µ

α
n∑

j=1

νk
j

+ η

(
3
8
nνk

)
+ η

5
8

n∑
j=1

νk
j

 = νk,

or equivalently (
µβ +

3
8
nη

)
νk +

(
µα +

5
8
η

) n∑
j=1

νk
j = νk.

To enforce the equality, we must have{
µβ + 3

8nη = 1

µα + 5
8η = 0.

(7)

In this system, α, β are parameters of Loop subdivision mask in Equation 2,
and they satisfy the relation

β = 1− nα.

If we solve Equation 7 with respect to β, then

µ = 5
8β−3 ,

η = β−1

n(β− 3
8 )

.
(8)

The Equation 8 is a parametric formula for the reverse mask and can be applied
to both regular and extra-ordinary vertices. For example, in the case of regular
vertex, i.e. n = 6, α = 1

16 , β = 5
8 , Equation 8 gives µ = 5

2 and η = − 1
4 . Figure 8

diagrammatically presents this result, which exactly matches with the A mask
of width 1 in [19]. However, the diagram in Figure 7 together with the formula
8 can also be used for extra-ordinary cases.



Figure 8: Reverse mask for regular vertex.

For an extra-ordinary example, let n = 3; thus, Equation 2 gives

α =
3
16

, β =
7
16

.

If we substitute α, β into Equation 8, we obtain

µ = 10 , η = −3,

or diagrammatically as in Figure 9.

3.1 Affine Invariance Property

Both examples Figure 8 and Figure 9 form affine operations i.e. the sum of the
weights is one. This property is generally correct, since

µ + nη = 1

where µ and η are determined from Equation 8. In fact, the property (condition
(1)) automatically becomes true for all reverse masks (condition (3)). There is
a short argument for this fact in Appendix I.

3.2 Reverse of Loop Style Subdivisions

The formula (8) is a parameterized, and thus can be applied directly to Warren
scheme (5) and quasi-interpolation scheme (6). This implies the following µ and



Figure 9: Reverse mask for an extra-ordinary vertex (n=3).

η values for the reverse mask of the Warren scheme

µ = 5
2

η = − 3
2n .

(9)

And, the following values for the reverse mask of the quasi-interpolation
scheme

µ = 5
9

η = 4
9n .

(10)

3.3 Reverse Mask of the Boundary Vertices

We have used cubic B-spline mask for boundary vertices as a pure curve scheme.
Therefore, we need to find a reverse mask for the cubic B-spline subdivision.
In Bartels and Samavati [1], several masks for cubic B-spline subdivision are
provided. The simplest one is

νk = −1
2
νk+1
1 + 2νk+1 − 1

2
νk+1
2 . (11)

Here the same notation of the section 2.2 is used. In Figure 11, the boundary
of the right surface has been obtained by application of the mask (11) on the
boundary of the middle surface.



Figure 10: The top-left shows the textured control mesh of a pawn, and the top-
middle is the fine mesh obtained by Loop subdivision, and top-right shows the
obtained mesh from the reverse process. The second row shows the same meshes
together with grid lines.

4 Results

To demonstrate the quality of the proposing technique we show several exam-
ples. In these examples, Loop subdivision has been used for both increasing
the resolution of a given mesh and transforming its texture coordinates. Our
reverse mask (Equation 8) has been used for decreasing the resolution together
with texture coordinates.

For the pawn example in Figure 10, a simple texture has been used for a
better illustration of the concept. This figure shows one step of Loop subdivision
and one level of the reverse process. In order to enhance clarity, a grid based
outline versions of those meshes are also provided. The coarse mesh includes
154 vertices while the fine mesh includes 610 vertices.

The fish example in Figure 14 shows the results after two steps of Loop



Figure 11: The top-left shows a simple control mesh with boundary, and the
top-middle is the fine mesh obtained by Loop subdivision, and top-right shows
the obtained mesh from the reverse process. The second row shows the same
meshes together with a simple texture.

subdivision, as well as two levels of the reverse process. The control mesh has
46 and the finest mesh has 390 vertices.

Figure 11 demonstrates the impact of the reverse subdivision on different
kinds of textures. In this example, the boundary is highlighted to show the
effect of the boundary masks.

The example in Figure 12 shows the effect of Loop subdivision and its reverse
scheme on a complicated mesh.

Figure 12: Left is a given control mesh, middle is the resulting mesh after one
step of Loop subdivision and right is the resulting mesh after reversal.

Figure 13 shows the impact of repositioning the vertices in the fine mesh in
the reverse process. The reverse mask of the quasi-interpolation scheme (10)
produces a better result. This is due to the fact that Loop subdivision is a
contracting scheme, therefore its inverse must expand the objects. In the other
hand, the quasi-interpolating subdivision is an expansion scheme(see the equa-



tion 6), consequently its inverse must be a contraction scheme and reduces the
impact of the perturbation. In fact, the values of µ and η in this case are posi-
tive, and consequently the resulting coarse mesh is contained in the convex hull
of the fine mesh.

Figure 13: The left shows a modified fine mesh of the pawn, and the middle
is the resulting coarse mesh via the mask 10, and the right shows the obtained
mesh from the reverse Loop.

5 Conclusion

A reverse mask for Loop subdivision has been constructed. This mask is a
parameterized formula and can be applied to other Loop style subdivisions. We
have also described a technique for texture mapping of multiresolution surfaces
using the reverse mask. We have demonstrated the effectiveness of the resulting
method mostly when there is no large modification in the fine meshes.

In the case of a significant change to the fine mesh the reverse mask of Loop
and Warren schemes show an unstable behavior, however the reverse mask of
quasi-interpolation produce better results.

Bartels and Samavati [1] have constructed more stable reverse masks for
curve scheme by increasing the width of curve masks. It is possible to employ
and extend that concept to obtain wider but more stable reverse Loop masks.
However, the resulting masks will be too complicated to compute and implement
especially in extra-ordinary cases.
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5.1.1 Appendix I

We want to show that each reverse mask of width one for Loop subdivision
forms an affine operation. Consider, the following matrix relation:

νk+1

νk+1
1

νk+1
2
...

νk+1
n

 =


β α α α . . . α
3
8

3
8

1
8 0 . . . 1

8
3
8

1
8

3
8

1
8 . . . 0

...
...

...
...

. . .
...

3
8

1
8 0 0 . . . 3

8




νk

νk
1

νk
2
...

νk
n

 (12)

or
Vk+1 = S.Vk

where S is a local subdivision matrix [23]. Furthermore, assume that the row
matrix, R = [a0, a1, . . . , an], represents the reverse mask, then we have:

R.Vk+1 = νk

therefore,
R.S.Vk = νk

or equivalently
R.S = [1, 0, 0, . . . , 0]T

If we set S = [S1, S2, . . . , Sn] where Si is i-th column of S, then we obtain,
RS1 = 1 and RSi = 0 , i = 2 . . . , n. Therefore

R(S1 + S2 + . . . + Sn) = 1 (13)

Since rows of S have the unit summation property [23], we must have:

S1 + S2 + . . . + Sn = [1, 1, . . . , 1]T

by using recent Equation 13, we obtain

R.


1
1

. . .
1

 = 1

and this equation shows affine property of R mask.



Figure 14: (a) The control mesh. (b) The textured control mesh. (c) The
resulting mesh after one step of Loop subdivision. (d) After two steps of Loop
subdivision. (e) The resulting mesh after applying the reverse scheme on mesh
(d). (f) The resulting mesh after applying the reverse scheme on mesh (e).


