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Abstract

This work explores how three techniques for de�ning and representing curves and surfaces can be related
e�ciently�The techniques are subdivision� least�squares data �tting� and wavelets� We show how least�
squares data �tting can be used to �reverse� a subdivision rule� how this reversal is related to wavelets�
how this relationship can provide a multilevel representation� and how the decomposition�reconstruction
process can be carried out in linear time and space through the use of a matrix factorization�
Some insights that this work brings forth are that the inner product used in a multiresolution analysis
in	uences the support of a wavelet� that wavelets can be constructed by straightforward matrix obser�
vations� and that matrix partitioning and factorization can provide alternatives to inverses or duals
for building e�cient decomposition and reconstruction processes� We illustrate our �ndings using an
example curve� grey�scale image� and tensor�product surface�
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�� Introduction

Subdivision curves and surfaces begin with a polygo�
nal network of points� In the case of curves� the net�
work merely encodes a point�to�point sequence� In the
case of surfaces� the network provides the edges and
faces of a polyhedral topology� In conventional usage a
subdivision curve or surface begins with a coarse net�
work structure consisting of relatively few points� To
this is applied a set of rules that replace the coarse net�
work by a �ner network� The set of rules could again be
applied to this �ner network� In the limit of repeated
application� the rules yield curves or surfaces of some
provable continuity �excluding exceptional points�� In
practice� of course� the rules are repeated only a �nite
number of times to yield a network containing a large

number of points that represent a �ne approximation
of the limit�

Suppose we begin with some �ne sampling of a curve
or surface and we wish to represent this data approx�
imately in some more compact way as if it had been
generated by a certain subdivision rule� Ignoring the
subdivision for a moment� the traditional approach for
doing data approximation on a �nite set of data points
is through least�squares data �tting� The sampling will
be the m items of a data vector� f � which serves as
the right�hand side for an m� n �n � m� overdeter�
mined set of equations� Pc � f that is to be solved
in the sense that the Euclidian norm of the residual
vector� kPc�fk�� is to be minimized� �Sometimes this
system is speci�ed only implicitly by the n � n nor�
mal equations PTPx � PT f � whose solution� c� will
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be the minimizer for the residual vector�� The m� n

matrix P provides the 	design
 of the approximation�
generally by specifying a sense in which some given
functions �j approximate the data

P
j
cj�j � fi� The

particular speci�cation is characterized by the nature
in which the functions �i contribute values for the en�
tries pij of P � or alternatively for the entries �pij of the
matrix PTP and �fi of the vector PT f �

In our geometric context� f represents 	�ne
 points�
and c represents 	coarse
 points whose subdivision�
through the rule given in the matrix P � approxi�
mately produce the f � The speci�cation of interest
to us� which characterizes least�squares data��tting�
gives the entries of P explicitly in the form pij and
de�nes the minimization to be over the residualsX

j

cjpij � fi ���

The functions � underlying the pij do not have to be
known to solve this problem as given�

Another typical speci�cation� which characterizes
least�squares approximation� only speci�es the data
PT f in terms of an approximating inner product and
a function g� e�g� �fi � h�i� gi for some function g� In
this case� the normal equations are be solved
X

j

cj �pij � �fi ���

where �pij � h�i� �ji� The need to specify a function g

underlying the data is one of the distinguishing charac�
teristics of the approximation problem that contrasts
it with the data �tting problem�

In this paper we explore the possibilities for revers�
ing a subdivision process from the residuals in ����
We begin with a �ne network that did not necessarily
come from a set of subdivision rules� and we wish to
�nd a coarser network that could have produced the
�ner network� in an approximate sense� by the applica�
tion of given subdivision rules� We specify the matrix
P as the one which is de�ned by the subdivision�

Because least�squares systems are not necessarily
solved exactly� the coarse network may not return the
�ne network under the use of the subdivision rules�
However� we can reconstruct the �ne network with
appropriate corrections derived from error terms� This
will structure our approach along lines familiar to the
users of wavelets� A �ne set of data will be decom�
posed into a coarse approximation and error informa�
tion� The �ne data can subsequently be reconstructed
from the coarse data and the error� As a byproduct�
some degree of compression may be achieved by sup�
pressing less important elements of the error�

Although we shall draw a comparison with wavelets

and multiresolution analysis� we don�t assume that we
know what scale functions underlie our data in or�
der to work out the decomposition and reconstruction
algorithms� Furthermore� even if the scale functions
were known� we would not necessarily want to �nd the
conventional wavelets that are associated with them�
Wavelets are usually de�ned in the context of L� func�
tion spaces� that is� by ��� in terms of an inner prod�
uct that is continuously dependent on the scale func�
tions �h�i� �ji �

R
�i ��j�� We shall work only with the

coe�cients of the scale functions� which we identify
with the data points� the coe�cients of the wavelet
functions� which we associate with the errors� and the
conventional discrete �Euclidian� vector inner prod�
uct� which measures the errors directly on the data fi
rather than over some function g� As such� we shall be
working in �nite�dimensional �� spaces�

In Section � we relate what we are doing with some
previous work� In Section � we shall review basic ma�
trix notation for subdivision rules� In Section � we
introduce the least�squares problem of interest� and in
Section � we review the normal equations� In Section �
we outline an approach to the construction of orthog�
onal complements for subdivision matrices� In Section
� we use the special form of these orthogonal comple�
ments to solve for the error coe�cients� Remarks on
error are presented in Section �� Several curve subdi�
vision rules are presented in Section �� Periodic rules
are covered in Section ��� Tensor�product surfaces are
covered in Section ��� In Section �� we present our
approach applied to an example curve� grey�scale im�
age� and tensor�product surface� In Section �� we shall
review the connection of these matrices to wavelets�
We close in Section �� with some pointers to work in
progress and future work�

We concentrate here on the mechanics for revers�
ing subdivision rules using least�squares� data��tting
techniques� The end product of our work will be a
multiresolution decomposition of given data into a se�
quence of error �detail� information and a base set
of coarse data� We are presenting here only a tech�
nique that starts from suitable subdivision rules� is
based upon least�squares data �tting� handles �nite
data sets� costs linear time� and achieves the decom�
position� Explorations of the use of the technique for
compression� multilevel interactive design� and multi�
level rendering are outside the intended scope of this
work�

�� Previous Work

Most of our discussion will use curve�subdivision rules
that are� in fact� derived from uniform knot insertion
acting on a basis of B�splines on a closed� bounded
interval� The B�splines are taken as uniform� except
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for those near the end points of the interval� which
accommodate the boundary of the interval by hav�
ing either their leftmost or rightmost knots be suit�
ably multiple� depending on which boundary they are
near� and how near they are� Such an arrangement
yields nested spaces with the nth space having poly�
nomial pieces with breakpoints at b�a

n
on an interval

�a� b�� Conventional B�spline wavelets of minimal sup�
port for essentially this situation were investigated by
Chui and Quack 
 and Quack and Weyrich ��� �Even
more general B�spline wavelets� subsuming the ones
just mentioned� can be found in a paper by Lyche and
M�rken ���� In contrast to the methods they use� our
method develops wavelets purely by matrix consider�
ations starting from the subdivision matrix �i�e� from
the ��scale relations represented by the knot�insertion
re�nement��

Since we work directly from the ��scale relations
in matrix form� we do not need to restrict ourselves
to B�splines �e�g� we can use � �scale relations� or the
Daubechies �� � ��scale relation given a brief mention
in Section ���� Also� in contrast to their methods� we
work on �nite subspaces of the space �� rather than
L��

The method we use corresponds to that used by
Finklestein and Salesin �� for cubic B�splines alone�
namely� the wavelets come from establishing a matrix�
Q� whose columns are orthogonal to the columns of
the subdivision matrix� P � and whose run of column�
nonzeros is of minimal length� The di�erence in our
wavelets for the cubic B�spline case �and the simplic�
ity of their de�ning coe�cients� which are the entries
in Q� comes purely from the di�erence in the inner
product we use vs� the one used by Finklestein and
Salesin� �They� like Chui� Quack� and Weyrich� use the
inner product on L��� However� whereas Finklestein
and Salesin restricted themselves to the cubic B�spline
case and merely present their wavelets without devel�
opment� apparently as the result of sessions with a
symbolic algebra system� we show how these wavelets
can be provided in general by a simple construction�

Our use of a least�squares inner product �and conse�
quently a Euclidian norm� that measures error on the
points c and f rather than with respect to underly�
ing scale functions � bears a relationship to decisions
made by Lyche and M�rken �
 for a norm to measure
deviations under knot removal in splines� When a sub�
division rule is given by a B�spline scale relation� what
we are proposing here has the appearance of removing
every second knot�

Focusing on matrix techniques for the construction
of wavelets is not new with Finkelstein and Salesin nor
here� Papers by Warren �� and Dahmen and Micchelli
� give other examples� These achieve sparse decompo�

sition and reconstruction matrices �P � and Q as well
as A and B�� but in a context quite distinct from least�
squares data �tting�

Unser� et� al� �� have also looked at the �� case and
least�squares �tting� They� however� concentrate on
the in�nite line and Schoenberg�s cardinal B�splines�
which is suitable for the treatment of a countably in�
�nite number of regularly�sampled data points� Once
again� our approach treats data of �nite extent �in
the B�spline case� on an interval domain�� and is not
restricted to the use of B�spline scaling functions�

The wavelet literature began by considering func�
tions on the entire real line rather than on a closed
bounded interval� In the in�nite case all ��scale rela�
tions are taken as identical� and further regularity is
provided when every basis �scale� function at a given
level is a translate of a single �mother� function� The
subdivision matrix reduces to an endless repetition of
a single column whose nonzero entries are displaced
downward by � positions with each advance in col�
umn index �an in�nite� ��slanted matrix�� The easiest
�nite matrix equivalent to this situation is provided
by regular� periodic subdivision rules� The subdivi�
sion matrix is ��slanted� and entries falling o� the bot�
tom of the matrix are 	wrapped around
 to the top of
the matrix� Our techniques apply to this situation� as
we outline in Section ��� We prefer to center the dis�
cussion around the case in which boundary wavelets
must be produced� however� both because it forces us
to confront a more general situation and because the
factorization of the normal equations is a little easier
to explain for matrices with a nonperiodic format�

B�spline wavelets for the in�nite�domain case are
covered in the book by Chui �� We shall observe that
the matrix method we have used yields the same
wavelets� if the inner product used by Chui is em�
ployed�

�� Subdivisions and Matrix Notation

We begin with subdivision curves� These start as a
vector of �ne points� fj� that have been provided as
data� To economize on notation� we shall think of these
as the k � �st instance of a collection of points
 ck
�j �
If these points had come from a subdivision rule� we
would have the relationship

c
k
�
i �

X
j

p
k
�
i�j c

k
j ���

From a matrix point of view
�
P k
�

� �
Ck
�
�
�
Ck
�

�
���

where the matrix P k
� is m� n with m � n�

If we knew the matrix and the right hand side of
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equation ���� we could consider �nding the vector of
coarse points Ck by solving the equation in the least�
squares sense� The result would satisfy the equation
only if the �ne points� Ck
�� really were the result of
subdividing the coarse points by the rules P k
�� If the
subdivision rules did not produce the �ne points� the
equation could be corrected as follows
�

P k
� Qk
�
� �

Ck

Dk

�
�
�
P k
�

� �
Ck
�

�
�
Qk
�

� �
Dk

�
�
�
Ck
�

� ���

where the columns of the m�m�n matrix Qk
� form
an extension of the column vectors of P k
� to a basis
for the m�dimensional vector space� Many extensions
are possible� we need only adjoin linearly independent
columns� However� the extension corresponding to the
least�squares approximation requires the columns of
Qk
� to be orthogonal to the columns of P k
�� that
is� to be a basis for the null space of the transpose
of P k
�� For any extension Qk
�� the vector Qk
�Dk

will express the error correction Ck
� � P k
�Ck� If
Qk
� is an orthogonal extension� the error correction
expresses the least�squares error�

If the process given by equation ��� is carried out
a number of times� a multiresolution representation of
the original data results


C
j
�D

j
�D

j
�
� � � � �D

k ���

whereby


c
�
�
i �

X
j

p
�
�
i�j c

�
j �

X
j

q
�
�
i�j d

�
j ���

for � � j� � � � � k�

Tangentially� some further observations can be
made about subdivision schemes from this matrix
view� The matrix P k
� de�nes the subdivision rules as
transformations on the points Ck� In order to be geo�
metrically meaningful ��� these transformations must
produce a�ne combinations of the Ck� which implies
that all row sums of P k
� are �� That restriction does
not apply to the matrix Qk
�� The Dk represent vec�
tors� not points� since the second term in the sum ap�
pearing in equation ��� constitutes a displacement of
the points represented by the �rst term�

Finally� note that the main requirements on Qk
� is
that it have full column rank and satisfy orthogonality�

Qk
�TP k
� � �� These requirements can only specify
Qk
� up to an arbitrary nonsingular matrix Qk
�M �
In particular� each column of Qk
� can be scaled in�
dividually as we choose� Such scaling in�uences the
magnitude of the error coe�cients� Dk� This� in turn�
in�uences our judgment on whether to suppress an

error coe�cient for the purposes of compression� We
shall come back to this point in Section ��

�� Least Squares

Assume that a subdivision rule� P k
�� and a set of �ne
points �not necessarily generated by that rule�� Ck
��
have been speci�ed� Then the following hold


�� Ck provides the least�squares solution to�
P
k
�

� �
C
k
�
�
�
C
k
�

�
���

if and only if Ck satis�es the normal equations
h
P
k
�T

P
k
�

i �
C
k
�
�
h
P
k
�T

i �
C
k
�

�
���

�� If Ck is produced as in equation ��� and if the
columns of Qk
� form a basis for the nullspace of

P k
�T � then the equations�
Q
k
�

� �
D
k
�
�
�
C
k
�

�
�
�
P
k
�

� �
C
k
�

����

are compatible�
�� The overdetermined system ���� may be solved in

the least�squares sense via the normal equations�
Qk
�

�T �
Qk
�

� �
Dk

�
�
�
Qk
�

�T ��
Ck
�

�
�
�
P k
�

� �
Ck
�� ����

But this is equivalent to�
Q
k
�

�T �
Q
k
�

� �
D
k
�
�
�
Q
k
�

�T �
C
k
�

�
����

since
�
Qk
�

�T �
P k
�

�
� �� In view of the compat�

ibility of ����� however� the solution will exactly
satisfy the equation system� and this solution can
be obtained equivalently from any subselection of
the rows of Qk
� that forms a nonsingular matrix�
 Qk
�� with a corresponding selection of the elements
of the residual vector Ck
� � P k
�Ck�

Another observation is also important


�� Subdivision matrices P k
� are usually banded and
characterized by columns that are shifted versions
of a single column �except for a few initial and �nal
columns��

cubic B�spline subdivision gives a good example ���
Except for the �rst and last � rows� the odd rows
contain only two adjacent nonzero entries� �

�
� �
�
� and

the even rows contain only three adjacent nonzero en�
tries �

�
� 	
�
� �
�
� and the shifted locations provide that

each column except the �rst � and last � contains
only �

� �
�
� �

	
� �

�
� �

�
� � Each such column�s nonzero entries
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is shifted from its predecessor�s by � positions
�
�������������������������������	

� � � � � � � � � � � �

�
�

�
�

� � � � � � � � � �

� 	
�

�
�

� � � � � � � � �

� 	
��

��
��

�
�

� � � � � � � �

� � �
�

�
�

� � � � � � � �

� � �
�

	
�

�
�

� � � � � � �

���
���

���
� � �

� � �
� � �

� � �
���

���
���

� � � � � � � �
�

	
�

�
�

� �

� � � � � � � � �
�

�
� � �

� � � � � � � � �
�

��
��

	
��

�

� � � � � � � � � �
�

	
�

�

� � � � � � � � � � �
�

�
�

� � � � � � � � � � � �



��������������������������������

����

�� Normal Equations

The linear independence of the columns of P k
� im�

plies that the normal�equationmatrix P k
�TP k
� has
an LDLT factorization �	� By means of this factor�
ization the normal equations can be solved with an
amount of work that is linear in the size of Ck
��
Again� cubic B�spline subdivision provides a conve�
nient example for a normal�equation matrix
�
�������������������������	



�

�
� � � � � � � � � � �

�
�

���
�
�

��
�
�

	
���

� � � � � � � �

� ��
�
�

��

�
�




���

�
��

� � � � � � �

� 	
���




���

	

	�

�
��

�
��

� � � � � �

� � �
��

�
��

	

	�

�
��

�
��

� � � � �

���
���

� � �
� � �

� � �
� � �

� � �
� � �

���
���

� � � � � �
��

�
��

	

	�

�
��

�
��

� �

� � � � � � �
��

�
��

	

	�




���

	
���

�

� � � � � � � �
��




���

��

�
�

��
�
�

�

� � � � � � � � 	
���

��
�
�

���
�
�

�
�

� � � � � � � � � � �
�



�



��������������������������

����

More generally� a subdivision rule will have most
columns in a standard form containing 	 nonzero ele�
ments that begin at row � for the �rst occurrence of
these standard columns and are shifted by � rows for
each successive column� Since the �i� j� element of the

normal�equation matrix is given by the inner prod�
uct of columns i and j of the matrix this means that�
except for a certain number of initial and �nal rows�
each row of the normal�equation matrix will consist of
exactly the same �



���
�

�
� � numbers�

All entries of the normal�equation matrix can be ob�
tained in advance for the subdivision rules under con�
sideration� so we do not have to count their cost� The

process of computing Ck will require applying P k
�T

to Ck
� to produce an intermediate vector Gk
�� This
process looks like the application of a �nite �lter and
involves 	 multiplications and additions for each el�
ement of Gk
�� The total e�ort will be O��m	� el�
ementary �oating point operations� The use of the
LDLT factorization to solve a banded system� with
right�hand side given by Gk
� and band width given

by


���
�

�
� will cost O

�
n�


���
�

��
� �



���
�

�
� ��

�
el�

ementary �oating point operations �	� Thus� overall�
�nding Ck will incur a cost that is linear in m� that
is� linear in the size of Ck
�� �This counts both the
cost of producing the factors L and D as well as the
forward� and back�solution processes� One could save
a considerable portion of this� at the cost of n�



���
�

�
storage� by computing the factors in advance��

�� Orthogonal Complements

The second part of the process is to �nd the elements
of Dk whereby the error Ck
� � P k
�Ck may be ex�
pressed� For this we must extend the matrix P k
� by
adding linearly�independent columns Qk
� such that

Qk
�TP k
� � �� As will be seen� there is an addi�
tional bonus in constructing the columns of Qk
� to
have a regular pattern of shifted columns with as few
nonzero entries as possible� imitating the structure of
P k
��

Matrices Q satisfying PTQ � � are not uniquely de�
�ned� At the very least� scale is not determined� since
PT �
Q� � �� for any 
 �� �� if PTQ � �� Of more in�
terest to us is the fact that the sparsity of Q may vary
widely� since PT �QM� � �� for any matrix M of suit�
able dimensions� if PTQ � �� �We would� of course�
wish the rank of �QM� to be the same as the rank of
Q�� This leads us to explore the kinds of conditions we
might impose on Q to maximize its sparsity �that is�
the number of contiguous nonzero elements in any col�
umn�� The following simple example shows how that
exploration proceeds�

Suppose a sequence of columns of P ���slanted� each
consists of the same � nonzero entries� that is� each
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column has the form
 �
�����������	

���
�
a

b

c

d

�
���



������������

����

Then the condition that three inner products simulta�
neously yield a zero value determines whether a single
column of Q might exist with only � nonzero entries


a b c d

t u

�
� �

a b c d

r s t u

�
� �

a b c d

r s

�
� �

����

Here r� s� t� and u are the assumed elements of the
column of Q� The three inner products correspond
to three successive columns of P � and the nonzero
locations for the column of Q are assumed to be in
the same row positions as those of the second of the
columns of P in question� In matrix form this becomes
�

�	
c d � �

a b c d

� � a b



��

�
����	

r

s

t

u



�����

�

�
�	

�

�

�



��

����

This reveals that any vector in the nullspace of the left�
hand matrix in equation ���� will provide a column for
Q �assuming no other columns of P have nonzeros in
positions that correspond to the nonzeros of this col�
umn of Q�� A nullspace is assured� since the left�hand
matrix has more columns than rows� Indeed� by having
one more column than rows� we are predicting that the
nullspace will be one dimensional� that is� will consist
of all multiples of a single� nonzero vector� namely� the
vector consisting of the four entries �r� s� t� u�� This is
the most 	economical
 situation to investigate� since
it yields the shortest sequence of nonzero entries for
the column of Q� �Assuming only one nonzero in the
column of Q can be seen to yield a ��� left�hand ma�
trix� assuming two nonzeros yields a � � � left�hand
matrix� assuming three nonzeros yields a ���� The as�
sumption of four nonzeros is the �rst assumption that
yields a left�hand matrix that must� from its structure�
have a nullspace� which further justi�es the claim of
minimal support��

A similar nullspace problem can be posed for the

special columns on the right and left of P � For exam�
ple� for the subdivision based on cubic B�splines� the
following is one of the nullspace problems we would
investigate
�

����	
� �

�
� � �

� �
�

	
�

	
��

�

� � �
�

��
��

�
�

� � � �
�

�
�



�����

�
�������	

r

s

t

u

v



��������

�

�
����	

�

�

�

�



�����

����

The general approach to �nding a vector satisfying
a nullspace equation such as ���� or ���� is as follows


�� Reorder the columns of the left�hand matrix� if nec�
essary� so that its leftmost columns form a nonsin�
gular matrix� �If this cannot be done� the nullspace
equation can be reduced at least by one row and
column��

�� The nullspace equation can be partitioned as fol�
lows


� B M �
�

vB

vM

�
� �

����

where B is nonsingular� vB is the portion of the
�possibly reordered� nullspace vector corresponding
to B� and vM corresponds to M �

�� Choose vM arbitrarily �nonzero�� and set

vB � �B��MvM ����

For equation ����� for example� vM � v can be set to
��� and the result will be

vB �

�
����	

r

s

t

u



����� �

�
����	

��

��

��

�



����� ����

The vector �vB� vM �T � ���� ������ �����T divided
by �� shows up as the �rst column of the matrix in
���� below�

There is a short cut for the general� shifted column
of P k
�� corresponding to a nullspace equation of the
form ���� �of whatever size is appropriate for the num�
ber of nonzeros in the general column of P k
��� The
solution to the nullspace equation is given by a column
of Qk
� that contains the nonzeros of the general col�
umn of P k
�� reversed in order� alternated in sign� and
shifted in row position so as to overlap the nonzeros
of P k
� in an even number of rows� For equation ����
speci�cally� this would mean the following column of

c� The Eurographics Association ����



F�F� Samavati and R� H� Bartels � Reversing Subdivision Rules 


Qk
�


�
�����������	

���
�

�d
c

�b
a

�
���



������������

����

where the nonzeros appear in the same rows as they
do in the colum shown in ����� For an odd number of
nonzeros� the row positions would be shifted in Qk
�

by one upward or downward by those in P k
�� The
cancellation pattern that results can easily be seen
from the following example


P k
� Qk
�

���
���

��� �
� e

a �d
b c

c �b
d a

e �
� �
���

���

����

To quote from page �� of Stollnitz� et� al� ��
 	This
recipe for creating a wavelet sequence from a scaling
function sequence is common to many wavelet con�
structions on the in�nite real line� such sequences are
known as quadrature mirror �lters�


Using such observations� we arrive at the following
extension for the cubic B�spline subdivision matrix of

equation ����
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	� Solving for the Error Coe
cients

The system ���� is an overdetermined� yet consistent�
system of equations� This means that any selection of
the rows of system ���� that produces a nonsingular
submatrix of Qk
� may be solved for Dk� The result
will not depend on which selection of rows is taken�

The subdivision rules of primary interest to us are
those for which the matrix Qk
� has a selection of rows
that yield a triangular submatrix� for then the vector
Dk can be obtained without any signi�cant further
matrix factorization� So far� this has been true of all
subdivision rules we have looked at�

The selection of rows of Qk
�� just as the construc�

tion of Qk
� and the construction of P k
�TP k
�� can
be made in advance of having any sets of data� and so
accounts for no computational cost�

An appropriate row�selection from the matrix of
����� for example� would be the matrix  Qk
� given
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by
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This matrix represents the selection of the second
row of Qk
�� followed by rows �� �� ��� � � � and ending
with the next to last row� Correspondingly� elements
�� �� �� ��� � � � � m�� of the residual vector must be cho�
sen to constitute the equations that must be solved for
Dk�

Solving for the vector Dk can be done in linear time�
and the back�solution computation looks essentially
like the application of a �nite �lter of length � to the
vector subselected from Ck
��P k
�Ck� This is a �t�
ting place to remark that� while both the decompo�
sition and reconstruction processes we are describing
have linear cost� the decomposition process is the more
expensive� Reconstruction involves only the processing
of the vector Ck by the rows of P k
�� that is� by ap�
plying a �lter of at most length � in our example� and
processing the vector Dk by the rows of Qk
�� again a
�lter of at most length � in our example� In common
applications �e�g� compression� multilevel rendering��
fast reconstruction is desirable�

�� Remarks on Error

A frequent use of multiresolution representations is for
the purpose of compression� In this use� the original
data Ck
� is represented as a telescoping series

Ck
� � P k
�Ck �Qk
�Dk

� P k
�
�
P kCk�� �QkDk����Qk
�Dk

� � �
����

a result which comes from ����

The information �for some N� represented by Ck�N

and Dk�N � � � � �Dk is stored instead of Ck
�� and com�
pression is achieved by discarding bits from the se�
quence

�
Dk����

Suppose Dk�� is replaced by Dk�� �!k��� where
! represents the change made by suppressing 	less

important
 components in the 	detail
 �error� infor�
mation �e�g� setting to zero any elements less than a
threshold�� It is easily seen that Ck
� is correspond�
ingly changed by

P
k
� � � �P k��
�

Q
k��
�!k�� ����

This change is bounded by

k P k
� k � � � k P k��
� kk Qk��
� kk !k�� k ����

In particular� if the in�nity matrix and vector norms
are used �maximum absolute row sum of a matrix and
maximum absolute element of a vector �	�� and if we
arrange to scale the columns of the Q matrices so that
k Qk�i k� �� then magnitude of the change to any
component of Ck
� will be no larger than the max�
imum magnitude of change made to any component
of the D vectors� in view of the fact that the in�nity
norm of each P matrix is � �the rows represent a�ne
combinations��

�� Curve Subdivision Rules

We have experimented with four common curve subdi�
vision rules
 the cubic B�spline rule that we have used
as an example above� Faber subdivision ��� Chaikin
subdivision 	� and Dyn�Levin�Gregory subdivision �

�considered in Section ����

The subdivision matrix� P k
�� of the Chaikin rule
is
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the Chaikin normal�equation matrix is
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a suitable extension� Qk
�� is
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and a possible submatrix�  Qk
�� is
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The subdivision matrix of the Faber rule is
�
�����������������	
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the normal�equation matrix of the Faber rule is
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a suitable orthogonal extension is
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and a possible submatrix�  Qk
�� is simply the nega�
tive of the identity� corresponding to selecting the even
rows of ���� starting at the second�
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�
� Periodic Subdivision Rules

The discussion so far has concentrated on nonperiodic
subdivision� The Dyn�Levin�Gregory rule� for exam�
ple� was originally given without emphasis on bound�
ary data� i�e�� as a periodic rule �see �� for a discussion
of the boundary�� Periodic rules are provided by P

matrices having rows"columns that wrap around� For
example� the Dyn�Levin�Gregory matrix �with the au�
thors� parameter w set to �

�� � is
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and the closed�curve version of the Chaiken rule is
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The normal�equation matrix is also cyclic� For ex�
ample� the Dyn�Levin�Gregory normal�equation ma�

trix is
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where � � �
�
�

� 
 � �
���

� � � �	
�
�

� and � � ��

��

�
Such matrices can be broken into LDLT factors as in
the case of open curves� The factors do not have the
banded structure of the open�curve normal�equation
matrices� but their structure does contain only a small�
�xed number of nonzero entries for each row� in regular
positions� which is just as good as a purely banded
structure� The pro�le of the upper triangular factor of
����� for example� is
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The general row in ���� has four entries in a band
along the diagonal and three entries in the last three
columns� Consequently� the generation of these num�
bers and the backsolution process costs linear time�
This is characteristic of the case with periodic P ma�
trices
 their corresponding normal�equation matrices
are periodic and essentially banded in the style of �����
while their LDLT factors are banded with an addi�
tional number of �nal columns that are full�

The Q�extension of a periodic matrix is also easy
to �nd� There are no special columns� so the sign�
alternation and shifting for alignment of even numbers
of elements� as explained in Section �� can be carried
out easily �and periodically�� The orthogonal exten�
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sion of ����� for example� is
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The best subselection of rows to take from this matrix�
of course� consists of all rows having only the entry ���

Not all subselections are quite so convenient� The
periodic� cubic B�spline P matrix is
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The Q�extension is
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No subselected matrix�  Q� is triangular� The follow�
ing matrix is subselected to be periodic and is made
triangular by trivially precomputable eliminations
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A non�periodic  Q is easier to make triangular� The fol�
lowing subselection of rows requires only one Gaussian
elimination
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As a �nal example� we give our analog of the
Daubechies D� relationships� This must be regarded
as a freak of nature� of course� and it is simply included
to show that it can be done� Daubechies� A and B ma�
trices �see Section ��� for D� are each sparse with �
elements per row� Her Q is di�erent from ours� but
also contains only � elements per column� She needs
no LDLT factorization� whereas we do� In order to
achieve this sparsity� on the other hand� her scale func�
tions �Section �� again� are negative on portions of
their support� making them inappropriate for certain
aspects of geometric use such as interactive modeling�
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The P matrix for closed curves �re�scaled to provide
a�ne combinations� is
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The normal�equation matrix is cyclic� with the follow�
ing column pattern shifted down one row position for
each advance of column position
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Our corresponding Q matrix is
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and a suitable subselection�  Q� consists of every other
row�

��� Tensor�Product Surfaces

For a tensor�product surface� the subdivision process
given by equation ��� becomes�

P
k
�
L

� �
C
k
� h
P
k
�
R

T
i
�
�
C
k
�

�
����

where P k
�
L is mL�nL� P

k
�
R is mR�nR� C

k is nL�
nR� and C

k
� is mL�mR� Completing each P matrix
by a corresponding Q matrix yields�

P k
�
L Qk
�

L

� �
Ck F k

Gk Hk
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P k
�
R

T

Qk
�
R

T

�
����

where Qk
�
L is mL�mL�nL and Qk
�

R is mR�mR�
nR� Accordingly� the relationship between coarse and
�ne levels is composed of four terms
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Finding coarse versions of Ck
� may proceed with
some �exibility� A left coarse version is produced by
solving��

P
k
�
L

�T �
P
k
�
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C
k
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P
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C
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column by column for Ck
L� The corresponding error is

given by
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which may be found by solving�
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where  Qk
�
L is the submatrix selected from Qk
�

L as
described in Section �� In terms of the four tensor�
product terms
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L �

�
Ck
� h
P k
�
R

T
i
�
�
F k
� h
Qk
�
R

T
i

Dk
L �

�
Gk
� h
P k
�
R

T
i
�
�
Hk

� h
Qk
�
R

T
i ����

Similarly a right coarse version of Ck
� may be found
by solving�
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row by row� The corresponding error� Dk
R� may be

found in a way corresponding to Dk
L� The fully coarse

version of Ck
�� Ck� is obtained by �nding the left
coarse version of Ck

R or the right coarse version of Ck
L�

��� Examples

Several examples are o�ered here� Figure � shows the
shoreline of an island o� the coast of Norway� given
by ��� points around its perimeter� Morten D#hlen
kindly provided the data� Figures � through � show
coarser versions of the shoreline produced by revers�
ing Chaikin subdivision� Each successive coarse ver�
sion has half the number of points� Figure � overlays
the ����point and ���point version� Figure � shows a
����point version of the coastline reproduced from the
���point version purely by subdivision� that is� with�
out the error terms� This subdivision curve is over�
lain on the original data� Figure � shows a ����point
version of the coastline reproduced from the ���point
version and all of the intervening points D via the
multiresolution reconstruction process given in ����

The errors� Qk
�Dk� produced through this process
had the following norms


k Q
��D�
� k
 ������
k Q�
�D��� k
 ������
k Q���D�� k
 ������
k Q��D	� k
 ������

Figure � shows the ����point shoreline and the ���
point version using the reversal process� using cubic
B�splines� introduced by Finkelstein and Salesin in ���
Figure �� shows the ����point shoreline and the ���
point version using our reversal process on cubic B�
spline subdivision� The corresponding errors were


k Q
��D�
� k
 ������
k Q�
�D��� k
 ������
k Q���D�� k
 ������
k Q��D	� k
 ������

for Finkelstein and Salesin and


k Q
��D�
� k
 ������
k Q�
�D��� k
 ������
k Q���D�� k
 ������
k Q��D	� k
 ������

for our form of cubic B�spline subdivision reversal�
Note that all error magnitudes are comparable among
the three multiresolution processes exempli�ed here�
A decision to use one or the other would be made on
other grounds than on the magnitudes of the error
information�

Figure �� shows a grey�scale image of a fox� Figure
�� shows the same image after two levels of being made
coarse through the reverse of tensor�product� cubic B�
spline subdivision� Figure �� is the full reconstruction

of the image� and Figure �� is the reconstruction with�
out error terms� In contrast to the shorline example�
which used periodic versions of subdivision and recon�
struction� this uses example uses the version de�ned
by the matrices P and Q given in equations ���� and
�����

Figure �� shows range data of a bust of Victor Hugo�
Since we have been taking subdivision rules in as sim�
ple a form as possible� we have had to reduce this
data somewhat� A typical subdivision rule will trans�
form mk points into mk
� points� If we are given data
that is not exactly mk
� points� we must adjust the
number somehow� This is a typical problem familiar
from wavelet and FFT decompositions� We have sim�
ply reduced the Victor Hugo data by removing all rows
from the top of the head downward as needed� and by
deleting every other column from the back of the head
�where detail is slight and so much data unnecessary��
Thus the data covers the front of the bust with twice
the density of that in the back� Figure �� shows the
result of coarse approximation in one direction only
via tensor�product� cubic B�spline subdivision� Figure
�� shows coarse approximation for two levels in two
directions� Figure �� is the reconstructed original data
fully reconstructed from the surface of Figure ��� and
Figure �� shows a reconstruction that did not include
any of the error terms D�

��� Wavelet Connections

The paper by Schr$oder and Sweldens �� provides a
very compact introduction to wavelets and multires�
olution� together with some applications in graphics�
Our notation in this paper was� however� adapted from
that used by Finkelstein and Salesin �� for their work
on multiresolution cubic B�spline curves� For a more
thorough introduction to B�spline wavelets� refer to
the book by Chui �� For an introduction to wavelets
with emphasis on their use in computer graphics see
the book by Stollnitz� et� al� ��� For an extensive gen�
eral coverage of wavelets� featuring signal processing�
see the book by Strang and Nguyen ���

In the wavelet interpretation� points c�j are inter�
preted as coe�cients of a basis of functions ��j for a
space V � �� � k� k � ��� Furthermore� V k � V k
��
The basis �kj for V k can be completed to a basis for
V k
� by adding independent functions �k� � The func�
tions � are known as scale functions� and the functions
� are called wavelets or wavelet functions� Taken all
together� V �� ��� �k for � � k� k� �� if repeated for a
succession k � �� �� �� � � �� form a multiresolution sys�
tem� With respect to an inner product� if the � and
the � are mutually orthogonal ����i � �

�
j� � �i�j �� �

k� k � �����ki � �
k
�� � ����k� � �

k
r� � ���r� the mul�

tiresolution system is said to be orthogonal� If only
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��ki � �
k
�� � � holds� the system is semiorthogonal� A

third category of system is biorthogonal �refer to �� for
a de�nition�� Biorthogonal systems will not concern us
here�

Since the spaces are nested� we have
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X
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and conversely
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for some coe�cients ak
�j�i � bk
���i � pk
�i�j � qk
�i�� � Thus� for

any element of V k
� we can writeP
i
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This provides the decomposition process
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whereby
P

j
ckj�

k
j is the approximation

of
P

i
ck
�i �k
�i in V k and

P
i
ck
�i bk
���i is the cor�

responding error in W k � V k
� n V k� The c are the
scale coe�cients� and the d are the error �or detail�
coe�cients� In matrix terms��
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This provides the reconstruction process

c
k
�
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X
j

c
k
j p

k
�
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X
�

d
k
� q

k
�
i�� ����

which in matrix format is equation ����

The ideal situation in wavelets is to have the matri�
ces A� B� P � and Q be sparse� More speci�cally� they
should each possess only a small number of nonzeros
clustered together in each column� In this case the
decomposition and reconstruction processes will be
extremely fast and e�cient� We cannot achieve spar�

sity� The A matrix is easily seen to be
�
PTP

���
PT �

which will invariably be a full matrix� Equation ����
will show that a like comment holds for B and�
QTQ

���
QT � However� we can still achieve speed and

e�ciency by avoiding the computation of the inverse�
as has been discussed in Section ��

The equations in this section also lead to a matrix
view of what constitutes a semiorthogonal system


� �
�
�ki � �

k
j

�
�
�P

r
pk
�r�i �k
�r �

P
s
qk
�s�j �k
�s

�
�
P

r

P
s
pk
�r�i qk
�s�j

�
�k
�r � �k
�s

�
�
h
P k
�T

i �
%k
�

� �
Qk
�

� ����

where %k
� is the Gram matrix formed by the scale
functions for V k
� and the inner product ��� �� �
Equations ���� and ���� will indicate how a change
in the Gram matrix can change the support of the
wavelets represented by Qk
��

The matrix observations we made in equation ����
are related to the observations in the literature on ��
scale relationships that associate ��x� �

P
n
pn���x�

n� with ��x� �
P

n
����np�n���x� n��

Note that the subdivision matrix of equation ����
is the same one used by Finkelstein and Salesin in
��� However� our matrix Qk
� is signi�cantly simpler
than the one presented in that paper� More surpris�
ingly� since the columns of Qk
� provide the represen�
tation of the level�k wavelets� �k� � in terms of the scale
functions at level k��� �k
�i � and since the scale func�
tions in question for this example are cubic B�splines�
we see that ���� de�nes wavelets that �except for the
special ones at the extremes of the domain� have the
same support as the level�k scale functions� Since Chui
� proves that the minimal�support B�spline wavelet
must have support that is essentially twice that of the
B�splines at the corresponding level� we have some ex�
plaining to do�

The reason for the unusually compact wavelets we
are de�ning lies in the form of semiorthogonality we
are using� Since we do not assume that we know the
underlying scale functions� we have constructed Qk
�
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to satisfy

h
P
k
�T

i �
Q
k
�

�
� � ����

which� while it is appropriate for least�squares data
�tting� agrees with equation ���� only if the Gram ma�
trix %k
� is the identity� This� in turn� derives from the
fact that we are using a di�erent inner product than
the usual one� In �� as in most literature on wavelets�
development proceeds in the space L�� that is� the in�
ner product used is

hf� gi �

Z �

��
f�z��g�z�dz ����

In our case� the inner product is de�ned implicitly to
yield the following relationships


�
�
k
�
i � �

k
�
j

�
k
�

� �i�j ����

which de�nes the inner product on V k
� by

hf� gi
k
� �

P
�
f�g�

where

f �
P

�
f��

k
�
�

g �
P

�
g��

k
�
�

����

The inner product is �agged with the subscript 	k��

because it is a di�erent inner product for each space
V k
� in the nested spaces of the multiresolution anal�
ysis and corresponds to the Euclidian inner product on
each such space� that is� the inner product appropriate
for least�squares data �tting�

The claim that the di�erence between our wavelets
and the conventional ones is due to the inner product
being used can be strengthened� Referring to equa�
tion ����� the conventional matrix %k
� for the cu�
bic B�spline case �whose elements are the integrals of
equation ���� with f and g replaced by pairs of ba�
sis splines on the closed� bounded interval�� has �aside
from some special columns on the left and right� the

following general columns
�
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The product
h
P k
�T

i �
%k
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�
yields a 	smeared out


version of P k
� with �aside from some special columns
on the left and right� a succession columns as follows
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Using the scheme of producing columns of Qk
� by
reversing the order of elements in the columns of
����� alternating their signs� and shifting the result
by one row position� we produce precisely the cubic
B�spline wavelets given in Chui � �up to a scale fac�
tor�� A similar outcome with respect to the wavelets
of Chui� Quack and Weyrich 
 �� is found for the
special columns on the left and right� Figure ��
shows a graphic comparison between a conventional
wavelet� from a general column of matrix ����� shown
as a dashed line� and the least�squares inner�product
wavelet� from a general columns of matrix ����� shown
as a solid line� �The conventional wavelet has support
on the interval ��� ���� but its deviation from zero on
the intervals ����� and ���� ��� is so slight that it is
covered by the line representing the x�axis��

��� Summary and Future Work

We have presented an approach to the least squares
data �tting to given data of curves� tensor�product
surfaces� and images� The �t is speci�ed according
to a given subdivision rule� The approach and the
computations have been related to the formalisms of
wavelets�

We have seen that the least squares data �tting
problem� which conventionally takes place in a �nite�
dimensional �� space with a Euclidian inner product
�that is� with a Gram matrix % � I� can result in
wavelets that have smaller support than those found
in the conventional L��space� semiorthogonal setting
�where the Gram matrix will be banded or full��

We have provided a simple� straightforward� matrix�
oriented method for constructing wavelets� The
method can be used whatever the Gram matrix� and
have given an example where it produces wavelets for
B�splines consistent with the conventional ones� for
the L� setting� as well as wavelets of half that sup�
port� for the �� �data��tting� setting�

We have shown how matrix factorization and the
selection of submatrices assists in providing e�cient
decomposition and reconstruction algorithms� even
though we are working in a semiorthogonal setting for
which A and B are full matrices�

We have presented illustrations of our approach for
several subdivision rules� looking at both the periodic
and compact�domain setting� Finally� we have shown
examples of the subdivision�guided least�squares de�
composition and reconstruction applied to a paramet�
ric curve� a tensor�product surface� and a grey�scale
image�

The following questions might be asked


�� If the inner product used has such an e�ect on the

sparsity of the wavelet matrix� Q� could it also in�
�uence the sparsity of A and B&

�� How can the methods of this paper be extended to
non�tensor�product surfaces&

�� The considerations of this paper are addressed en�
tirely to the static case of generating multiresolu�
tion representations of given data that are related
to a speci�ed subdivision rule� How do these repre�
sentations perform dynamically� speci�cally� under
hierarchical editing&

�� To what extent can these techniques be used for
data compression&

We have been addressing the �rst question in two
ways� By leaving the inner product initially unspec�
i�ed and considering only local conditions like equa�
tion ����� we have found a construction process for a
sparse A� B� and Q �for given sparse P � that yields
an inner product implicitly �� We have also found a
process that� given P and %� will modify % �that is�
revise the inner product� so as to yield a sparse A� B�
and Q� These results will be submitted in forthcoming
papers�

The construction from local conditions that we have
developed in view of the �rst question is applicable to
non�tensor�product surfaces� which thereby provides
an answer to the second question� This� too� will be
submitted in a forthcoming paper�

We have produced an experimental curve editor in
Java that accepts a subdivision rule as a module� cre�
ates sparse A� B� and Q matrices on the �y and then
allows the design and editing of curves at multiple lev�
els of detail� This work is currently being written up
as a University of Waterloo Master�s Thesis�

We have not currently addressed the forth question�
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Figure �� �
��point shoreline
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Figure �� One Chaikin reversal producing a ����point shoreline
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Figure �� Two Chaikin reversals producing a 
���point shoreline
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Figure �� Three Chaikin reversals producing a ���point shoreline
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Figure �� Four Chaikin reversals producing a ���point shoreline
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Figure �� �
��point and ���point shoreline compared
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Figure 	� �
��point subdivision curve from ���point shoreline with original data
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Figure �� Original �
��point shoreline reconstructed from ���point shoreline and error information
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Figure �� �
��point and ���point shoreline using Finklestein and Salesin
s methods
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Figure �
� �
��point and ���point shoreline using our cubic B�spline methods

Figure ��� Original fox image ����� ����
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Figure ��� Fox image after two levels of approximation ���� ���

Figure ��� Fully reconstructed fox image ����� ����
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Figure ��� Reconstructed fox image without error terms ����� ����

Figure ��� Original Hugo data ����� ����
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Figure ��� Hugo data approximated one level in one direction ����� ����

Figure �	� Hugo data approximated two levels in both directions ���� ���

c� The Eurographics Association ����



F�F� Samavati and R� H� Bartels � Reversing Subdivision Rules ��

Figure ��� Fully reconstructed Hugo from two levels ����� ����

Figure ��� Reconstructed Hugo from two levels without error terms ����� ����
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Figure �
� Comparison of wavelets
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