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Abstract

This work explores how three techniques for defining and representing curves and surfaces can be related
effictently. The techniques are subdivision, least-squares data fitting, and wavelets. We show how least-
squares data fitting can be used to “reverse” a subdivision rule, how this reversal is related to wavelets,
how this relationship can provide a multilevel representation, and how the decomposition/reconstruction
process can be carried out in linear teme and space through the use of a matrix factorization.

Some insights that this work brings forth are that the inner product used in a multiresolution analysis
influences the support of a wavelet, that wavelets can be constructed by straightforward matriz obser-
vations, and that matriz partitioning and factorization can provide alternatives to inverses or duals
for building efficient decomposition and reconstruction processes. We dllustrate our findings using an
example curve, grey-scale tmage, and tensor-product surface.
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1. Introduction

Subdivision curves and surfaces begin with a polygo-
nal network of points. In the case of curves, the net-
work merely encodes a point-to-point sequence. In the
case of surfaces, the network provides the edges and
faces of a polyhedral topology. In conventional usage a
subdivision curve or surface begins with a coarse net-
work structure consisting of relatively few points. To
this is applied a set of rules that replace the coarse net-
work by a finer network. The set of rules could again be
applied to this finer network. In the limit of repeated
application, the rules yield curves or surfaces of some
provable continuity (excluding exceptional points). In
practice, of course, the rules are repeated only a finite
number of times to yield a network containing a large
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number of points that represent a fine approximation
of the limit.

Suppose we begin with some fine sampling of a curve
or surface and we wish to represent this data approx-
imately in some more compact way as if it had been
generated by a certain subdivision rule. Ignoring the
subdivision for a moment, the traditional approach for
doing data approximation on a finite set of data points
is through least-squares data fitting. The sampling will
be the m items of a data vector, f, which serves as
the right-hand side for an m x n (n < m) overdeter-
mined set of equations, Pc = f that is to be solved
in the sense that the Euclidian norm of the residual
vector, ||[Pc— f||2, is to be minimized. (Sometimes this
system is specified only implicitly by the n x n nor-
mal equations PTPz = PT#, whose solution, ¢, will



2 F.F. Samawvati and R. H. Bartels / Reversing Subdivision Rules

be the minimizer for the residual vector.) The m x n
matrix P provides the “design” of the approximation,
generally by specifying a sense in which some given
functions ¢; approximate the data Z,‘ cj¢; = fi. The
particular specification is characterized by the nature
in which the functions ¢; contribute values for the en-
tries p;; of P, or alternatively for the entries p;; of the
matrix PTP and f, of the vector PTf.

In our geometric context, f represents “fine” points,
and ¢ represents “coarse” points whose subdivision,
through the rule given in the matrix P, approxi-
mately produce the f. The specification of interest
to us, which characterizes least-squares data-fitting,
gives the entries of P explicitly in the form p;; and
defines the minimization to be over the residuals

> i — fi (1)
J
The functions ¢ underlying the p;; do not have to be
known to solve this problem as given.

Another typical specification, which characterizes
least-squares approzimation, only specifies the data
PTf in terms of an approximating inner product and
a function g; e.g. fi = (¢i,g) for some function g. In
this case, the normal equations are be solved:

> eipii =i ()
J
where p;; = (i, ¢;). The need to specify a function g
underlying the data is one of the distinguishing charac-
teristics of the approximation problem that contrasts
it with the data fitting problem.

In this paper we explore the possibilities for revers-
ing a subdivision process from the residuals in (1).
We begin with a fine network that did not necessarily
come from a set of subdivision rules, and we wish to
find a coarser network that could have produced the
finer network, in an approximate sense, by the applica-
tion of given subdivision rules. We specify the matrix
P as the one which is defined by the subdivision.

Because least-squares systems are not necessarily
solved exactly, the coarse network may not return the
fine network under the use of the subdivision rules.
However, we can reconstruct the fine network with
appropriate corrections derived from error terms. This
will structure our approach along lines familiar to the
users of wavelets. A fine set of data will be decom-
posed into a coarse approximation and error informa-
tion. The fine data can subsequently be reconstructed
from the coarse data and the error. As a byproduct,
some degree of compression may be achieved by sup-
pressing less important elements of the error.

Although we shall draw a comparison with wavelets

and multiresolution analysis, we don’t assume that we
know what scale functions underlie our data in or-
der to work out the decomposition and reconstruction
algorithms. Furthermore, even if the scale functions
were known, we would not necessarily want to find the
conventional wavelets that are associated with them.
Wavelets are usually defined in the context of Lo func-
tion spaces; that is, by (2) in terms of an inner prod-
uct that is continuously dependent on the scale func-
tions ({¢;, ;) = fqﬁ,@) We shall work only with the
coefficients of the scale functions, which we identify
with the data points, the coefficients of the wavelet
functions, which we associate with the errors, and the
conventional discrete (Euclidian) vector inner prod-
uct, which measures the errors directly on the data f;
rather than over some function g. As such, we shall be
working in finite-dimensional £2 spaces.

In Section 2 we relate what we are doing with some
previous work. In Section 3 we shall review basic ma-
trix notation for subdivision rules. In Section 4 we
introduce the least-squares problem of interest, and in
Section 5 we review the normal equations. In Section 6
we outline an approach to the construction of orthog-
onal complements for subdivision matrices. In Section
7 we use the special form of these orthogonal comple-
ments to solve for the error coefficients. Remarks on
error are presented in Section 8. Several curve subdi-
vision rules are presented in Section 9. Periodic rules
are covered in Section 10. Tensor-product surfaces are
covered in Section 11. In Section 12 we present our
approach applied to an example curve, grey-scale im-
age, and tensor-product surface. In Section 13 we shall
review the connection of these matrices to wavelets.
We close in Section 14 with some pointers to work in
progress and future work.

We concentrate here on the mechanics for revers-
ing subdivision rules using least-squares, data-fitting
techniques. The end product of our work will be a
multiresolution decomposition of given data into a se-
quence of error (detail) information and a base set
of coarse data. We are presenting here only a tech-
nique that starts from suitable subdivision rules, is
based upon least-squares data fitting, handles finite
data sets, costs linear time, and achieves the decom-
position. Explorations of the use of the technique for
compression, multilevel interactive design, and multi-
level rendering are outside the intended scope of this
work.

2. Previous Work

Most of our discussion will use curve-subdivision rules
that are, in fact, derived from uniform knot insertion
acting on a basis of B-splines on a closed, bounded
interval. The B-splines are taken as uniform, except
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for those near the end points of the interval, which
accommodate the boundary of the interval by hav-
ing either their leftmost or rightmost knots be suit-
ably multiple, depending on which boundary they are
near, and how near they are. Such an arrangement
yields nested spaces with the n'® space having poly-
nomial pieces with breakpoints at b_T“ on an interval
[a,b]. Conventional B-spline wavelets of minimal sup-
port for essentially this situation were investigated by
Chui and Quack 5 and Quack and Weyrich 6. (Even
more general B-spline wavelets, subsuming the ones
just mentioned, can be found in a paper by Lyche and
Mgrken '4.) In contrast to the methods they use, our
method develops wavelets purely by matrix consider-
ations starting from the subdivision matrix (i.e. from
the 2-scale relations represented by the knot-insertion
refinement).

Since we work directly from the 2-scale relations
in matrix form, we do not need to restrict ourselves
to B-splines (e.g. we can use 7-scale relations, or the
Daubechies 7: 8 2-scale relation given a brief mention
in Section 10). Also, in contrast to their methods, we
work on finite subspaces of the space £2 rather than

L,.

The method we use corresponds to that used by
Finklestein and Salesin ! for cubic B-splines alone;
namely, the wavelets come from establishing a matrix,
@, whose columns are orthogonal to the columns of
the subdivision matrix, P, and whose run of column-
nonzeros is of minimal length. The difference in our
wavelets for the cubic B-spline case (and the simplic-
ity of their defining coefficients, which are the entries
in @) comes purely from the difference in the inner
product we use vs. the one used by Finklestein and
Salesin. (They, like Chui, Quack, and Weyrich, use the
inner product on L,.) However, whereas Finklestein
and Salesin restricted themselves to the cubic B-spline
case and merely present their wavelets without devel-
opment, apparently as the result of sessions with a
symbolic algebra system, we show how these wavelets
can be provided in general by a simple construction.

Our use of a least-squares inner product (and conse-
quently a Euclidian norm) that measures error on the
points ¢ and f rather than with respect to underly-
ing scale functions ¢ bears a relationship to decisions
made by Lyche and Mgrken ' for a norm to measure
deviations under knot removal in splines. When a sub-
division rule is given by a B-spline scale relation, what
we are proposing here has the appearance of removing
every second knot.

Focusing on matrix techniques for the construction
of wavelets is not new with Finkelstein and Salesin nor
here. Papers by Warren 20 and Dahmen and Micchelli
6 give other examples. These achieve sparse decompo-
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sition and reconstruction matrices (P, and @ as well
as A and B), but in a context quite distinct from least-
squares data fitting.

Unser, et. al. !, have also looked at the £2 case and
least-squares fitting. They, however, concentrate on
the infinite line and Schoenberg’s cardinal B-splines,
which is suitable for the treatment of a countably in-
finite number of regularly-sampled data points. Once
again, our approach treats data of finite extent (in
the B-spline case, on an interval domain), and is not
restricted to the use of B-spline scaling functions.

The wavelet literature began by considering func-
tions on the entire real line rather than on a closed
bounded interval. In the infinite case all 2-scale rela-
tions are taken as identical, and further regularity is
provided when every basis (scale) function at a given
level is a translate of a single (mother) function. The
subdivision matrix reduces to an endless repetition of
a single column whose nonzero entries are displaced
downward by 2 positions with each advance in col-
umn index (an infinite, 2-slanted matrix). The easiest
finite matrix equivalent to this situation is provided
by regular, periodic subdivision rules. The subdivi-
sion matrix is 2-slanted, and entries falling off the bot-
tom of the matrix are “wrapped around” to the top of
the matrix. Our techniques apply to this situation, as
we outline in Section 10. We prefer to center the dis-
cussion around the case in which boundary wavelets
must be produced, however, both because it forces us
to confront a more general situation and because the
factorization of the normal equations is a little easier
to explain for matrices with a nonperiodic format.

B-spline wavelets for the infinite-domain case are
covered in the book by Chui 4. We shall observe that
the matrix method we have used yields the same
wavelets, if the inner product used by Chui is em-
ployed.

3. Subdivisions and Matrix Notation

We begin with subdivision curves. These start as a
vector of fine points, f;, that have been provided as
data. To economize on notation, we shall think of these
as the k + 1°% instance of a collection of points: cf"’l.
If these points had come from a subdivision rule, we

would have the relationship
it = "pitted (3)
J
From a matrix point of view:
[Pk+1] [Ck] _ [Ck+1] (4)

Pk-|—1

where the matrix is m x n with m > n.

If we knew the matrix and the right hand side of
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equation (4), we could consider finding the vector of
coarse points C* by solving the equation in the least-
squares sense. The result would satisfy the equation
only if the fine points, C*1!, really were the result of
subdividing the coarse points by the rules P**1, If the
subdivision rules did not produce the fine points, the
equation could be corrected as follows:

e 6] = e

+ [@][D*] )

o]
where the columns of the m x m —n matrix Q¥ form
an eztension of the column vectors of P**! to a basis

for the m-dimensional vector space. Many extensions
are possible; we need only adjoin linearly independent
columns. However, the extension corresponding to the
least-squares approximation requires the columns of
Q**! to be orthogonal to the columns of P**1; that
is, to be a basis for the null space of the transpose
of P**!, For any extension Q*T!, the vector Q*T! D*
will express the error correction C*¥t! — p¥+tiok If
Q! is an orthogonal extension, the error correction
expresses the least-squares error.

If the process given by equation (5) is carried out
a number of times, a multiresolution representation of
the original data results:

c¢?, D', Dt ... D* (6)

whereby:
Gt ey et + Y gt (7)
J J

for A=3,...,k.

Tangentially, some further observations can be
made about subdivision schemes from this matrix

P**! defines the subdivision rules as

view. The matrix
transformations on the points C*. In order to be geo-
metrically meaningful 12, these transformations must
produce affine combinations of the C*, which implies
that all row sums of P*¥t! are 1. That restriction does
not apply to the matrix Q*t'. The D* represent vec-
tors, not points, since the second term in the sum ap-
pearing in equation (5) constitutes a displacement of
the points represented by the first term.

Finally, note that the main requirements on Q%! is
that it have full column rank and satisfy orthogonality,
Qk‘HTPk"'1 = 0. These requirements can only specify
Q"' up to an arbitrary nonsingular matrix Q*t' M.
In particular, each column of Q*t!
dividually as we choose. Such scaling influences the
magnitude of the error coefficients, D¥. This, in turn,

influences our judgment on whether to suppress an

can be scaled in-

error coefficient for the purposes of compression. We
shall come back to this point in Section 8.

4. Least Squares

Assume that a subdivision rule, P**!, and a set of fine
points (not necessarily generated by that rule), CcktL,
have been specified. Then the following hold:

1. C* provides the least-squares solution to
[P ] [et] = [c*] (8)
if and only if C* satisfies the normal equations:

|:Pk+1TPk+1i| [Ck] _ |:Pk+1Ti| [Ck+1] 9)

2.If C* is produced as in equation (9) and if the

columns of Q*t! form a basis for the nullspace of

Pk+1T, then the equations

[ [Df] =[e™] - [P*'][c] (o)

are compatible.
3. The overdetermined system (10) may be solved in
the least-squares sense via the normal equations

[@*]" [@*'] [D"]
= [@*']" ([e*'] - [P*] [c*])
But this is equivalent to

[Qk+1]T [Qk+1] [Dk] —

(11)

[Qk+1]T [Ck+1] (12)

since [Qk+1]T [Pk‘H] = 0. In view of the compat-
ibility of (10), however, the solution will exactly
satisfy the equation system, and this solution can
be obtained equivalently from any subselection of
the rows of @Q¥*! that forms a nonsingular matrix,

Qk‘H , with a corresponding selection of the elements
of the residual vector C*¥t! — p*+1Ck,

Another observation is also important:

4. Subdivision matrices P*t!

are usually banded and
characterized by columns that are shifted versions
of a single column (except for a few initial and final

columns).

cubic B-spline subdivision gives a good example 'I.
Except for the first and last 3 rows, the odd rows
contain only two adjacent nonzero entries, %, %, and
the even rows contain only three adjacent nonzero en-
tries %, %, %, and the shifted locations provide that
each column except the first 3 and last 3 contains

11 3 11

only ¢,5,7,5, 5. Each such column’s nonzero entries
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is shifted from its predecessor’s by 2 positions:

1000 0 --0 0 00
i1+ 00 0 0 0 00
02 L 0 o0 0 0 00
02 2 L o0 0 0 00
00 L+ L o0 0 0 00
oo L 2 1 0 0 00
(13)
00 0 0 2 Lt o000
00 0 O 0o L L oo
00 0 0 0 £+ &+ 20
00 0 0 00 & %20
00 0 O 0o 0 0 1 1%
00 0 O 0 0 0 0 1|
5. Normal Equations
The linear independence of the columns of P*t! im-

plies that the normal-equation matriz pr+1T phtt g
an LDLT factorization 3. By means of this factor-
ization the normal equations can be solved with an
amount of work that is linear in the size of C**!,
Again, cubic B-spline subdivision provides a conve-
nient example for a normal-equation matrix:

5+ 0 0 0 0 0 -+ 0 0]
Lt 83 0 0 0 0 0
0 o= 2 5 L 0 0 0 0
0 13 fo5 » 16 a1 9 0 0
0 0 & 1% % i 0 0
(14)
0 0 67 16 3 s s 0 0
0 0 0 35 6 33 136 o5 O
0 0 0 0 4 = I B9
0 0 0o 0o o 2 B 2T 2
lo o --- 0 0 0 0 0 % 2]

More generally, a subdivision rule will have most
columns in a standard form containing p nonzero ele-
ments that begin at row A for the first occurrence of
these standard columns and are shifted by 7 rows for
each successive column. Since the (4, j) element of the
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normal-equation matrix is given by the inner prod-
uct of columns ¢ and 7 of the matrix this means that,
except for a certain number of initial and final rows,
each row of the normal-equation matrix will consist of
exactly the same 2 L”T_lJ + 1 numbers.

All entries of the normal-equation matrix can be ob-
tained in advance for the subdivision rules under con-
sideration, so we do not have to count their cost. The
process of computing C* will require applying pr1t
to C**! to produce an intermediate vector G*t1. This
process looks like the application of a finite filter and
involves g multiplications and additions for each el-
ement of G*T!. The total effort will be O(2mu) el-
ementary floating point operations. The use of the
LDLT factorization to solve a banded system, with
right-hand side given by G**! and band width given
by L”T_lJ, will cost O (n(L”T_lJQ +8 L”T_lJ + 1)) el-
ementary floating point operations 2. Thus, overall,
finding C* will incur a cost that is linear in m; that
is, linear in the size of C**1, (This counts both the
cost of producing the factors L and D as well as the
forward- and back-solution processes. One could save
a considerable portion of this, at the cost of n x L”—:lJ
storage, by computing the factors in advance.)

6. Orthogonal Complements

The second part of the process is to find the elements
of D* whereby the error C*t! — P**1C* may be ex-
pressed. For this we must extend the matrix P**! by
adding linearly-independent columns Q**! such that
Qk‘HTPk"'1 = 0. As will be seen, there is an addi-
tional bonus in constructing the columns of Q**! to
have a regular pattern of shifted columns with as few

nonzero entries as possible, imitating the structure of
prrL,

Matrices @ satisfying PTQ = 0 are not uniquely de-
fined. At the very least, scale is not determined, since
PT(¢Q) = 0, for any o # 0, if PTQ = 0. Of more in-
terest to us is the fact that the sparsity of Q may vary
widely, since PT(QM) = 0, for any matrix M of suit-
able dimensions, if PTQ = 0. (We would, of course,
wish the rank of (QM) to be the same as the rank of
Q.) This leads us to explore the kinds of conditions we
might impose on @ to maximize its sparsity (that is,
the number of contiguous nonzero elements in any col-
umn). The following simple example shows how that
exploration proceeds.

Suppose a sequence of columns of P (2-slanted) each
consists of the same 4 nonzero entries; that is, each
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column has the form:

SO0 TR O ...

Then the condition that three inner products simulta-
neously yield a zero value determines whether a single
column of ¢ might exist with only 4 nonzero entries:

bcd}_}o

U

ade}—>0 (16)
S U

oo
s

Here r, s, t, and u are the assumed elements of the

>
o

column of ). The three inner products correspond
to three successive columns of P, and the nonzero
locations for the column of @ are assumed to be in
the same row positions as those of the second of the
columns of P in question. In matrix form this becomes:

c d 0 0 r 0
a b ¢ d s = 0
(17)
0 0 a b t 0
u

This reveals that any vector in the nullspace of the left-
hand matrix in equation (17) will provide a column for
Q (assuming no other columns of P have nonzeros in
positions that correspond to the nonzeros of this col-
umn of (). A nullspace is assured, since the left-hand
matrix has more columns than rows. Indeed, by having
one more column than rows, we are predicting that the
nullspace will be one dimensional; that is, will consist
of all multiples of a single, nonzero vector; namely, the
vector consisting of the four entries [r, s, t,u]. This is
the most “economical” situation to investigate, since
it yields the shortest sequence of nonzero entries for
the column of Q. (Assuming only one nonzero in the
column of @ can be seen to yield a 1 x 1 left-hand ma-
trix; assuming two nonzeros yields a 2 x 2 left-hand
matrix; assuming three nonzeros yields a 3 x 3. The as-
sumption of four nonzeros is the first assumption that
yields a left-hand matrix that must, from its structure,
have a nullspace, which further justifies the claim of
minimal support.)

A similar nullspace problem can be posed for the

special columns on the right and left of P. For exam-
ple, for the subdivision based on cubic B-splines, the
following is one of the nullspace problems we would
investigate:

1 £ 0 0 0 r 0

0o+ 32 2 0 s 0

0 0 L L 1 el |o

0o 0o o0 § 1 u 0
L v

(18)

The general approach to finding a vector satisfying
a nullspace equation such as (17) or (18) is as follows:

1. Reorder the columns of the left-hand matrix, if nec-
essary, so that its leftmost columns form a nonsin-
gular matrix. (If this cannot be done, the nullspace
equation can be reduced at least by one row and
column.)

2. The nullspace equation can be partitioned as fol-
lows:

[B M] VB =0 (19)

UM

where B is nonsingular. vp is the portion of the
(possibly reordered) nullspace vector corresponding
to B, and vas corresponds to M.

3. Choose vy arbitrarily (nonzero), and set

vg = —B ' Mo (20)

For equation (18), for example, var = v can be set to
—1, and the result will be

T —6
K 12
v = = (21)
t -9
u 4

The vector [vp,vm]” = [—6,12,—9,4,—1]7 divided
by 12 shows up as the first column of the matrix in
(24) below.

There is a short cut for the general, shifted column
of P**! corresponding to a nullspace equation of the
form (17) (of whatever size is appropriate for the num-
ber of nonzeros in the general column of Pk+1). The
solution to the nullspace equation is given by a column
of Q¥T! that contains the nonzeros of the general col-
umn of P**!, reversed in order, alternated in sign, and
shifted in row position so as to overlap the nonzeros
of P¥*! in an even number of rows. For equation (17)
specifically, this would mean the following column of
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Qk+l .

(22)

where the nonzeros appear in the same rows as they
do in the colum shown in (15). For an odd number of
nonzeros, the row positions would be shifted in Q**!
by one upward or downward by those in P**!. The
cancellation pattern that results can easily be seen
from the following example:

prtt gkt

: 0

0 e

a —d

b c (23)
c -b

d a

e 0

0 0

To quote from page 88 of Stollnitz, et. al. 18: “This
recipe for creating a wavelet sequence from a scaling
function sequence is common to many wavelet con-
structions on the infinite real line; such sequences are
known as gquadrature mirror filters.”

Using such observations, we arrive at the following
extension for the cubic B-spline subdivision matrix of

© The Eurographics Association 1999

equation (13):

-+ 0 0 0 O 0 0
1 0 0 0 0 0 0
-3 X 0 0 0 0 0
-1 0 0 o 0 0
-5 2 £ 0 0 0 0
0 -2 -1 0 o0 0 0
0o &+ 2 L oo 0 0
(24)
0 0 0 0-% -2 0
0 0 00 § -4
0 0 o o o-L 1L
0 0 o 0o o L -2
0 o0 00 0 o0 1
| 0 0 00 0 0 —3%|

7. Solving for the Error Coefficients

The system (10) is an overdetermined, yet consistent,
system of equations. This means that any selection of
the rows of system (10) that produces a nonsingular
submatrix of Q*T! may be solved for D*. The result
will not depend on which selection of rows is taken.

The subdivision rules of primary interest to us are
those for which the matrix Q**! has a selection of rows
that yield a triangular submatrix, for then the vector
D¥ can be obtained without any significant further
matrix factorization. So far, this has been true of all
subdivision rules we have looked at.

The selection of rows of Q*!, just as the construc-
tion of Q**! and the construction of Pk+1TPk+1, can
be made in advance of having any sets of data, and so
accounts for no computational cost.

An appropriate row-selection from the matrix of

(24), for example, would be the matrix QFt given
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by:
[1 0 0o o0 o 0 0]
0o-+ -1 o0 o 00
0 0-1-1 0 00
0 0 0-1-1 00
(25)
0o o - 0 0-1-120
o 0-- 0 0 0-11
|0 0.+ 0 0 0 0 1|

This matrix represents the selection of the second
row of Q*¥*!, followed by rows 6,8,10,... and ending
with the next to last row. Correspondingly, elements
2,6,8,10,...,m—1 of the residual vector must be cho-
sen to constitute the equations that must be solved for

Dk,

Solving for the vector D¥ can be done in linear time,
and the back-solution computation looks essentially
like the application of a finite filter of length 2 to the
vector subselected from C*t! — P**1C* This is a fit-
ting place to remark that, while both the decompo-
sition and reconstruction processes we are describing
have linear cost, the decomposition process is the more
expensive. Reconstruction involves only the processing
of the vector C* by the rows of P**!; that is, by ap-
plying a filter of at most length 3 in our example, and
processing the vector D* by the rows of Q*!, again a
filter of at most length 3 in our example. In common
applications (e.g. compression, multilevel rendering),
fast reconstruction is desirable.

8. Remarks on Error

A frequent use of multiresolution representations is for
the purpose of compression. In this use, the original
data C**! is represented as a telescoping series

Ck-|—l — Pk-|-lck + Qk+l Dk

Pk-l-l (Pkck—l 4 Qka—l) 4 Qk-l-le

(26)
a result which comes from (7).

The information (for some N) represented by C*~
and D*=N, ... D*is stored instead of C**!, and com-
pression is achieved by discarding bits from the se-
quence {Dk_)‘}.

Suppose D¥~* is replaced by D¥*~* + A*=*, where
A represents the change made by suppressing “less

important” components in the “detail” (error) infor-
mation (e.g. setting to zero any elements less than a
threshold). It is easily seen that C*t! is correspond-
ingly changed by

PrHL L. pEmA2QE=At1 A=) (27)
This change is bounded by
PSP PR QF I AT (28)

In particular, if the infinity matrix and vector norms
are used (maximum absolute row sum of a matrix and
maximum absolute element of a vector 3), and if we
arrange to scale the columns of the ) matrices so that
I Qi ||= 1, then magnitude of the change to any
component of C**! will be no larger than the max-
imum magnitude of change made to any component
of the D vectors, in view of the fact that the infinity
norm of each P matrix is 1 (the rows represent affine
combinations).

9. Curve Subdivision Rules

We have experimented with four common curve subdi-
vision rules: the cubic B-spline rule that we have used
as an example above, Faber subdivision 10, Chatkin
subdivision 3, and Dyn-Levin-Gregory subdivision ?
(considered in Section 10).

The subdivision matrix, P**!, of the Chaikin rule
is:

1 0 0 0 0 0 0
1+ 00 0 0 0
0 2 X 0 0 0 0
0+ 2 0 0 0 0
0o o % 1 0 0 0
0o 0 § 2 0 0 0 (29)
0 0 0 0 CE
0 0 0 0 1200
0 0 0 0 o L 1
Lo 0 0 o0 0 0 1]
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the Chaikin normal-equation matrix is:

NSNS

o ©

o o o ©

a suitable extension, @)

|
N

NN

o ©

o o o ©

and a possible submatrix, Q

N N [ N A N

=) =) =) =) O o[w |~ W=

o ©

o o o ©

o]

| w|oT o|w

o o o ©

NN

o o o © o o o ©

o]

NN

o ©

N

o o o ©

k41

o o o ©

| W|or oofw

o]

, 1s:

o o o o o ©

NN

o ©

k41 -
bl

NN

o]
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o o o ©

o]

N s Y[

o o o o o ©

,l_. IR,

w[=

Lol Ll )

|
—

o o o ©

o ©

ENTE RN

(30)

(31)

(32)

The subdivision matrix of the Faber rule is:

1 0
1 1

3 3
0 1

1

0 3
0 0
0 0
[0 o

the normal-equation matrix of the Faber rule is:

- 5 1
i1
1 3
i3
1

0 7
0 0
0 0
0 0
0 0
Lo o

o o ©

w[=

o]

IS IO

o o o ©

o o o ©

N T RN

o]

W= o] o] o] o]

o o o ©

o]

N OISO

a suitable orthogonal extension is:

SRR
-1 0
Iz
0 -1
0 3
0 0
0 0
0 0
0 0
L 0 o0

o o o ©

w[=

o o o ©

o o o o o ©

-1

w[=

0
0

o o o ©

o o o ©

o ©

ENTE RN

o o o o o ©

0
1
2

-1

1
2

(33)

(34)

and a possible submatrix, Qk+1, is simply the nega-
tive of the identity, corresponding to selecting the even
rows of (35) starting at the second.
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10. Periodic Subdivision Rules

The discussion so far has concentrated on nonperiodic
subdivision. The Dyn-Levin-Gregory rule, for exam-
ple, was originally given without emphasis on bound-
ary data; i.e., as a pertodic rule (see 2! for a discussion
of the boundary). Periodic rules are provided by P
matrices having rows/columns that wrap around. For
example, the Dyn-Levin-Gregory matrix (with the au-
thors’ parameter w set to %) is:

0 1 0 0 0 - 0 0 0
1 9 9 1
—16 16 16 —1i6 0 - 0 0 0
0 0 1 0 0 - 0 0 0
1 9 9 1
0 0 0 1 0 - 0 0 0
1 9 9
0 0 —i6 16 16 ° 0 0 0
. . . (36)
9 9 1
0 0 0 0 0 - 6 16 16
0 0 0 0 0 - 0 1 0
1 1 9 9
0 0 0 0 0 - 0 0 1
9 1 1 9
1 0 0 0 0 - 0 0 0
9 9 1 1
L E E _E 0 0 . 0 0 _E_

and the closed-curve version of the Chaiken rule is:

S oo 0 0
12 00 0 0
0 2 1 0 0 0
0 1+ 2 0 0 0
0o o 3 1% 0 0
o (37)
0 0 0 O s 2
0 0 0 O $ ¢
100 0 0 2
L 2 0 0 0 0 1]

The normal-equation matrix is also cyclic. For ex-
ample, the Dyn-Levin-Gregory normal-equation ma-

trix is:
6 v—B8 a 0 0 0 0 a—f 77
Yy § =B a 0 0 0 0 a-8
-8 v § y—B8 a 0 0 0 0 «a
a—f8 v § - a 0 0 0 0
(38)
00 00 a=B v & v—B a
a 0 0 0 0 a—-0B v & -0
-8 a 0 0 0 0 a-8 v 6 ~«
L -8 a0 0 0 0 a8 ~ &
wherea:ﬁ,ﬁ:%,7:%7and5:%‘

Such matrices can be broken into LDLT factors as in
the case of open curves. The factors do not have the
banded structure of the open-curve normal-equation
maptrices, but their structure does contain only a small,
fixed number of nonzero entries for each row, in regular
positions, which is just as good as a purely banded
structure. The profile of the upper triangular factor of
(38), for example, is:

X X
0 X
00

b
b
b ¢ ©
(o]
(o]
(o]
b b B
b b B
b4 B4 e

(39)

(e B en B e B o B e B an B e B e
(e B en B e B o B e B an B e B e
(e B en B e B o B e B an B e B e
(e B en B e B o B e B an B e B e
(e B en B e B o B e B an B e B e
(e B en B e B o B e B an B e B e
(e B en B e B o B e B an B e B e
e CE Vs
S o b B¢ b b b B
S bq b B4 b Be b B
SECECICECEVICE®

The general row in (39) has four entries in a band
along the diagonal and three entries in the last three
columns. Consequently, the generation of these num-
bers and the backsolution process costs linear time.
This is characteristic of the case with periodic P ma-
trices: their corresponding normal-equation matrices
are periodic and essentially banded in the style of (38),
while their LDLT factors are banded with an addi-
tional number of final columns that are full.

The Q-extension of a periodic matrix is also easy
to find. There are no special columns, so the sign-
alternation and shifting for alignment of even numbers
of elements, as explained in Section 6, can be carried
out easily (and periodically). The orthogonal exten-
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sion of (36), for example, is:

9 9 1
76 16 1 0 0
0 -1 0 0 0
1 9 9 1
—ic 16 16 16 U
0 0 -1 0 0
1 9 9 1
0—5¢ 1 16 16
0 0 0 -1 0
1 9 9
0 0-3 1 16
0 0 0 0 0
0 0 0 0 0
1
-L 0 0 0 o0
0 0 0 0 0
9 1
2L 0 0 o0
| -1 0 0 0 o

o o o o o o ©

o o ool oale |,

_
o o

-
- o 3l

o o o o o o ©

- o

- -
ale o &l ..

HlH
o o o o o o=@

|
—

le

o o

(40)

The best subselection of rows to take from this matrix,
of course, consists of all rows having only the entry —1.

Not all subselections are quite so convenient. The

periodic, cubic B-spline P matrix is:

R
0 £ L o0
0 & § %
o o & 1
0o 0o & 2
0 0 0 0
0 0 0 0
£t 0 0 0
1 0 0 0
st 00
L 3 5 0 0
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o o o o o

o O O O O ®= ..

o o o o o

O O O =W

o o o o o

© W= W= R[® N[ o=

(41)

The Q-extension is:

-+-1 0 o0 0 0 0
32 o0 0 0 0
0-+ -1 o 0 0 0
o + 2 & 0 0 0
o o-%1-1 0 0 0

Do (42)
0 0 0 0 21
0 0 0 0 0-1 -1
£ 0 0 0 0o &+ 2
-+ 0 0 0 0 0-1
L 2 § 0 0 0 0 g

No subselected matrix, Q, is triangular. The follow-
ing matrix is subselected to be periodic and is made
triangular by trivially precomputable eliminations:

-+ -2 0 0 -+ 0 0 0]
0o-+-f o .- 0 0 0
0o o-%1-1 0 0 0
N (43)
1 1
1 1
0 0 -3 -3
-3 0 0-3z]

A non-periodic @) is easier to make triangular. The fol-
lowing subselection of rows requires only one Gaussian
elimination:

o O W=
[ G
|
Wik R o
] Ll e B )

(44)

S ==,

W= R =,

W= o= O

As a final example, we give our analog of the
Daubechies Dy relationships. This must be regarded
as a freak of nature, of course, and it is simply included
to show that it can be done. Daubechies’ A and B ma-
trices (see Section 13) for D, are each sparse with 4
elements per row. Her @ is different from ours, but
also contains only 4 elements per column. She needs
no LDLT factorization, whereas we do. In order to
achieve this sparsity, on the other hand, her scale func-
tions (Section 13 again) are negative on portions of
their support, making them inappropriate for certain
aspects of geometric use such as interactive modeling.
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The P matrix for closed curves (re-scaled to provide
affine combinations) is:

3—v3  14V3 ]
S S 0 0
1-v3 3443
n 4 0 0
0 3—4x/§ 1+4\/§ 0
0 1—4x/§ 3+4\/§ 0
(45)
143
0 0 0 -
0 0 0 34v3
4
1+v3 3—V3
4 0 0 4
343 1-3
L 4 0 0 4 J

The normal-equation matrix is cyclic, with the follow-
ing column pattern shifted down one row position for
each advance of column position:

- 0 -

0
L 0 d
(46)
Our corresponding () matrix is:
_ _3+4 i # o 0
1+4\/?T # 0 . 0
0 _ 3+4\/§ 1 —4\/5 0
0 1+4\/§ 3—4\/?? 0
(47)
0 0 0 1=
0 0 0 3=+8
1 —4\/3? 0 0 _ 3+4~/?T
I 3—4\/3? 0 0 1+4\/?T

and a suitable subselection, Q, consists of every other
Tow.

11. Tensor-Product Surfaces

For a tensor-product surface, the subdivision process
given by equation (4) becomes

[Pf‘“] [Ck] [PII;HT} _ [Ck+1] (48)

where Pf"’l is mp X ng, Pf{"l is mp X ng, C*isnyp x
nr, and C*tlis myr x mg. Completing each P matrix
by a corresponding () matrix yields

prtipk+1 FoLa i Pk+1T
[ L QL ] Gk Hk Q1:+1T (49)
R

where Qi"’l is mp X mr —nr and Qg‘"l is mRr X mp —
ngr. Accordingly, the relationship between coarse and
fine levels is composed of four terms:

] = [pt] [c*] [PEn]
+ [t [64] [pa+]
(50)
+[PE] [P o5
+[e] [ @k

Finding coarse versions of C*! may proceed with
some flexibility. A left coarse version is produced by
solving

(1PE7" [PE¥]) [04] = [P 6] o)

column by column for C¥. The corresponding error is
given by:

(0" [t]) [24]
= [@i"]" ([e*] - [Pt+] [ct])

which may be found by solving
(i) [pz] = [c**'] = [Pp**] [cz]  (53)

where QAIE‘H is the submatrix selected from QIE‘H as
described in Section 7. In terms of the four tensor-
product terms

ot = [0*] [pa ] + [7*] @]

D} = [6*] [p" ] + 4] [@5”]

(52)

(54)

Similarly a right coarse version of C*t! may be found
by solving

[ck] ([P&]" [PE*]) = [¢**'] [PE"']  (55)
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row by row. The corresponding error, D%, may be
found in a way corresponding to D¥. The fully coarse
version of C**t1 C¥, is obtained by finding the left
coarse version of CF or the right coarse version of C¥.

12. Examples

Several examples are offered here. Figure 1 shows the
shoreline of an island off the coast of Norway, given
by 512 points around its perimeter. Morten Dahlen
kindly provided the data. Figures 2 through 5 show
coarser versions of the shoreline produced by revers-
ing Chaikin subdivision. Each successive coarse ver-
sion has half the number of points. Figure 6 overlays
the 512-point and 32-point version. Figure 7 shows a
512-point version of the coastline reproduced from the
32-point version purely by subdivision; that is, with-
out the error terms. This subdivision curve is over-
lain on the original data. Figure 8 shows a 512-point
version of the coastline reproduced from the 32-point
version and all of the intervening points D via the
multiresolution reconstruction process given in (7).

The errors, Q*T! D* produced through this process
had the following norms:

| @***D*% ||: 0.0063
| @*°*D™® ||: 0.0110
| @*** D% ||:  0.0231
| @**D* ||  0.0341

Figure 9 shows the 512-point shoreline and the 32-
point version using the reversal process, using cubic
B-splines, introduced by Finkelstein and Salesin in 11.
Figure 10 shows the 512-point shoreline and the 32-
point version using our reversal process on cubic B-
spline subdivision. The corresponding errors were:

| @***D*% ||: 0.0063
|| @***D'™® ||:  0.0132
| @*** D% ||:  0.0287
| @**D?** ||:  0.0448
for Finkelstein and Salesin and:
| @***D*% ||:  0.0058
| @*°*D™® ||:  0.0139
| @*** D% ||:  0.0304
| @%*D* ||:  0.0442

for our form of cubic B-spline subdivision reversal.
Note that all error magnitudes are comparable among
the three multiresolution processes exemplified here.
A decision to use one or the other would be made on
other grounds than on the magnitudes of the error
information.

Figure 11 shows a grey-scale image of a fox. Figure
12 shows the same image after two levels of being made
coarse through the reverse of tensor-product, cubic B-
spline subdivision. Figure 13 is the full reconstruction
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of the image, and Figure 14 is the reconstruction with-
out error terms. In contrast to the shorline example,
which used periodic versions of subdivision and recon-
struction, this uses example uses the version defined
by the matrices P and @ given in equations (13) and
(24).

Figure 15 shows range data of a bust of Victor Hugo.
Since we have been taking subdivision rules in as sim-
ple a form as possible, we have had to reduce this
data somewhat. A typical subdivision rule will trans-
form my points into my4+1 points. If we are given data
that is not exactly my41 points, we must adjust the
number somehow. This is a typical problem familiar
from wavelet and FFT decompositions. We have sim-
ply reduced the Victor Hugo data by removing all rows
from the top of the head downward as needed, and by
deleting every other column from the back of the head
(where detalil is slight and so much data unnecessary.)
Thus the data covers the front of the bust with twice
the density of that in the back. Figure 16 shows the
result of coarse approximation in one direction only
via tensor-product, cubic B-spline subdivision. Figure
17 shows coarse approximation for two levels in two
directions. Figure 18 is the reconstructed original data
fully reconstructed from the surface of Figure 17, and
Figure 19 shows a reconstruction that did not include
any of the error terms D.

13. Wavelet Connections

The paper by Schréder and Sweldens 17 provides a
very compact introduction to wavelets and multires-
olution, together with some applications in graphics.
Our notation in this paper was, however, adapted from
that used by Finkelstein and Salesin !'! for their work
on multiresolution cubic B-spline curves. For a more
thorough introduction to B-spline wavelets, refer to
the book by Chui 4. For an introduction to wavelets
with emphasis on their use in computer graphics see
the book by Stollnitz, et. al. 18. For an extensive gen-
eral coverage of wavelets, featuring signal processing,
see the book by Strang and Nguyen 19.

In the wavelet interpretation, points ¢ are inter-
preted as coefficients of a basis of functions ¢; for a
space V* (k = k,k + 1). Furthermore, V¥ C V#+1,
The basis qﬁf for V¥ can be completed to a basis for
V¥*t! by adding independent functions 4¥. The func-
tions ¢ are known as scale functions, and the functions
o are called wavelets or wavelet functions. Taken all
together, V¥, ¢%, ¢* for v = k,k + 1, if repeated for a
succession k = 1,2,3,..., form a multiresolution sys-
tem. With respect to an inner product, if the ¢ and
the ¢ are mutually orthogonal (<¢f,¢f> =di; (k=
k.l + 1)7<¢fv¢5> = 07<¢57¢'7k}> = 5l,7’) the mul-
tiresolution system is said to be orthogonal. If only
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<¢p¥, k> = 0 holds, the system is semiorthogonal. A
third category of system is biorthogonal (refer to '7 for
a definition). Biorthogonal systems will not concern us
here.

Since the spaces are nested, we have

ph =3 gkt (56)

v =Y ait' it (57)

and conversely

¢k+1 Z k+1¢] +Zbk+1 (58)

J

for some coefficients ak+1 bfjl,pf‘;l,qlk}'l Thus, for

any element of V¥t we can write

Skt = D, (3, ekt + 30, 0 )
= %, (Siektiattt) o)

+ 20, (et wi

S, ekt + X, diwt

This provides the decomposition process

_Z k1 k+1 (60)

(59)

df =Y ettt (61)

i
whereby Z kqﬁf is the approximation
of Z ck‘i'1 k+1 in V¥ and Z ck+1bk+1 is the cor-
responding error in W¥ = V !\ Vk. The ¢ are the

scale coefficients, and the d are the error (or detadl)
coefficients. In matrix terms,

ARt kt1 c*

Conversely,
Yickey + X, divi
= 3, (Pt el )
St (a0
S (3, chplt + 3 bkt ) gt

k+1 k41
Zi ;P

+

(63)

This provides the reconstruction process

SEEDWELHED SEL T
J

which in matrix format is equation (5).

The ideal situation in wavelets is to have the matri-
ces A, B, P, and @ be sparse. More specifically, they
should each possess only a small number of nonzeros
clustered together in each column. In this case the
decomposition and reconstruction processes will be
extremely fast and efficient. We cannot achieve spar-
sity. The A matrix is easily seen to be (PTP)_1 PT,
which will invariably be a full matrix. Equation (12)
will show that a like comment holds for B and
(QTQ) " Q7. However, we can still achieve speed and
efficiency by avoiding the computation of the inverse,
as has been discussed in Section 5.

The equations in this section also lead to a matrix
view of what constitutes a semiorthogonal system:

= (ghut) = (S, AL T, )
= 3,30, phEET (gh gk (65)
_ |:Pk+1T:| [¢k+1] [Qk+1]

where ®**! is the Gram matriz formed by the scale
functions for V**! and the inner product <-,->.
Equations (71) and (70) will indicate how a change
in the Gram matrix can change the support of the
wavelets represented by Q*T!.

The matrix observations we made in equation (23)
are related to the observations in the literature on 2-
scale relationships that associate ¢(z Z P2z —

n) with ¢(z) = 2, (=1)"p-nd(2z — n)

Note that the subdivision matrix of equation (13)
is the same one used by Finkelstein and Salesin in
11, However, our matrix Q**! is significantly simpler
than the one presented in that paper. More surpris-
ingly, since the columns of Q**! provide the represen-
tation of the level-k wavelets, 4%, in terms of the scale
functions at level k+1, qﬁf“, and since the scale func-
tions in question for this example are cubic B-splines,
we see that (24) defines wavelets that (except for the
special ones at the extremes of the domain) have the
same support as the level-k scale functions. Since Chui
4 proves that the minimal-support B-spline wavelet
must have support that is essentially twice that of the
B-splines at the corresponding level, we have some ex-
plaining to do.

The reason for the unusually compact wavelets we
are defining lies in the form of semiorthogonality we
are using. Since we do not assume that we know the
underlying scale functions, we have constructed Q**!
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to satisfy
[P [@ ] =0 (66)

which, while it is appropriate for least-squares data
fitting, agrees with equation (65) only if the Gram ma-
trix ®%t! is the identity. This, in turn, derives from the
fact that we are using a different inner product than
the usual one. In %, as in most literature on wavelets,
development proceeds in the space Lo; that is, the in-
ner product used is

(frg) = / F(2)3()d (67)

In our case, the inner product is defined implicitly to
yield the following relationships:

k k
(Pt et )y, = 00 (68)

which defines the inner product on V*t! by

<f79>k+1 = 27f~/9~/
where
(69)
f = 27f7 f/+1

g = Z.y gv¢f/+l

The inner product is flagged with the subscript “k+1”
because it is a different inner product for each space
V*+1 in the nested spaces of the multiresolution anal-
ysis and corresponds to the Euclidian inner product on
each such space; that is, the inner product appropriate
for least-squares data fitting.

The claim that the difference between our wavelets
and the conventional ones is due to the inner product
being used can be strengthened. Referring to equa-
tion (65), the conventional matrix ®**' for the cu-
bic B-spline case (whose elements are the integrals of
equation (69) with f and g replaced by pairs of ba-
sis splines on the closed, bounded interval), has (aside
from some special columns on the left and right) the
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following general columns:

0 0 0
1
5040 0 0
1 1
42 5040 0
397 1 1
1680 12 5040
151 397 1
315 1680 12
397 151 397
1680 315 1680 (70)
1 397 151
12 1680 315
1 1 397
5040 12 1680
1 1
0 5040 12
1
0 0 5040
0 0 0

The product {Pk‘HT} [@k‘i'l] yields a “smeared out”

version of P**! with (aside from some special columns
on the left and right) a succession columns as follows:

0 0 0
1
40320 0 0
31
10080 0 0
559 1 0
13440 40320
247 31 0
1260 10080
9241 559 1
20160 13440 40320
337 247 31
560 1260 10080
9241 9241 559
20160 20160 13440
247 337 247
1260 560 1260 (71)
559 9241 9241
13440 20160 20160
31 247 337
10080 1260 560
1 559 9241
40320 13440 20160
0 31 247
10080 1260
0 1 559
40320 13440
31
0 0 10080
1
0 0 40320
0 0 0
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Using the scheme of producing columns of Q*t! by
reversing the order of elements in the columns of
(71), alternating their signs, and shifting the result
by one row position, we produce precisely the cubic
B-spline wavelets given in Chui * (up to a scale fac-
tor). A similar outcome with respect to the wavelets
of Chui, Quack and Weyrich 3 16 is found for the
special columns on the left and right. Figure 20
shows a graphic comparison between a conventional
wavelet, from a general column of matrix (71), shown
as a dashed line, and the least-squares inner-product
wavelet, from a general columns of matrix (24), shown
as a solid line. (The conventional wavelet has support
on the interval [0,14], but its deviation from zero on
the intervals [0,2] and [12,14] is so slight that it is
covered by the line representing the z-axis.)

14. Summary and Future Work

We have presented an approach to the least squares
data fitting to given data of curves, tensor-product
surfaces, and images. The fit is specified according
to a given subdivision rule. The approach and the
computations have been related to the formalisms of
wavelets.

We have seen that the least squares data fitting
problem, which conventionally takes place in a finite-
dimensional f; space with a Euclidian inner product
(that is, with a Gram matrix & = I) can result in
wavelets that have smaller support than those found
in the conventional L;-space, semiorthogonal setting
(where the Gram matrix will be banded or full).

We have provided a simple, straightforward, matrix-
oriented method for constructing wavelets. The
method can be used whatever the Gram matrix, and
have given an example where it produces wavelets for
B-splines consistent with the conventional ones, for
the Lo setting, as well as wavelets of half that sup-
port, for the ¢, (data-fitting) setting.

We have shown how matrix factorization and the
selection of submatrices assists in providing efficient
decomposition and reconstruction algorithms, even
though we are working in a semiorthogonal setting for
which A and B are full matrices.

We have presented illustrations of our approach for
several subdivision rules, looking at both the periodic
and compact-domain setting. Finally, we have shown
examples of the subdivision-guided least-squares de-
composition and reconstruction applied to a paramet-
ric curve, a tensor-product surface, and a grey-scale
image.

The following questions might be asked:

1. If the inner product used has such an effect on the

sparsity of the wavelet matrix, ¢}, could it also in-
fluence the sparsity of A and B?

2. How can the methods of this paper be extended to
non-tensor-product surfaces?

3. The considerations of this paper are addressed en-
tirely to the static case of generating multiresolu-
tion representations of given data that are related
to a specified subdivision rule. How do these repre-
sentations perform dynamically; specifically, under
hierarchical editing?

4. To what extent can these techniques be used for
data compression?

We have been addressing the first question in two
ways. By leaving the inner product initially unspec-
ified and considering only local conditions like equa-
tion (17), we have found a construction process for a
sparse A, B, and @ (for given sparse P) that yields
an inner product implicitly 2. We have also found a
process that, given P and ®, will modify & (that is,
revise the inner product) so as to yield a sparse A, B,
and Q. These results will be submitted in forthcoming
papers.

The construction from local conditions that we have
developed in view of the first question is applicable to
non-tensor-product surfaces, which thereby provides
an answer to the second question. This, too, will be
submitted in a forthcoming paper.

We have produced an experimental curve editor in
Java that accepts a subdivision rule as a module, cre-
ates sparse A, B, and (J matrices on the fly and then
allows the design and editing of curves at multiple lev-
els of detail. This work is currently being written up
as a University of Waterloo Master’s Thesis.

We have not currently addressed the forth question.
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Figure 1: 512-point shoreline
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Figure 2: One Chaikin reversal producing a 256-point shoreline
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Figure 3: Two Chaikin reversals producing a 128-point shoreline
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Figure 4: Three Chatkin reversals producing a 64-point shoreline

0.4

0.151 q

0.05 L L L L L L L
21 215 2.2 225 2.3 2.35 2.4 2.45 25

Figure 5: Four Chaikin reversals producing a 32-point shoreline
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Figure 6: 512-point and 32-point shoreline compared
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Figure 7: 512-point subdivision curve from 32-point shoreline with original data
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Figure 8: Original 512-point shoreline reconstructed from 82-point shoreline and error information
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Figure 9: 512-point and 32-point shoreline using Finklestein and Salesin’s methods
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Figure 10: 512-point and 32-point shoreline using our cubic B-spline methods

Figure 11: Original fox image (259 x 259)
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Figure 13: Fully reconstructed foz image (259 x 259)
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Reconstructed fox image without error terms (259 x 259)
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Figure 20: Comparison of wavelets
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