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Abstract

In a previous work [32] we investigated how to reverse subdivision rules using global least squares
fitting. This led to multiresolution structures that could be viewed as semiorthogonal wavelet systems
whose inner product was that for finite-dimensional Cartesian vector space. We produced simple and
sparse reconstruction filters, but had to appeal to matrix factorization to obtain an efficient, exact de-
composition. We also made some observations on how the inner product that defines the semiorthog-
onality influences the sparsity of the reconstruction filters.

In this work we carry the investigation further by studying biorthogonal systems based upon subdi-
vision rules and local least squares fitting problems that reverse the subdivision. We are able to produce
multiresolution structures for some common univariate subdivision rules that have both sparse recon-
struction and decomposition filters. Three will be presented here – for quadratic and cubic B-spline
subdivision and for the 4-point interpolatory subdivision of Dyn et. al. We observe that each biorthog-
onal system we produce can be interpreted as a semiorthogonal system with an inner product induced
on the multiresolution that is quite different from that normally used. Some examples of the use of
this approach on images, curves, and surfaces. are given.

keywords: subdivision, least squares, wavelets, curves, surfaces, multiresolution.
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1 Setting

Assume that the points for a curve or surface, or the pixels for an image, are given. Denote them by ck
�

1� .
They will be referred to as the fine data. In some circumstances this data could have been produced by
subjecting a smaller number of points or pixels, the coarse data, to a subdivision process:

ck
�

1� � ∑
λ � ¨� k � 1� pk

�
1���

λ ck
λ (1.1)

In other circumstances the data are simply given, but it may be of interest to find an approximate set of
coarse data ck

λ which, when subjected to the subdivision process defined by the pk
�

1���
λ , almost reproduce

the fine data; that is, via the reconstruction filter

ck
�

1� � ∑
λ � ¨� k � 1� pk

�
1���

λ ck
λ
	 ∑

κ � ¨
 k � 1� qk
�

1���
κ dk

κ (1.2)

The second summation represents the amount by which a subdivision of the coarse points C k fails to
reproduce the fine points Ck

�
1.

This the the multiresolution setting, for if the approximation process is repeated a number of times
starting with the ck

λ, the originally given data ck
�

1� will break down into a small amount of coarse data
ck � N

λ and layers of detail information dk � N
κ 
�������
 dk

κ from which the original data can be recovered using

the reconstruction coefficients � p j���
λ : λ � ¨� j� 
 j � k � N

	
1 
�������
 k 	 1 � and � q j���

κ : κ � ¨� j� 
 j � k � N
	

1 
�������
 k 	 1 � . In the best of situations, the coarse data and the detail information can be generated by the
use of a simple set of decomposition filters:

ck
λ
� ∑� � ˙� k � 1

λ

ak
�

1
λ
� � ck

�
1� (1.3)

dk
κ � ∑� � ˙� k � 1

κ

bk
�

1
κ
� � ck

�
1� (1.4)

given by the analysis coefficients � a j
λ
� � : ��� ˙� j

λ 
 j � k � N
	

1 
�������
 k 	 1 � and � b j
κ
� � : ��� ˙� j

κ 
 j � k � N
	

1 
�������
 k 	 1 � . (Index sets for the first of a pair of indices are indicated by a single dot and those for the
second of a pair by a double dot.)

Practical subdivision rules are sparse; that is, all but a finite number of p j���
λ are nonzero for any fixed� � 
 j � and also for any fixed

�
λ 
 j � . Indeed for all j, and except possibly for a few � associated with

“boundary situations,” it is usual for these nonzero coefficients to be an identical small set of numbers
repeated for each � . Moreover, the index locations λ for these repeated numbers shift in a regular way
with each � .

In multivariate cases, each subdivision rule (1.1) imposes its own subdivision connectivity on the
points, reflected in the index sets ¨� k

�
1� . For example, a well-known surface subdivision rule due to

Chaikin [5] applies to tensor-product surfaces. The index sets represented by ¨� k
�

1� in (1.1) are sets of
of pairs λ � �

µ 
 ν � , � � �
ρ 
 σ � that associate each point with its four neighbors in a quadrilateral index

lattice. Another surface subdivision rule due to Dyn, Levin, and Gregory [18, 39] requires triangular
mesh connectivity; and so on.

In this study we shall restrict ourselves to univariate rules. Mesh connectivity simplifies to simple
sequence adjacency: the geometry of curves. Of course, the results apply to tensor-product surfaces as
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well, in the standard way (see e.g. [34]). We shall leave the study of more general surface geometry and
mesh connectivity for later.

We shall study how, given a subdivision rule defined by simple coefficients p j���
λ, we can sometimes

define coefficients a j
λ
� � , b j

κ
� � , and q j���

κ, of comparable simplicity. The goal is to produce the coarse data ck
λ

as a good approximation to the fine data ck
�

1� in the sense that the approximation is geometrically realistic
and yields small errors, qk

�
1���

κ dk
κ.

The results we present involve only operations with the quantities Ak
�

1 � � ak
�

1
λ
�
i � , Bk

�
1 � � bk

�
1

κ
� � � ,

Ck
�

1, Pk
�

1, and Qk
�

1. We start with given subdivision/reconstruction coefficients Pk
�

1 and generate, in
a self-contained way, the remaining reconstruction coefficients Qk

�
1 and the decomposition coefficients

Ak
�

1 and Bk
�

1 by purely linear-algebraic means. Even though our construction will be self-contained, it is
reasonable to make some reflections on issues normally associated with multiresolutions, namely wavelet
systems. Behind every multiresolution there are nested, inner-product spaces  � � "!$# k � 1 !%# k !%# k

�
1 ! � � each spanned by a basis of scale functions φk

λ that have been chosen to have some desirable properties.
The difference spaces & k � # k

�
1 �'# k, with & k ( # k � � 0 � , are spanned by a basis of wavelets ψk

λ,
again chosen for some properties. In our geometric setting these spaces are real, Hilbert spaces of finite
dimension, which greatly simplifies most of what we shall be doing.

Because of the nesting,

φk
λ
� ∑� � ˙� k � 1

λ

pk
�

1���
λ φk

�
1�

(1.5)ψk
κ � ∑� � ˙
 k � 1

κ

qk
�

1���
κ φk

�
1�

where the coefficients pk
�

1���
λ and qk

�
1���

κ are as in (1.2). Conversely,

φk
�

1� � ∑
λ � ¨� k � 1� ak

�
1

λ
� � φk

λ
	 ∑

κ � ¨� k � 1� bk
�

1
κ
� � ψk

κ (1.6)

where the coefficients ak
�

1
λ
� � and bk

�
1

κ
� � are as in (1.3) and (1.4).

In the original work on multiresolutions, only those nested spaces were of interest for which each
scale function in any of the # j could be derived from a single function in one of the spaces, # 0, through
shifting and dilating (and similarly for the wavelets). Later, this was relaxed to multiwavelets where the
bases for the spaces # j and & j were constructed via shifts and dilations applied variously to a small set of
functions. Wavelet systems that depend on shifts and dilations have come to be known as first generation
wavelets. Discarding the requirement that the basis functions be produced by shifts and dilations has led
to the study of second generation wavelets.

For any of the above categories of wavelet systems, a system may be required to be orthogonal with

respect to the inner product on the spaces; that is for any j, ) φ j�
1 
 φ j�

2 * would be nonzero if and only if� 1 � � 2, ) ψ j1�
1 
 ψ j2�

2 * would be nonzero if and only if � 1 � � 2 and j1 � j2, and ) φ j�
1 
 ψ j�

2 * would always

be zero. Orthogonal systems were studied first. Later, the restrictions of complete orthogonality were

relaxed to permit semiorthogonal systems, for which only ) φ j�
1 
 ψ j�

2 * � 0 is required (and in which the ψ
functions are sometimes called pre-wavelets). Recently, the consideration of scale/wavelet systems was
expanded into biorthogonal systems. In these systems there are primal scale and wavelet functions, φ j

λ
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and ψ j
κ, dual scale and wavelet functions, φ̃ j

λ and ψ̃ j
κ, and orthogonality conditions:) φ j�

1 
 φ̃ j�
2 * � δ � 1 � � 2) ψ j�

1 
 ψ̃ j�
2 * � δ � 1 � � 2) φ j�

1 
 ψ̃ j�
2 * � 0) ψ j�

1 
 φ̃ j�
2 * � 0

(1.7)

The dual scales and wavelets span the dual spaces ˜# j and ˜& j, respectively. But the simplicity of our
finite dimension setting allows us to make the identifications ˜# j + # j and ˜& j + & j and to write

φk
λ

� ∑� � ˙� k � 1
λ

pk
�

1���
λ φk

�
1�

ψk
κ � ∑� � ˙
 k � 1

κ

qk
�

1���
κ φk

�
1�

(1.8)φ̃k
m

� ∑� � ¨̃� k � 1
m

ãk
�

1
m
� � φk

�
1�

ψ̃k
n

� ∑� � ¨̃� k � 1
n

b̃k
�

1
n
� � φk

�
1�

Together, (1.7) and (1.8) imply ) ψ j1�
1 
 ψ̃ j2�

2 * � δ � 1 � � 2δ j1
�
j2 (1.9)

The relationship between Ãk
�

1 � � ãk
�

1
m
� � � and Ak

�
1, and between B̃k

�
1 � � ãk

�
1

m
� � � and Bk

�
1, will be given

in Section 4. For more information on wavelets and multiresolution analysis see [6, 16, 25, 34].

2 Introduction and Other Work

In this paper we shall be working in a setting that is biorthogonal and second generation. Taking a given,

sparse subdivision rule pk
�

1���
λ , we create from it sparse analysis coefficients ak

�
1���

λ and bk
�

1���
κ , and we complete

the system by creating the remaining sparse reconstruction coefficient qk
�

1���
κ . Implicitly, our construction

induces an inner product. The inner product used is specific to each subdivision rule. Moreover, the
coefficients Ak

�
1, Bk

�
1, and Qk

�
1 will be chosen to respect geometric (affine) issues.

There are several novelties in this setting. In the usual biorthogonal setting, all four sets of coefficients
are to be constructed, including the subdivision coefficients Pk

�
1 (alternatively, both primal and dual

scales and wavelets are to be constructed). A large part of the problem becomes that of constructing
wavelets with a certain number of vanishing moments in order to achieve a certain approximation power.
In our setting, we choose to accept the given scale functions and their smoothness (by accepting the scale
relationship given in the subdivision rule Pk

�
1), and we work from there.

In most of the wavelet literature, the inner product is chosen to be, �.-� - f
�
t � ḡ

�
t � dt (2.1)
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which measures the underlying function spaces # j. This norm is immutable for all scale relationships.
In our setting, we will not be specifying the inner product; it will be induced according to the scale
relationship and some choices we make with regard to it.

The majority of the wavelet literature arises from the theory of approximation in a function space
setting. Hence, constructions focus on the functions φ and ψ, their duals, and various transforms of these
functions. Often, neither the scales nor wavelets, nor the coefficients Ak

�
1, Bk

�
1, Pk

�
1, and Qk

�
1, are

subjected to conditions desirable for images, curves, or surfaces. In our setting, as in the portion of the
wavelet literature coming from graphics applications, such conditions should be observed; e.g., that primal
scale functions should be nonnegative and partition unity and that only affine and vector combinations
should be formed from the data points Ck

�
1 [23]. More specifically, equation (1.2) specifies that the fine

points Ck
�

1 are expressed in terms of affine combinations (with coefficients Pk
�

1) of the coarse points
Ck and linear combinations (with coefficients Qk

�
1) of the detail information Dk, whose elements serve

geometrically as displacement vectors. This means that the elements of Pk
�

1 must satisfy

∑
λ � ¨� k � 1� pk

�
1���

λ
� 1 (2.2)

for every � . This is not a condition we need to impose here, since it must be true for any Pk
�

1 that
represents a subdivision. Moreover, there are no geometric conditions we need to impose on Qk

�
1, since

the elements of Qk
�

1 provide the coefficients of linear combinations of vectors. For equation (1.3) to be
geometrically realistic, however, we must require

∑� � ˙� k � 1
λ

ak
�

1
λ
� � � 1 (2.3)

for every λ, since (1.3) expresses the coarse points Ck as affine combinations of the fine points Ck
�

1.
Finally, for equation (1.4) to be geometrically realistic, we must require

∑� � ˙� k � 1
κ

bk
�

1
κ
� � � 0 (2.4)

since (1.4) represents a conversion of the points Ck
�

1 into the vectors Dk.
Even in the graphics literature on wavelets, there is a focus on the underlying function space rather

than the geometric data Ck
�

1. In our setting, although we shall try to remain aware of the underlying
scales and wavelets, we shall be supplying a construction that is purely linear-algebraic in nature and
based entirely on the given subdivision coefficients.

The most basic multiresolution analysis with sparse Ak
�

1, Bk
�

1, Pk
�

1, and Qk
�

1 is the Haar system
[34]. This system is orthogonal in the inner product (2.1), but its approximation power does not extend
beyond piecewise constants. Consequently its geometrical and image usefulness is limited.

A simple multiresolution system built up purely on the basis of local approximations among the data
points, Ck

�
1, is due to Faber [20]. The construction used by Faber can be viewed as a very simple form

of the construction we shall be using, although it is incomplete in that it was not developed in a way to
provide analysis and reconstruction coefficients. Faber subdivision maps piecewise linear functions into
piecewise linear functions; and as such, it is the first interesting subdivision rule for geometry, applying
naturally to polyhedral mesh surfaces.

Using the inner product (2.1), sparse, first generation systems of higher approximation power have
been produced. For example, orthogonal systems by Daubechies [13], and biorthogonal systems by Co-
hen, Daubechies, and Feauveau [10], Cohen [7], Herley and Vetterli [24], Karoui and Vaillancourt [26], to
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name but a few. However, most of the underlying scale functions are not entirely appropriate for curves,
surfaces, and images, for which nonnegative functions that partition unity are desirable. Moreover, sec-
ond generation systems are far more interesting in the context of graphics, since they offer the hope of
constructing wavelets on domains and topologies that don’t provide for shifts and dilations.

A powerful method for generating biorthogonal, second generation systems is via the lifting construc-
tion introduced by Sweldens [36]. He and Schröder use this construction to define wavelets on the surface
of a sphere in [33] and show how to use lifting in a general setting in [37]. In the reverse direction,
Daubechies and Sweldens [14] show how given wavelet systems can be decomposed into lifting steps.
Hence, in this paper we are unlikely to achieve anything that could not be achieved via lifting. However,
in usual practice, the lifting method constructs wavelets in a sequence of steps that are driven by goals
formulated in terms of moments and the conventional inner product (2.1). One of the end products is the
subdivision (scale) relationship given by the coefficients Pk

�
1. Our approach, as we have stated, will be

to accept a given subdivision rule and to provide, by geometric and linear-algebraic considerations, the
remainder of a system that is biorthogonal with respect to a norm that is induced by the subdivision.

There are a number of graphically-oriented papers that use the conventional inner product (2.1), to-
gether with one or another particular subdivision, to induce a wavelet system that establishes a multires-
olution representation for curves and/or surfaces. Some of these papers focus on the creation of their
representations for the purpose of multiresolution display, for example the work by Certain; et. al. [4],
and that by Lounsbery, DeRose, and Warren [30]. Some papers encode the representation in a form that
supports multiresolution editing, for example the work by Finkelstein and Salesin [21]. Other papers
are interested in compression, for example the work by DeVore, Jawerth, and Lucier [15]. A particu-
larly notable example to cite is the work by Reissell [31], which produces a sparse biorthogonal system
of smooth, symmetric, interpolating scale functions. Reissell gives applications to compression, feature
detection, and intersection location.

What we shall be adding is a construction that, so far on all univariate subdivisions investigated,
has yielded primal and dual functions that are simpler than those given in these citations. Our approach
has been carried out in a preliminary fashion to a non-tensor-product subdivision for polyhedral meshes.
Further work is required here. Whether symmetry is supported depends upon the given subdivision rule.
Multiresolution editing, while not covered in this paper, is achievable by organizing detail information
into a format of local coordinate frames as proposed by [22].

Further afield in the graphics literature, Kobbelt; et. al. [28], create multiresolution meshes from
a given mesh of arbitrary connectivity, which means that they forego the regularity present in the sub-
division (and scale/wavelet) setting to handle much more flexible geometries. They encode their mul-
tiresolution information in a form suitable for multiresolution editing. This work is worth citing here,
because their process of finding a coarser mesh from a finer one involves a local minimization. Their
local minimization problems are solved iteratively at each data point, which is a computational price they
pay for handling arbitrary connectivity. The concept of local minimization is one we also exploit, but the
regularity of a subdivision setting allows us to solve the local problems universally and in advance.

A bridge between the material of [28] and that of the subdivision setting is provided by the work
of Eck; et. al. [19], which introduces a means of approximating meshes with arbitrary connectivity by
meshes with subdivision connectivity.

A vast number of theoretical papers can be found that address issues associating subdivision rules
with multiresolutions and wavelet systems. As well the issue of constructing wavelets from subdivisions,
issues worth mentioning here are those of existence and stability. The former issue asks when a basis
of scales and wavelets for an infinite nesting of spaces in L2 exists consistent with a subdivision. The
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second issue asks whether approximations of L2 functions with respect to these basis functions can be
trusted to have coefficients that are bounded in some way by the norms of the approximated functions
(i.e., provide Riesz bases). Most of this theory rests in the realm of first generation wavelets. The setting
of second generation wavelets that interests us is a less explored terrain for such issues. In any event, we
are attempting only to be constructive here. It is our intention that the constructions be applied to well-
established subdivisions (known to converge and yield multiresolutions in terms of the usual norm (2.1)),
and we are concerned with practical graphics settings in which only a few levels of finite-dimensional,
nested spaces are employed. Nevertheless, the following papers give the flavor of the issues. The paper
by Cohen [8] takes one subdivision rule and discusses construction via the “cascade method”. Cohen and
Daubechies [9] discuss the issue of stability, and Dahmen and Micchelli [12] deal with existence.

Our paper is not the first to suggest that other inner products than (2.1) are possible for wavelet
systems. In an earlier work [32] we used the Euclidian inner product on the data points Ck

�
1 to construct

wavelets of very small support, and Aldroubi, Eden, and Unser [2] have also investigated this inner product
specifically for B-splines as scaling functions. Both of these papers deal with semiorthogonal systems.
For biorthogonal systems, Sweldens [35] has investigated weighted inner products.

At the core of our construction lies a matrix problem: given a matrix Pk
�

1 (with the subdivision
coefficients Pk

�
1 as entries), complete this to a square, nonsingular matrix and find a left inverse matrix/

Ak
�

1

Bk
�

1 021 Pk
�

1 Qk
�

1 3 � /
I 0
0 I 0 (2.5)

from which the other coefficients Qk
�

1, Ak
�

1, and Bk
�

1 are obtained. The structure of the matrices Pk
�

1

that arise from subdivisions is commonly slanted. This means that these matrices are banded, and the
elements of all but possibly a few of the extreme left and right columns are a repeat of the elements of
a previous column shifted down by two or more positions. In cyclic cases (for closed, periodic curves)
this shifting pattern will wrap around; elements falling off the bottom of a column are reintroduced at the
top, producing a circulant matrix. The structure of Pk

�
1 should be carried over to Qk

�
1, Ak

�
1, and Bk

�
1.

A paper that discusses a way of producing Qk
�

1 alone (to produce a semiorthogonal wavelet system)
has been published by Lawton, Lee, and Shen [29]. Matrix extension techniques for the biorthogonal
situation are given in the following papers: Dahmen and Micchelli employ matrix factorizations [11],
Carnicer, Dahmen, and Peña [3] pay special attention to issues of stability, and Warren [38] uses lifting.
In all cases, it is the conventional inner product (2.1) that is used, and the work by Warren is the only one
to focus on the geometrical setting.

In the univariate case, for closed, periodic curves, an abstract formulation for the matrix problem, and
its goal of producing simple Qk

�
1, Ak

�
1, and Bk

�
1 from a simple Pk

�
1, can be given by asking when such

a matrix has a slanted, circulant extension and inverse. The paper by Kautski and Turcajová [27] studies
some of this issue.

Finally, in a work that is hard to fit into one of the foregoing categories yet is worth mentioning, Al-
droubi, Abry, and Unser [1] take two subdivision rules and use them to build first generation biorthogonal
systems, using one subdivision for the primal system and the other for the dual system.

In Section 3, which comprises the bulk of this paper, we shall carry out our construction in a specific
case, using the subdivision for univariate, cubic B-splines. We do this to explore the issues of construction
in a simple setting. In Section 4 we look at the matrix view of our construction and what that view says
about the inner product on the underlying spaces. In Section 5 we summarize the construction in general.
Section 6 will contain another B-spline subdivision rule for which the results of our construction were
particularly pleasing. This section will also study a non-B-spline, interpolatory subdivision to show our
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approach in a different setting. We close in Section 7 with some example applications to curves, tensor-
product surfaces, and images.

3 A Simple System: Cubic B-Splines

A simple setting is provided by cubic B-spline subdivision. A diagram illustrating this setting is given
in Figure 1. This diagram is meant to show an interior section of a geometric figure that may be open
or closed/periodic. We shall concentrate only on generic interior sections of subdivisions for simplicity
in presentation. From (1.2) we know the relationship between the coarse points, the fine points, and the
detail information. In order for (1.3) and (1.2) to be consistent, we must have:

ck
λ

� ∑� � ˙� k � 1
λ

ak
�

1
λ
� � ck

�
1� (3.1)� ∑

µ � ¨� k � 1� 45
∑� � ˙� k � 1

λ

ak
�

1
λ
� � pk

�
1���

µ 67 ck
µ
	 ∑

ν � ¨
 k � 1� 45
∑� � ˙� k � 1

λ

ak
�

1
λ
� � qk

�
1���

ν 67 dk
ν

implying

∑� � ˙� k � 1
λ

ak
�

1
λ
� � pk

�
1���

µ
� δλ

�
µ (3.2)

and

∑� � ˙� k � 1
λ

ak
�

1
λ
� � qk

�
1���

ν
� 0 (3.3)

(Note that (3.2) and (3.3) are represented by the top portion of (2.5).)

ck
i

ck
i+1

ck
i−
1

ck
i−
2

ck+1
2i−
3

ck+1
2i−
4

ck+1
2i−
2

ck+1
2i−
1

ck+1
2i

ck+1
2i+1

ck+1
2i+2

Figure 1: A diagram illustrating cubic B-spline subdivision

We shall construct the coefficients Ak
�

1 to satisfy (3.2) in this Subsection and the following one, and
we shall construct the coefficients Qk

�
1 to satisfy (3.3) in Subsection 3.4. This approach lets us ignore the
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second summation in (1.2) to construct Ak
�

1 and concentrate purely on the first summation; that is, we
can treat (1.1) as if it held even when Ck

�
1 did not derive from Ck by subdivision.

According to (1.1), the relationships between the coarse and fine points in an interior section would
be:

ck
�

1
2i � 3

� 1
2 ck

i � 2
	 1

2 ck
i � 1

ck
�

1
2i � 2

� 1
8 ck

i � 2
	 3

4 ck
i � 1

	 1
8 ck

i

ck
�

1
2i � 1

� 1
2 ck

i � 1
	 1

2 ck
i

ck
�

1
2i

� 1
8 ck

i � 1
	 3

4 ck
i

	 1
8 ck

i
�

1

ck
�

1
2i
�

1
� 1

2 ck
i

	 1
2 ck

i
�

1

ck
�

1
2i
�

2
� 1

8 ck
i

	 3
4 ck

i
�

1
	 1

8 ck
i
�

2

ck
�

1
2i
�

3
� 1

2 ck
i
�

1
	 1

2 ck
i
�

2

(3.4)

The indexing in these relationships has been chosen to point up the fact that the coarse point ck
i has a

natural correspondence with the fine point ck
�

1
2i . A change in ck

i most strongly influences ck
�

1
2i in the

subdivision. Conversely, we would expect any change in ck
�

1
2i to have the most profound impact on ck

i in
any reasonable reversal of that subdivision.

In Subsection 3.1 we shall set local linear conditions that could define a set of analysis coefficients
ak
�

1
i
�
λ that will produce ck

i . In Subsection 3.2 we shall formulate a local least squares fitting problem to

approximate ck
i . In Subsection 3.3 we shall show how the two problems are equivalent. In Subsection 3.4

we shall find Qk
�

1 coefficients compatible with the Ak
�

1 coefficients.

3.1 Finding the Coefficients Ak 8 1 by Local Linear Equations

Equations (3.4) can be written as follows from the point of view of ck
i :

0ck
i

� ck
�

1
2i � 3

	
K � 3

1
8 ck

i
� ck

�
1

2i � 2
	

K � 2

1
2 ck

i
� ck

�
1

2i � 1
	

K � 1

3
4 ck

i
� ck

�
1

2i
	

K0

1
2 ck

i
� ck

�
1

2i
�

1
	

K1

1
8 ck

i
� ck

�
1

2i
�

2
	

K2

0ck
i

� ck
�

1
2i
�

3
	

K3

(3.1.1)

where the symbols K hide the remaining terms of the equations in (3.4). Although we might be tempted
to ignore the first and last of these equations in what follows, we shall see subsequently that we achieve
more flexibility by including them. Indeed, in Subsection 3.2 we shall see that including equations even
earlier and later in the sequence would make sense.

Each equation of (3.1.1) can be multiplied by a factor:

1
8

ak
�

1
i
�
2i � 2ck

i
� ak

�
1

i
�
2i � 2ck

�
1

2i � 2
	

ak
�

1
i
�
2i � 2K � 2
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and the results can be added

1
8

ak
�

1
i
�
2i � 2ck

i
	 1

2
ak
�

1
i
�
2i � 1ck

i
	 3

4
ak
�

1
i
�
2i ck

i
	 1

2
ak
�

1
i
�
2i
�

1ck
i
	 1

8
ak
�

1
i
�
2i
�

2ck
i� ak

�
1

i
�
2i � 3ck

�
1

2i � 3
	

ak
�

1
i
�
2i � 2ck

�
1

2i � 2
	

ak
�

1
i
�
2i � 1ck

�
1

2i � 1 (3.1.2)	
ak
�

1
i
�
2i ck

�
1

2i
	

ak
�

1
i
�
2i
�

1ck
�

1
2i
�

1
	

ak
�

1
i
�
2i
�

2ck
�

1
2i
�

2
	

ak
�

1
i
�
2i
�

3ck
�

1
2i
�

3	
ak
�

1
i
�
2i � 3Kk

�
1� 3
	

ak
�

1
i
�
2i � 2Kk

�
1� 2
	

ak
�

1
i
�
2i � 1Kk

�
1� 1	

ak
�

1
i
�
2i Kk

�
1

0
	

ak
�

1
i
�
2i
�

1Kk
�

1
1

	
ak
�

1
i
�
2i
�

2Kk
�

1
2

	
ak
�

1
i
�
2i
�

3Kk
�

1
3

The factors are taken to be those from the subdivision. They serve to weight the importance each of the
ck

j have in the creation of ck
�

1
2i from the fine points.

This provides us with several conditions. Firstly, in order to produce the point ck
i , we must have:

1
8

ak
�

1
i
�
2i � 2

	 1
2

ak
�

1
i
�
2i � 1

	 3
4

ak
�

1
i
�
2i
	 1

2
ak
�

1
i
�
2i
�

1
	 1

8
ak
�

1
i
�
2i
�

2
� 1 (3.1.3)

Secondly, since we would want to obtain ck
i only from the fine points, we must have

ak
�

1
i
�
2i � 3Kk

�
1� 3
	

ak
�

1
i
�
2i � 2Kk

�
1� 2
	

ak
�

1
i
�
2i � 1Kk

�
1� 1	

ak
�

1
i
�
2i Kk

�
1

0
	

ak
�

1
i
�
2i
�

1Kk
�

1
1

	
ak
�

1
i
�
2i
�

2Kk
�

1
2

	
ak
�

1
i
�
2i
�

3Kk
�

1
3� ak

�
1

i
�
2i � 3

� � 1
2

ck
i � 2 � 1

2
ck

i � 1 � 	 ak
�

1
i
�
2i � 2

� � 1
8

ck
i � 2 � 3

4
ck

i � 1 � (3.1.4)	
ak
�

1
i
�
2i � 1

� � 1
2

ck
i � 1 � 	 ak

�
1

i
�
2i

� � 1
8

ck
i � 1 � 1

8
ck

i
�

1 �	
ak
�

1
i
�
2i
�

1

� � 1
2

ck
i
�

1 � 	 ak
�

1
i
�
2i
�

2

� � 3
4

ck
i
�

1 � 1
8

ck
i
�

2 � 	 ak
�

1
i
�
2i
�

3

� � 1
2

ck
i
�

1 � 1
2

ck
i
�

2 �� 0

Collecting terms of common coarse points together, this implies the following conditions:

1
2 ak
�

1
i
�
2i � 3

	 1
8 ak
�

1
i
�
2i � 2

� 0
1
2 ak
�

1
i
�
2i � 3

	 3
4 ak
�

1
i
�
2i � 2

	 1
2 ak
�

1
i
�
2i � 1

	 1
8 ak
�

1
i
�
2i

� 0
1
8 ak
�

1
i
�
2i
	 1

2 ak
�

1
i
�
2i
�

1
	 3

4 ak
�

1
i
�
2i
�

2
	 1

8 ak
�

1
i
�
2i
�

3
� 0

1
8 ak
�

1
i
�
2i
�

2
	 1

2 ak
�

1
i
�
2i
�

3
� 0

(3.1.5)

Finally, in order to honor equation (2.3), we must have:

ak
�

1
i
�
2i � 3

	
ak
�

1
i
�
2i � 2

	
ak
�

1
i
�
2i � 1

	
ak
�

1
i
�
2i
	

ak
�

1
i
�
2i
�

1
	

ak
�

1
i
�
2i
�

2
	

ak
�

1
i
�
2i
�

3
� 1 (3.1.6)
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All this can be summarized as the matrix equation9::::::::::::;
1 1 1 1 1 1 1

1
2

1
8 0 0 0 0 0

1
2

3
4

1
2

1
8 0 0 0

0 1
8

1
2

3
4

1
2

1
8 0

0 0 0 1
8

1
2

3
4

1
2

0 0 0 0 0 1
8

1
2

<>============?
@AAAAAAAAAAAAAAAAAAAAAAAAB

ak
�

1
i
�
2i � 3

ak
�

1
i
�
2i � 2

ak
�

1
i
�
2i � 1

ak
�

1
i
�
2i

ak
�

1
i
�
2i
�

1

ak
�

1
i
�
2i
�

2

ak
�

1
i
�
2i
�

3

C DDDDDDDDDDDDDDDDDDDDDDDDE
�
9::::::::::::;

1

0

0

1

0

0

<>============? (3.1.7)

The initial row of the matrix in (3.1.7) is the sum of the remaining rows. Similarly, the initial compo-
nent of the right-hand side is the sum of the remaining components. Thus, the first equation is redundant.
Any solution of the system9:::::::::; 1

2
1
8 0 0 0 0 0

1
2

3
4

1
2

1
8 0 0 0

0 1
8

1
2

3
4

1
2

1
8 0

0 0 0 1
8

1
2

3
4

1
2

0 0 0 0 0 1
8

1
2

<>=========?
@AAAAAAAAAAAAAAAAAAAAAAAAB

ak
�

1
i
�
2i � 3

ak
�

1
i
�
2i � 2

ak
�

1
i
�
2i � 1

ak
�

1
i
�
2i

ak
�

1
i
�
2i
�

1

ak
�

1
i
�
2i
�

2

ak
�

1
i
�
2i
�

3

C DDDDDDDDDDDDDDDDDDDDDDDDE
F
9:::::::::; 0

0

1

0

0

<>=========? (3.1.8)

will automatically satisfy (3.1.6) and provide us with elements Ak
�

1 that define an affine combination.
Equation (3.1.7) exactly expresses equation (3.2) for λ � i.

This system of equations is underdetermined The general solution is given by

ak
�

1
i
�
2i � 3

� �
arbitrary �

ak
�

1
i
�
2i � 2

� � 4ak
�

1
i
�
2i � 3

ak
�

1
i
�
2i � 1

� 6ak
�

1
i
�
2i � 3

	
ak
�

1
i
�
2i
�

3 � 1
2

ak
�

1
i
�
2i

� � 4ak
�

1
i
�
2i � 3 � 4ak

�
1

i
�
2i
�

3
	

2

ak
�

1
i
�
2i
�

1
� ak

�
1

i
�
2i � 3

	
6ak
�

1
i
�
2i
�

3 � 1
2

ak
�

1
i
�
2i
�

2
� � 4ak

�
1

i
�
2i
�

3

ak
�

1
i
�
2i
�

3
� �

arbitrary �
(3.1.9)

The effect of removing the first and last of equations (3.1.1) can be achieved by setting ak
�

1
i
�
2i � 3

�
11



ak
�

1
2
�
2i
�

3
� 0. This produces the solution:

ak
�

1
i
�
2i � 3 ak

�
1

i
�
2i � 2 ak

�
1

i
�
2i � 1 ak

�
1

i
�
2i ak

�
1

i
�
2i
�

1 ak
�

1
i
�
2i
�

2 ak
�

1
i
�
2i
�

3

0 0 � 1
2 2 � 1

2 0 0
(3.1.10)

This solution corresponds to the system (3.1.8) with the variables ak
�

1
i
�
2i � 3 and ak

�
1

i
�
2i
�

3, and correspondingly
the first and last columns of the matrix, removed.

This diminished system is square and nonsingular, so the solution (3.1.10) is unique. However, as a
crude estimate, if we were to use this solution as analysis coefficients, successive applications could affect
ck
�

1
2i in an unstable way: ck

�
1

2i G ck
i H 2ck

�
1

2i G ck
i
2
H 22ck

�
1

2i G  � � G 2 jck
�

1
2i . More broadly, the Euclidian

norm of this solution is I 4 � 5 H 2 � 12132, and we might crudely expect successive “coarsenings” of the
points ck

�
1 to be subjected to successive convolutions whose norms behave like powers of I 4 � 5. These

thoughts don’t necessarily have any mathematical validity, but they do seem to correlate to what we shall
be observing in Figures 2 and 3. This leads to the idea of finding the minimum norm solution of (3.1.9),
which is given by

ak
�

1
i
�
2i � 3 ak

�
1

i
�
2i � 2 ak

�
1

i
�
2i � 1 ak

�
1

i
�
2i ak

�
1

i
�
2i
�

1 ak
�

1
i
�
2i
�

2 ak
�

1
i
�
2i
�

3

23
196 � 23

49
9
28

52
49

9
28 � 23

49
23
196

(3.1.11)

The norm of this solution is H 1 � 34202. A comparison between the solutions represented by (3.1.10) and
(3.1.11) is given by Figures 2 and 3. The dark curve plots 512 points measured around the coastline of an
island in Norway, whose data was kindly provided by Morten Dæhlen. We used 3 applications of analysis
coefficients to obtain 256, 128, and 64 points in sequence. The light curve connects the 64 points obtained
as a result.

Figure 2: 64 coarse points from 512 data points using (3.1.10)
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Figure 3: Using (3.1.11) (optimal 7-element optimal analysis coefficients)

Several other possibilities, both symmetric and antisymmetric, are:

ak
�

1
i
�
2i � 3 ak

�
1

i
�
2i � 2 ak

�
1

i
�
2i � 1 ak

�
1

i
�
2i ak

�
1

i
�
2i
�

1 ak
�

1
i
�
2i
�

2 ak
�

1
i
�
2i
�

3

1
9 � 4

9
5

18
10
9

5
18 � 4

9
1
9

1
8 � 1

2
3
8 1 3

8 � 1
2

1
8

1
6 � 2

3
2
3

2
3

2
3 � 2

3
1
6

0 0 � 1
4 1 1 � 1 1

4

(3.1.12)

The first two of these possibilities are nearly optimal in the sense that their norms are only slightly differ-
ent from that of (3.1.11). The solution that begins and ends with 1

8 is particularly interesting, since these
coefficients, like the coefficients Pk

�
1 for the subdivision, involve only divisions by powers of 2, which

means that they could be implemented very efficiently on silicon, in integer arithmetic using shifts. These
coefficients were used to provide Figure 4. The solution that begins and ends with 1

6 was the result of
seeking a solution that had simple elements all less than 1 in magnitude. The norm of this solution is
significantly larger than the optimal one, and its results on the island data are worse. Finally, an explo-
ration on whether equally simple coefficients existed that had “support” equal to that of the subdivision
coefficients yielded the asymmetric solution given last in (3.1.12). The results for the island data using
these last two solutions are shown in Figure 5.

In geometric terms, we are deciding that ck
�

1
2i has the closest association with ck

i of any of the fine
points in terms of the subdivision mask, and then we are testing masks of analysis coefficients that involve
ck
�

1
2i and its cohorts in wider and wider neighborhoods with respect to the subdivision connectivity. In

doing so, we have found masks of analysis coefficients having 3, 5, and 7 elements. We also notice a
correlation between the norm of the solution and the extent to which the coarse points track the original
data.
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Figure 4: 64 coarse points using 1
8 
 � 1

2 
 3
8 
 1 
 3

8 
 � 1
2 
 1

8 (nearly optimal)

1
6 
 � 2

3 
 2
3 
 2

3 
 2
3 
 � 2

3 
 1
6 0 
 0 
 � 1

4 
 1 
 1 
 � 1 
 1
4

Figure 5: Nearly level and asymmetric coefficients

3.2 Finding the Coefficients Ak 8 1 by Local Least Squares Fitting

Another way of obtaining ck
i would be through direct approximation. Returning to (3.4), let us use least

squares to estimate ck
i and some of its neighboring coarse points. We shall then retain only the estimate

of ck
i , using similar least squares estimates to provide for the other coarse points. As an example, a matrix
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format for least squares using the equations of (3.4) would be:9:::::::::::::::;
1
2

1
2 0 0 0

1
8

3
4

1
8 0 0

0 1
2

1
2 0 0

0 1
8

3
4

1
8 0

0 0 1
2

1
2 0

0 0 1
8

3
4

1
8

0 0 0 1
2

1
2

<>===============?

9:::::::::; ck
i � 2

ck
i � 1

ck
i

ck
i
�

1

ck
i
�

2

<>=========? H
9:::::::::::::::;

ck
�

1
2i � 3

ck
�

1
2i � 2

ck
�

1
2i � 1

ck
�

1
2i

ck
�

1
2i
�

1

ck
�

1
2i
�

2

ck
�

1
2i
�

3

<>===============?
(3.2.1)

The solution, via the normal equations, is given by9::::::::; 191
84 � 23

21 � 65
84

4
7

23
84 � 1

3
1
12� 181

588
181
147

7
12 � 24

49 � 19
84

41
147 � 41

588

23
196 � 23

49
9

28
52
49

9
28 � 23

49
23
196� 41

588
41

147 � 19
84 � 24

49
7

12
181
147 � 181

588

1
12 � 1

3
23
84

4
7 � 65

84 � 23
21

191
84

<>========?
9:::::::::::::::;

ck
�

1
2i � 3

ck
�

1
2i � 2

ck
�

1
2i � 1

ck
�

1
2i

ck
�

1
2i
�

1

ck
�

1
2i
�

2

ck
�

1
2i
�

3

<>===============?
(3.2.2)

and the portion of this matrix expression that extracts an approximation for ck
i is:1 23

196 � 23
49

9
28

52
49

9
28 � 23

49
23

196
3 9:::::::::::::::;

ck
�

1
2i � 3

ck
�

1
2i � 2

ck
�

1
2i � 1

ck
�

1
2i

ck
�

1
2i
�

1

ck
�

1
2i
�

2

ck
�

1
2i
�

3

<>===============?
(3.2.3)

This corresponds precisely to (3.1.11).
A natural restriction to this least squares problem would be:9:::; 1

2
1
2 0

1
8

3
4

1
8

0 1
2

1
2

<>===? 9:::; ck
i � 1

ck
i

ck
i
�

1

<>===? H 9:::; ck
�

1
2i � 1

ck
�

1
2i

ck
�

1
2i
�

1

<>===? (3.2.4)
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which yields the solution: 1 � 1
2 2 � 1

2
3 9:::; ck

�
1

2i � 1

ck
�

1
2i

ck
�

1
2i
�

1

<>===? (3.2.5)

This corresponds precisely to (3.1.10).
A natural extension would be:9:::::::::::::::::::::::::::;

1
2

1
2 0 0 0 0 0

1
8

3
4

1
8 0 0 0 0

0 1
2

1
2 0 0 0 0

0 1
8

3
4

1
8 0 0 0

0 0 1
2

1
2 0 0 0

0 0 1
8

3
4

1
8 0 0

0 0 0 1
2

1
2 0 0

0 0 0 1
8

3
4

1
8 0

0 0 0 0 1
2

1
2 0

0 0 0 0 1
8

3
4

1
8

0 0 0 0 0 1
2

1
2

<>===========================?

9:::::::::::::::;
ck

i � 3

ck
i � 2

ck
i � 1

ck
i

ck
i
�

1

ck
i
�

2

ck
i
�

3

<>===============? H

9:::::::::::::::::::::::::::;

ck
�

1
2i � 5

ck
�

1
2i � 4

ck
�

1
2i � 3

ck
�

1
2i � 2

ck
�

1
2i � 1

ck
�

1
2i

ck
�

1
2i
�

1

ck
�

1
2i
�

2

ck
�

1
2i
�

3

ck
�

1
2i
�

4

ck
�

1
2i
�

5

<>===========================?
(3.2.6)

which yields an 11-element vector of analysis coefficients:

ak J 1
i K 2i L 5 ak J 1

i K 2i L 4 ak J 1
i K 2i L 3 ak J 1

i K 2i L 2 ak J 1
i K 2i L 1 ak J 1

i K 2i ak J 1
i K 2i J 1 ak J 1

i K 2i J 2 ak J 1
i K 2i J 3 ak J 1

i K 2i J 4 ak J 1
i K 2i J 5M 569

12038
1138
6019

M 141
926

M 2024
6019

4479
12038

5714
6019

4479
12038

M 2024
6019

M 141
926

1138
6019

M 569
12038

(3.2.7)

Continuing expansions in this way, we would eventually end with a least squares approximation to ck
i

that includes all the fine points This is precisely the “global least squares” reversal of subdivision that we
covered in [32]. Figures 6 and 7 compare the coefficients of (3.2.7) with global least squares analysis.

3.3 Equivalence

In Subsection 3.1 we solved underdetermined equation systems of the form

MT A � E (3.3.1)

where E stands for a vector all of whose components are zero except for one, whose value is 1. Since the
system is underdetermined, its general solution has the form

A � Mα 	 Zβ (3.3.2)

for some vectors of coefficients α and β, where the columns of Z form a basis for the nullspace of
MT . In words, A is the sum of two vectors, one in the column space of M and one in the nullspace
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Figure 6: 11-element optimal analysis coefficients

Figure 7: Global least squares analysis

of MT . The vector α is uniquely specified, and the totality of solutions to (3.3.1) is represented by
varying the components of β over all real numbers. The square of the Euclidian norm of A is given by
αT MT Mα 	 βT ZT Zβ, so the optimal solution is given by setting β to the zero vector. The result is then
used as analysis coefficients:

ATCk
�

1 � ck
i (3.3.3)

(Typically, the columns of Z are chosen to be orthonormal, so that βT ZT Zβ � βT β. Hence, near optimal
solutions can be explored by looking at vectors β with small norm.)

In Subsection 3.2 we found least squares solutions to overdetermined equation systems of the form

MCk � Ck
�

1 (3.3.4)

where the matrices M were the same as those for (3.3.1). The solution has the form

Ck �ON MT M P � 1
MTCk

�
1 (3.3.5)
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and we selected the component ck
i of Ck, discarding the remaining components. This selection can be

carried out by dotting Ck with a vector E that has zeros in all components except for a 1 in the position
corresponding to ck

i ; namely, the same vector E that appears in (3.3.1). Thus, we have

ETCk � ck
i
� ET N MT M P � 1

MTCk
�

1� AT M N MT M P � 1
MTCk

�
1� αT MT M N MT M P � 1

MTCk
�

1 (3.3.6)� αT MTCk
�

1� ATCk
�

1

exactly as in (3.3.3).

3.4 Finding the Coefficients Qk 8 1

We return to conditions (3.3). It is from these conditions that possible coefficients Qk
�

1 can be generated.
Take the near-optimal, 7-element version of Ak

�
1 shown in Figure 4 as an example. The local pattern

around λ � i is:

λ �Q R
2i � 4 2i � 3 2i � 2 2i � 1 2i 2i

	
1 2i

	
2 2i

	
3 2i

	
4

i � 3 � 1
2

1
8

i � 2 1 3
8 � 1

2
1
8

i � 1 � 1
2

3
8 1 3

8 � 1
2

1
8

i 1
8 � 1

2
3
8 1 3

8 � 1
2

1
8

i
	

1 1
8 � 1

2
3
8 1 3

8 � 1
2

i
	

2 1
8 � 1

2
3
8 1

i
	

3 1
8 � 1

2

(3.4.1)

This pattern extends in an obvious way, of course, to the left of � � 2i � 4 for λ � i � 1 
 i � 2 
������ , and
it extends to the right of � � 2i

	
4 for λ � i

	
1 
 i 	 2 
������ . However, for any κ for which qk

�
1

λ
�
κ
� 0 when

λ S i � 3 and λ T i
	

3, the remaining parts of the pattern would be unimportant. The subset Ak
�

1 of the
table that would remain important provides a nullspace problem to be solved:

Ak
�

1Qk
�

1 � 0 (3.4.2)

Thus, the first decision to make in constructing the elements of Qk
�

1 is the location of a convenient subset
Ak
�

1, which corresponds to the decision of what elements qk
�

1
λ
�
κ will be zero for each κ and what will

be nonzero. In [32] we have given an extensive discussion of a decision methodology that will provide
vectors orthogonal to patterns such as (3.4.1).

To paraphrase those discussions here, what we search for is the smallest subset of this pattern that will
produce an underdetermined system of equations. Such a search proceeds incrementally as follows:
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U If qk
�

1
2i
�
κ is nonzero, then we must include rows i � 1 
 i 
 i 	 1 and column 2i in Ak

�
1, which turns

(3.4.2) into a 3 V 1 overdetermined system.U If we allow qk
�

1
2i � 1

�
κ to be nonzero as well, then Ak

�
1 expands to include rows i � 2 
 i � 1 
 i 
 i 	 1 and

columns 2i � 1 
 2i, which turns (3.4.2) into a 4 V 2 overdetermined system.U etc.

Proceeding by inspection, we find that the smallest underdetermined problem size is 6 V 7, an example of
which is given by: 9::::::::::::;

� 1
2

1
8 0 0 0 0 0

1 3
8 � 1

2
1
8 0 0 0� 1

2
3
8 1 3

8 � 1
2

1
8 0

0 1
8 � 1

2
3
8 1 3

8 � 1
2

0 0 0 1
8 � 1

2
3
8 1

0 0 0 0 0 1
8 � 1

2

<>============?
9::::::::::::::::;

qk
�

1
2i � 4

�
κ

qk
�

1
2i � 3

�
κ

qk
�

1
2i � 2

�
κ

qk
�

1
2i � 1

�
κ

qk
�

1
2i
�
κ

qk
�

1
2i
�

1
�
κ

qk
�

1
2i
�

2
�
κ

<>================?
� 0 (3.4.3)

This system has the general solution:

qk
�

1
2i � 4

�
κ

� qk
�

1
2i
�

2
�
κ

qk
�

1
2i � 3

�
κ

� 4 qk
�

1
2i
�

2
�
κ

qk
�

1
2i � 2

�
κ

� 3 qk
�

1
2i
�

2
�
κ

qk
�

1
2i � 1

�
κ

� � 8 qk
�

1
2i
�

2
�
κ

qk
�

1
2i
�
κ

� 3 qk
�

1
2i
�

2
�
κ

qk
�

1
2i
�

1
�
κ

� 4 qk
�

1
2i
�

2
�
κ

qk
�

1
2i
�

2
�
κ

�
arbitrary �

(3.4.4)

and setting qk
�

1
2i
�

2
�
κ to 1

8 produces

qk
�

1
2i � 4

�
κ qk

�
1

2i � 3
�
κ qk

�
1

2i � 2
�
κ qk

�
1

2i � 1
�
κ qk

�
1

2i
�
κ qk

�
1

2i
�

1
�
κ qk

�
1

2i
�

2
�
κ

1
8

1
2

3
8 � 1 3

8
1
2

1
8

(3.4.5)

The general approach to finding a vector satisfying a nullspace equation such as (3.4.3) is as follows:

1. Reorder the columns of the matrix, if necessary, so that its leftmost columns form a nonsingular
matrix. (If this cannot be done, the nullspace equation can be reduced at least by one row and
column.)
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2. The nullspace equation can be partitioned as follows:W
X Y XZY vX

vY [ � 0
(3.4.6)

where X is nonsingular. vX is the portion of the (possibly reordered) nullspace vector corresponding
to X, and vY corresponds to Y.

3. Choose vY arbitrarily (nonzero), and set

vX � � X � 1YvY (3.4.7)

The verification that
W
vX vY X T is a vector in the nullspace of the matrix is simple.

There is a short cut to this solution process if the section of the A matrix in question is two-slanted
and its rows have identical nonzero elements; for example, the case of 5 nonzeros would be:9::::::::::::::::::;

 � � 0 0 0 0 0 0 0 0  � �  � � d e 0 0 0 0 0 0  � �  � � b c d e 0 0 0 0  � �  � � 0 a b c d e 0 0  � �  � � 0 0 0 a b c d e  � �  � � 0 0 0 0 0 a b c  � �  � � 0 0 0 0 0 0 0 a  � �  � � 0 0 0 0 0 0 0 0  � � 

<>==================?
(3.4.8)

To find a matrix Q corresponding to this section; that is, one all of whose columns are in the nullspace
of the section, we first fix on the number and location of positions in one of these columns where we
will permit nonzeros to occur. One such position would interact with either two or three rows of A,
depending on where in the column that position is chosen to be. Two contiguous such column positions
would interact with either two or three rows. And so on. Figure 8 shows how the interactions progress
(indicated by arrows) for one selection sequence. By inspection it is evident that the addition of each
two consecutive column positions will, on the average, result in only one further row interaction. At some
point, the number of column positions will exceed the number of row interactions, and this will correspond
to an underdetermined set of conditions. It will be further noticed that such an underdetermined situation
in general settings will arise when the number of contiguous column positions equals the number of
nonzeros in any row, and the placement of the contiguous positions is such that the rows interact in an
even number of postions with the column.

In our example of the matrix section given in (3.4.8), the following is the first situation in which an
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Figure 8: Interaction pattern example for a two-slanted system.

underdetermined set of conditions results:

r d
	

s e � 0

r b
	

s c
	

t d
	

u e � 0

s a
	

t b
	

u c
	

v d � 0

u a
	

v b � 0

(3.4.9)

where r
 s 
 t 
 u 
 v represent the contents of the column positions in Q. The interaction of one of the rows of
A and the column of Q in question is:

A :  � � \ � � 0 a b c d e 0  � � 
Q :  � � 0 r s t u v 0 0  � � (3.4.10)

The third of the equations in (3.4.9) corresponds to the conditions that the two vectors in (3.4.10) have a
zero dot product. A classical trick to achieve this zero dot product, verifiable by inspection, is to let the
nonzeros in the vector Q be the nonzeros in the vector A, reversed in order and alternating in sign:

A :  � � \ � � 0 a b c d e 0  � � 
Q :  � � 0 e � d c � b a 0 0  � � (3.4.11)

The other equations of (3.4.9) will also be satisfied by this choice, in this example as well as in the general
two-slanted situation.
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These observations lead to a short cut for the general, shifted column of Q, corresponding to a
nullspace equation of the form (3.4.8), of whatever size, provided A is two-slanted. The solution to
the nullspace equation is given by a column of Q that contains the nonzeros of the general column of A,
reversed in order, alternated in sign, and shifted in row position so as to overlap the nonzeros of A in an
even number of rows. For the specific case given in (3.4.3) for example, we take the vector,]  � � 0 0 1

8 � 1
2

3
8 1 3

8 � 1
2

1
8 0 0  � � _^ (3.4.12)

shift the entries so that the nonzero vector entries overlap the row entries in an even number of positions,]  � � 0 1
8 � 1

2
3
8 1 3

8 � 1
2

1
8 0 0 0  � � ^ (3.4.13)

reverse the order of the nonzero entries (which is invisible in this case because of symmetry),]  � � 0 1
8 � 1

2
3
8 1 3

8 � 1
2

1
8 0 0 0  � � ^ (3.4.14)

and multiply each alternate entry by � 1]  � � 0 1
8

1
2

3
8 � 1 3

8
1
2

1
8 0 0 0  � � ^ (3.4.15)

and we arrive at the solution given in (3.4.5). For situations that are not two-slanted, of course, a solution
can be found by linear algebra; e.g. as indicated in (3.4.7). However, since a vast number of univariate
subdivisions have two-slanted matrices, this short cut is worth mentioning.

The short cut we have described in the finite case is something that is well known in the infinite setting
of wavelets; for example, see the reference by Stollnitz, et. al. [34]. To quote from this reference: “This
recipe for creating a wavelet sequence from a scaling function sequence [sequence reversal together with
sign alternation] is common to many wavelet constructions on the infinite real line; such sequences are
known as quadrature mirror filters.”

How we assign the index κ is a matter of our convenience (provided, ultimately, that the indices of the
coefficients in the sets Pk

�
1, Qk

�
1, Ak

�
1, and Bk

�
1 are in conformance). So we shall let κ � i in (3.4.5).

Replacing i by i
	

j for j � ������
 � 1 
 0 
 1 
������ generates the remaining parts of Qk
�

1 associated with interior
points of the data. For the boundary points, special systems of the form (3.4.2) must be constructed and
solved; [32] contains a discussion.

3.5 Finding the Coefficients Bk 8 1

In order for (1.4) and (1.2) to be consistent, we must have:

dk
κ � ∑� � ˙� k � 1

κ

bk
�

1
κ
� � ck

�
1� (3.5.1)� ∑

µ � ¨� k � 1� 45
∑� � ˙� k � 1

κ

bk
�

1
κ
� � pk

�
1���

µ 67 ck
µ
	 ∑

ν � ¨
 k � 1� 45
∑� � ˙� k � 1

κ

bk
�

1
κ
� � qk

�
1���

ν 67 dk
ν

implying

∑� � ˙� k � 1
κ

bk
�

1
κ
� � qk

�
1���

ν
� δκ

�
ν (3.5.2)
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and

∑� � ˙� k � 1
κ

bk
�

1
κ
� � pk

�
1���

µ
� 0 (3.5.3)

(Note that (3.5.2) and (3.5.3) represent the bottom portion of (2.5).)
The final phase of the construction process, producing Bk

�
1, echoes the construction of Ak

�
1. Now

however, the elements of Qk
�

1 play the role formerly played by Pk
�

1. We shall construct Bk
�

1 to satisfy
(3.5.2). The expectation that (3.5.3) also holds will be covered in Section 5.

Take equation (1.2) and ignore the first summation to obtain:

ck
�

1� � ∑
κ � ¨
 k � 1� qk

�
1���

κ dk
κ (3.5.4)

Focusing on ck
�

1
2i yields:

ck
�

1
2i � 5

� 1
2 dk

i � 3 � dk
i � 2

	 1
2 dk

i � 1

ck
�

1
2i � 4

� 1
8 dk

i � 3
	 3

8 dk
i � 2

	 3
8 dk

i � 1
	 1

8 dk
i

ck
�

1
2i � 3

� 1
2 dk

i � 2 � dk
i � 1

	 1
2 dk

i

ck
�

1
2i � 2

� 1
8 dk

i � 2
	 3

8 dk
i � 1

	 3
8 dk

i
	 1

8 dk
i
�

1

ck
�

1
2i � 1

� 1
2 dk

i � 1 � dk
i

	 1
2 dk

i
�

1

ck
�

1
2i

� 1
8 dk

i � 1
	 3

8 dk
i

	 3
8 dk

i
�

1
	 1

8 dk
i
�

2

ck
�

1
2i
�

1
� 1

2 dk
i � dk

i
�

1
	 1

2 dk
i
�

2

ck
�

1
2i
�

2
� 1

8 dk
i

	 3
8 dk

i
�

1
	 3

8 dk
i
�

2
	 1

8 dk
i
�

3

ck
�

1
2i
�

3
� 1

2 dk
i
�

1 � dk
i
�

2
	 1

2 dk
i
�

3

(3.5.5)

Multiply the equation in ck
�

1� by bk
�

1
i
� � and add up. The implications to be drawn from the result yield a

matrix equation corresponding to (3.1.8):@AAAAAAAAAAAAAAAAAAAAAAB
1
2

1
8 0 0 0 0 0 0 0� 1 3
8

1
2

1
8 0 0 0 0 0

1
2

3
8 � 1 3

8
1
2

1
8 0 0 0

0 1
8

1
2

3
8 � 1 3

8
1
2

1
8 0

0 0 0 1
8

1
2

3
8 � 1 3

8
1
2

0 0 0 0 0 1
8

1
2

3
8 � 1

0 0 0 0 0 0 0 1
8

1
2

C DDDDDDDDDDDDDDDDDDDDDDE

9::::::::::::::::::::::;

bk
�

1
i
�
2i � 5

bk
�

1
i
�
2i � 4

bk
�

1
i
�
2i � 3

bk
�

1
i
�
2i � 2

bk
�

1
i
�
2i � 1

bk
�

1
i
�
2i

bk
�

1
i
�
2i
�

1

bk
�

1
i
�
2i
�

2

bk
�

1
i
�
2i
�

3

<>======================?
�
@AAAAAAAAAAAAAAAAAAAAAAB

0

0

0

1

0

0

0

C DDDDDDDDDDDDDDDDDDDDDDE
(3.5.6)

This matrix equation is not sufficient to enforce geometric validity, however. In order to respect equation
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(2.4), the matrix equation must be expanded to one resembling (3.1.7):@AAAAAAAAAAAAAAAAAAAAAAAAAAB
1 1 1 1 1 1 1 1 1

1
2

1
8 0 0 0 0 0 0 0� 1 3
8

1
2

1
8 0 0 0 0 0

1
2

3
8 � 1 3

8
1
2

1
8 0 0 0

0 1
8

1
2

3
8 � 1 3

8
1
2

1
8 0

0 0 0 1
8

1
2

3
8 � 1 3

8
1
2

0 0 0 0 0 1
8

1
2

3
8 � 1

0 0 0 0 0 0 0 1
8

1
2

C DDDDDDDDDDDDDDDDDDDDDDDDDDE

9::::::::::::::::::::::;

bk
�

1
i
�
2i � 5

bk
�

1
i
�
2i � 4

bk
�

1
i
�
2i � 3

bk
�

1
i
�
2i � 2

bk
�

1
i
�
2i � 1

bk
�

1
i
�
2i

bk
�

1
i
�
2i
�

1

bk
�

1
i
�
2i
�

2

bk
�

1
i
�
2i
�

3

<>======================?
�
@AAAAAAAAAAAAAAAAAAAAAAAAAAB

0

0

0

0

1

0

0

0

C DDDDDDDDDDDDDDDDDDDDDDDDDDE
(3.5.7)

This matrix equation has the following general solution:

bk
�

1
i
�
2i � 5

� � bk
�

1
i
�
2i
�

3

bk
�

1
i
�
2i � 4

� 4 bk
�

1
i
�
2i
�

3

bk
�

1
i
�
2i � 3

� � 2 bk
�

1
i
�
2i
�

3 � 1
8

bk
�

1
i
�
2i � 2

� � 12 bk
�

1
i
�
2i
�

3
	 1

2

bk
�

1
i
�
2i � 1

� � 3
4

bk
�

1
i
�
2i

� 12 bk
�

1
i
�
2i
�

3
	 1

2

bk
�

1
i
�
2i
�

1
� 2 bk

�
1

i
�
2i
�

3 � 1
8

bk
�

1
i
�
2i
�

2
� � 4 bk

�
1

i
�
2i
�

3

bk
�

1
i
�
2i
�

3
� �

arbitrary �
(3.5.8)

Clearly the minimal norm solution is given when b2i
�

3 � 0:

bk
�

1
i
�
2i � 5 bk

�
1

i
�
2i � 4 bk

�
1

i
�
2i � 3 bk

�
1

i
�
2i � 2 bk

�
1

i
�
2i � 1 bk

�
1

i
�
2i bk

�
1

i
�
2i
�

1 bk
�

1
i
�
2i
�

2 bk
�

1
i
�
2i
�

3

0 0 � 1
8

1
2 � 3

4
1
2 � 1

8 0 0
(3.5.9)

The results of Subsection 3.3 hold here as well. This minimal solution is also given by the 5th row ofN MMT P � 1 M, where M is the matrix in (3.5.7).

4 Matrices and Inner Products

Except for the interpretation of a biorthogonal system as a semiorthogonal system having a different inner
product, the material in this section reflects and summarizes material in [34].
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We have taken pains to express our problems and the results in terms of the local indices i and 2i and
the individual coefficients. Here, however, we shall show small examples of the results in a matrix format.
(1.2) is often given as the matrix equation

Ck
�

1 � Pk
�

1Ck 	 Qk
�

1Dk (4.1)

and for the case in which the Ck
�

1 would consist of 10 points on a closed curve, Pk
�

1 and Qk
�

1 would be
as follows:

Pk
�

1 �
9::::::::::::::::::::::::;

1
2

1
2 0 0 0

1
8

3
4

1
8 0 0

0 1
2

1
2 0 0

0 1
8

3
4

1
8 0

0 0 1
2

1
2 0

0 0 1
8

3
4

1
8

0 0 0 1
2

1
2

1
8 0 0 1

8
3
4

1
2 0 0 0 1

2

3
4

1
8 0 0 1

8

<>========================?
(4.2)

Qk
�

1 �
9::::::::::::::::::::::::;

� 1 1
2 0 0 1

2

3
8

3
8

1
8 0 1

8

1
2 � 1 1

2 0 0

1
8

3
8

3
8

1
8 0

0 1
2 � 1 1

2 0

0 1
8

3
8

3
8

1
8

0 0 1
2 � 1 1

2

1
8 0 1

8
3
8

3
8

1
2 0 0 1

2 � 1

3
8

1
8 0 1

8
3
8

<>========================?
(4.3)

Similarly (1.3) and (1.4) have the matrix form:

Ck � Ak
�

1Ck
�

1

Dk � Bk
�

1Ck
�

1
(4.4)
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for which we have:

Ak
�

1 �
9:::::::::; 3

8 � 1
2

1
8 0 0 0 1

8 � 1
2

3
8 1

3
8 1 3

8 � 1
2

1
8 0 0 0 1

8 � 1
2

1
8 � 1

2
3
8 1 3

8 � 1
2

1
8 0 0 0

0 0 1
8 � 1

2
3
8 1 3

8 � 1
2

1
8 0

1
8 0 0 0 1

8 � 1
2

3
8 1 3

8 � 1
2

<>=========? (4.5)

Bk
�

1 �
9:::::::::; � 3

4
1
2 � 1

8 0 0 0 0 0 � 1
8

1
2� 1

8
1
2 � 3

4
1
2 � 1

8 0 0 0 0 0

0 0 � 1
8

1
2 � 3

4
1
2 � 1

8 0 0 0

0 0 0 0 � 1
8

1
2 � 3

4
1
2 � 1

8 0� 1
8 0 0 0 0 0 � 1

8
1
2 � 3

4
1
2

<>=========? (4.6)

Returning to (1.7) and (1.8), we see that

δm
�
λ � ) φ̃k

m 
 φk
λ *� ` ∑

i � ¨̃� k � 1
m

ãk
�

1
m
�
i φk

�
1

i 
 ∑
j � ˙� k � 1

λ

pk
�

1
j
�
λ φk

�
1

j a (4.7)� ∑
i � ¨̃� k � 1

m

∑
j � ˙� k � 1

λ

ãk
�

1
m
�
i ) φk

�
1

i 
 φk
�

1
j * pk

�
1

j
�
λ

That is,
I � Ãk

�
1 b k

�
1Pk

�
1 (4.8)

where b k
�

1 � 9:::; ... � � c) φk
�

1
i 
 φk

�
1

j *  � � 
...

<>===? (4.9)

is the Gram matrix for the inner product on the space # k
�

1. Likewise

I � B̃k
�

1 b k
�

1Qk
�

1

0 � Ãk
�

1 b k
�

1Qk
�

1 (4.10)

0 � B̃k
�

1 b k
�

1Pk
�

1

This provides us with the identities

Ak
�

1 � Ãk
�

1 b k
�

1

(4.11)Bk
�

1 � B̃k
�

1 b k
�

1
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Moreover, Ck and Dk are the projections of Ck
�

1 onto their respective subspaces, range
�
Pk
�

1 � and
range

�
Qk
�

1 � :
Ck � d Pk

�
1T b k

�
1Pk

�
1 e � 1

Pk
�

1T b k
�

1Ck
�

1

(4.12)� d Pk
�

1T b k
�

1Pk
�

1 e � 1
Pk
�

1T b k
�

1
]
Pk
�

1Ck 	 Qk
�

1Dk ^
and

Dk � d Qk
�

1T b k
�

1Qk
�

1 e � 1
Qk
�

1T b k
�

1Ck
�

1

(4.13)� d Qk
�

1T b k
�

1Qk
�

1 e � 1
Qk
�

1T b k
�

1
]
Pk
�

1Ck 	 Qk
�

1Dk ^
which provides us with two more identities:

Ak
�

1 � Ãk
�

1 b k
�

1 � d Pk
�

1T b k
�

1Pk
�

1 e � 1
Pk
�

1T b k
�

1

Bk
�

1 � B̃k
�

1 b k
�

1 � d Qk
�

1T b k
�

1Qk
�

1 e � 1
Qk
�

1T b k
�

1
(4.14)

A multiresolution system is semiorthogonal when

Pk
�

1T b k
�

1Qk
�

1 � 0 (4.15)

In that context, we note that any biorthogonal system is semiorthogonal with respect to some inner prod-
uct:

Pk
�

1T ]
Ak
�

1T Bk
�

1T ^ / Ak
�

1

Bk
�

1 0 Qk
�

1 � 0
(4.16)

where: ]
Ak
�

1T Bk
�

1T ^ / Ak
�

1

Bk
�

1 0 � b k
�

1

(4.17)

Plugging (4.17) into (4.12) and (4.13) bears this out.
Using this, the Gram matrix for our construction for cubic B-spline subdivision is:

b k
�

1 �
9::::::::::::::::::::::::;

29
32 � 5

16
27
64 � 1

8
1
8 � 1

8
1
8 � 1

8
27
64 � 5

16� 5
16 2 � 5

16 � 3
4 � 1

8
1
4 � 1

8
1
4 � 1

8 � 3
4

27
64 � 5

16
29
32 � 5

16
27
64 � 1

8
1
8 � 1

8
1
8 � 1

8� 1
8 � 3

4 � 5
16 2 � 5

16 � 3
4 � 1

8
1
4 � 1

8
1
4

1
8 � 1

8
27
64 � 5

16
29
32 � 5

16
27
64 � 1

8
1
8 � 1

8� 1
8

1
4 � 1

8 � 3
4 � 5

16 2 � 5
16 � 3

4 � 1
8

1
4

1
8 � 1

8
1
8 � 1

8
27
64 � 5

16
29
32 � 5

16
27
64 � 1

8� 1
8

1
4 � 1

8
1
4 � 1

8 � 3
4 � 5

16 2 � 5
16 � 3

4

27
64 � 1

8
1
8 � 1

8
1
8 � 1

8
27
64 � 5

16
29
32 � 5

16� 5
16 � 3

4 � 1
8

1
4 � 1

8
1
4 � 1

8 � 3
4 � 5

16 2

<>========================?
(4.18)

27



The inner product with respect to which we are establishing a multiresolution system can be inferred
from b k

�
1. Given any f 
 g �'# k

�
1, represent f as f � ∑i fiφk

�
1

i , g as g � ∑ j g jφk
�

1
j , then f f 
 g g �

FT b k
�

1G, where F and G represent the coefficient vectors in the representations of f and g respectively.
If we had known about the inner product represented by b k

�
1 in advance and had sought to find a

semiorthogonal system with respect to both the inner product and the subdivision represented by Pk
�

1,
then we would have formed the product:

Pk
�

1T b k
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1 �
9:::::::::; 3
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2

1
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8 � 1
2

3
8 1

3
8 1 3

8 � 1
2

1
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8 � 1
2

1
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2
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8 1 3
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2

1
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0 0 1
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2
3
8 1 3

8 � 1
2

1
8 0

1
8 0 0 0 1

8 � 1
2

3
8 1 3

8 � 1
2

<>=========? (4.19)

and used the shortcut from [32] given in (3.4.12) through (3.4.15) to find a matrix Qk
�

1T
orthogonal to

this product. We would have obtained the same results as those given in (3.4.5) and repeated in (4.3).

5 General Construction

The elements of the construction have been as follows:

1. Given a subdivision, select any representative fine point ck
�

1
µ , as shown in (1.1).

2. Decide which coarse point ck
γ is to be associated with ck

�
1

µ , and write down all equations involving
this coarse point. These equations will involve fine points in some connection neighborhood of
ck
�

1
µ .

3. Optionally, add additional equations involving fine points in some enclosing connection neighbor-
hood of ck

�
1

µ .

4. The selected equations can be written as a matrix system corresponding to (3.2.1). The object of
the selection process is to provide such a matrix system that is overdetermined. If this selection was
made correctly, each row of the matrix will sum to one.

5. Alternatively, the matrix can be transposed (as (3.3.1)) to provide an underdetermined system for
filter coefficients Ak

�
1 local to ak

�
1

γ
�
µ , yielding a matrix system corresponding to (3.1.1).

6. The optimal solution to the system in step 5 is given by solving the overdetermined system of step
4 in the least squares sense. Nearby solutions can be explored by finding the general solution (as in
(3.3.2)) of the system in step 5.

7. Having produced the elements of Ak
�

1, focus on the elements local to ak
�

1
γ
�
µ ; that is, those ak

�
1

λ
� �

whose first index is in the index neighborhood of γ and those whose second index is in the index
neighborhood of µ. (The array (3.4.1) shows an example with γ � i and µ � 2i.) Search for a set
of interactions between unknown qk

�
1���

κ that represent an underdetermined equation set. Figure 8
illustrates how this search proceeds.
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8. Using the information from step 7 and the steps laid out in subsection 3.4, produce elements of
Qk
�

1 that interact with ak
�

1
γ
�
µ and its neighboring elements of Ak

�
1.

9. The elements of Qk
�

1 contribute to the definition of ck
�

1
µ according to the reconstruction equations

(1.2). As in step 2, focus on the coarse point ck
γ and its corresponding fine point ck

�
1

µ . Select the
Q portion of equations (1.2) for this index pair as well as adjacent first indices about γ and second
indices about µ as in (3.5.5).

10. From the equations of step 9 form a matrix system for elements of Bk
�

1 according to the model of
(3.5.6), and augment this system as shown in (3.5.7). The object of step 9 is to choose equations so
that the result is in underdetermined system for the elements of Bk

�
1 local to the index pair

�
γ 
 µ � .

11. Finish the process by solving the system in step 10. As in step 6, the transpose of the system in step
10 will yield the optimal solution via least squares, and other solutions may be explored directly
from the underdetermined system of step 10.

Steps 1 through 11 must be carried out for each distinctly different connection neighborhood of the sub-
division; typically, this will be once for each generic category of interior point and once for each generic
category of boundary point.

We are not in a position to give any theory establishing when this construction process can be expected
to work. However, the intuition and observations we used to invent the construction may serve as insights
to others who could provide necessary and/or sufficient conditions for its success. The intuition and
observations might also lend a feeling of hope to those who want to experiment with the construction.

Each step of the construction depends upon finding an underdetermined set of equations to solve. Ex-
cept for boundary situations, this is accomplished by taking a regular slice of a given matrix and exploring
how the rows or columns of that matrix interact with potentially nonzero locations in the general column
or row of a matrix to be constructed. If the regular slice is two-slanted or better, then Figure 8 illustrates
how such an exploration proceeds and indicates that it must arrive at an underdetermined system involving
a small portion of the regular slice.

The solution of the underdetermined solution must succeed, if the regular slice portion has full rank.
This is expected to be true for slanted systems directly from the shifted structure of their rows or columns.
By the regularity of the situation, the solution produces one row or column of a constructed matrix that
echos the slanting of the given matrix.

At the end of the full process, the vectors of coefficients in Ak
�

1 will have been constructed to span
the range space of the matrix formed by the coefficients Pk

�
1. The coefficients Qk

�
1 have then been

constructed to span the nullspace of the matrix formed by the coefficients Ak
�

1, which makes them span
the nullspace of Pk

�
1. The construction to follow will generate vectors of coefficients Bk

�
1 that span the

range space of the matrix formed by the coefficients Qk
�

1, which will put them in the nullspace of Pk
�

1,
causing (3.5.3) to hold as an additional result.

6 Two Further Examples

To gain more experience with this approach, we offer two further examples. In subsection 6.1, we carry
out our approach on Chaikin (quadratic B-spline) subdivision. The optimal Ak

�
1 coefficients comprise

simply the numbers 1
4 and 3

4 , as do all other filter coefficients, which produces a particularly simple and
appealing system. In Subsection 6.2, to depart from B-splines, we build a system of filter coefficients
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for the curve subdivision due to Dyn, Levin, and Gregory [17]. This also provides an example of our
approach applied to an interpolatory subdivision.

6.1 A Simpler B-Spline System: Chaikin

We provide another example of this approach for which the results were particularly good, namely the ex-
ample provided by Chaikin’s curve subdivision, for which the underlying scale functions are the quadratic
B-splines.

Chaikin subdivision is given by:
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(6.1.1)

An optimal set of Ak
�

1 coefficients of length 4 is given by:
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(6.1.2)

The corresponding Qk
�

1 coefficients appear in the following:
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where Pk
�

1Ck hides the terms in (6.1.1). Finally, the Bk
�

1 coefficients are given by:
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(6.1.4)

In matrix terms for a small cyclic system this would amount to:
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�

1 �
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<>=================?
(6.1.5)
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A small section of a Gram matrix induced by this system of coefficients would be:
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6.2 4-Point Interpolatory Subdivision

The version of the subdivision given in [17] that we use will be with w � 1
16 :
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Clearly the association of each coarse point ck
i is with the fine point ck

�
1

2i . Just as clearly there is an obvious
multiresolution to be formed: decimate the k

	
1-points by taking those of even index as the k-points and

retain the residuals ck
�

1
2i
�

1 � N � 1
16 ck

i � 1
	 9

16 ck
i
	 9

16 ck
i
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1 � 1
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2 P as the detail information (required only
for the fine points of odd index). Hence, 2N items of fine data would be represented as N items of
coarse data and N items of detail information, which is what one generally expects from one stage of a
multiresolution. This is suggestive of Faber’s treatment of piecewise linear data.

We reject this approach for two reasons. Firstly, it is too obvious and too trivial to represent any
contribution. Secondly, going back to the original motivation for considering the reversal of subdivision
rules, we would like to assume that the data Ck

�
1 might come from measurements; e.g., from a laser range

finder. As such, any point ck
�

1
2i would be associated with some measurement error, and we might hope

that a coarse point ck
i that was approximated from ck

�
1

2i and its surrounding points would be a better choice
than would be taking ck

i as any one of the fine points alone.
An optimal set of Ak

�
1 coefficients of length 9 is given by:
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The norm of this set is 0 � 6645962733. Interestingly, any optimal set of Ak
�

1 coefficients of length less
than 9 reduces simply to ak

�
1

i
�
2i
� 1 and ak

�
1

i
�
j
� 0 for j h� 2i, which corresponds to the trivial (Faber-style)

decimation that we rejected at the beginning of this section.
A suboptimal set of Ak

�
1 coefficients of length 9 is given by:
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This set has the advantage that it comprises only inverse powers of 2. Moreover, the norm of this set is
0 � 6733398438, which is only slightly larger than the optimal set of the same length. It is this set of Ak

�
1

that we use to generate the remaining filter coefficients.
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The corresponding Qk
�

1 coefficients are given by:
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where Pk
�

1Ck hides the terms in (6.2.1).
Finally, the Bk

�
1 coefficients are given by:
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In matrix terms for a small cyclic system this would amount to:
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The Gram matrix b k
�

1 induced by this system of coefficients consists of the following two rows, repeated

with a shift of two positions to the right on each repetition:ijlkmk�k
0 1
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k�kmkonp
The diagonal elements are 2435

2048 and 9
8 .

7 Sample Applications

The Chaikin subdivision/reconstruction presented in Section 6 is so appealingly simple, that the sample
applications given in Figures 9 and 10, which constitute our main examples, are given using this system.
In order to carry out reverse subdivision and reconstruction on these examples, which use tensor-product
data that, for the image data is not periodic and for the surface data is periodic in only one direction, we had
to obtain a nonperiodic system for Chaikin subdivision, which we list below. Note that the sign patterns in
Qk
�

1 and Bk
�

1 have been adjusted. The wavelets and dual wavelets that the columns of Qk
�

1 and rows of
Bk
�

1 represent are not individually symmetric, but we have chosen a sign pattern that forms a symmetric
set of wavelets on the closed bounded interval of their domain. Only the matrices for dim

� # k � � 6 and
dim

� # k
�

1 � � 10 are given. The expansion to larger dimensions should be obvious.
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The Gram matrix corresponding to this system is:
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4 0 0

0 0 0 0 0 0 M 3
4

5
4 0 0

0 0 0 0 0 0 0 0 2 M 1

0 0 0 0 0 0 0 0 M 1 3
2

nutttttttttttttttttttttttp
(7.5)
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Original: 256 by 256 Coarse: 64 by 64

Reconstructed with C and D Reconstructed via Subdivision Only

Reconstructed with Smallest 60% D Removed

Figure 9: Fox Image
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Original: 320 by 130 Coarse: 80 by 34

Reconstructed with C and D Reconstructed via Subdivision Only

Reconstructed with Smallest 60% D Removed

Figure 10: Victor Hugo
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