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a b s t r a c t 

This paper presents a recurrent neural network (RNN) which is improved by using an efficient discrete 

wavelet transform (DWT) for predicting a high-frequency time series. In the combined DWT-RNN model, 

first, a multiresolution based on B-spline wavelet of high order d (BSd) is used to decompose the time se- 

ries into several smooth data sets. Therefore, an approximation data set (with low-frequency) and several 

detail data sets (with high-frequency), with small wave amplitude, are obtained. Then, all decomposed 

components are used as RNN inputs. The proposed BSd-RNN model can approximate smooth patterns 

with satisfactory accuracy, and because of the local properties, BSd is a better choice than other common 

DWT such as Haar and Daubechies of order n (dbn), for preprocessing the high-frequency time series. Ac- 

cording to results of performance metrics for predicting four different stock indices, the BSd-RNN model 

outperforms other common DWT-RNN model such as Haar-RNN and dbn-RNN. Also, the results show the 

BSd-RNN model outperforms other common artificial neural network (ANN) model such as multilayer 

feed-forward neural network (FFNN). Finally, The results show that BS3-RNN predicting model has better 

predictive ability than other compared models which use other wavelets or other ANNs. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Nowadays, there are many models to predict various types of

ata specially predicting of time series. Since the most predic-

ion models of time series are based on the behavior of his-

orical data, analysts focus on efficient data-driven models for

eal-time forecasting. Artificial neural networks (ANNs) as non-

arametric model are often successfully used for predicting time

eries ( Kazemi, Shakouri, Menhaj, Mehregan, & Neshat, 2010;

haghaghi, Bonakdari, Gholami, Ebtehaj, & Zeinolabedini, 2017;

aisla, 2010; Wang, Zou, Su, Li, & Chaudhry, 2013 ). They are ideal

specially when we do not have any other description of the ob-

erved series. An ANN is trained from the historical data with the

ope that it will discover hidden dependencies and be able to pre-

ict the future. ANNs are better suited to recognize nonlinear re-

ationships of high-frequency time series ( Bento, Pombo, Calado, &
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ariano, 2018 ). Recurrent neural networks (RNNs) have feedback

onnections inside the neural network to learn temporal patterns.

herefore, RNNs can be used for effective sequential data modeling

nd time series analyses ( Taha & Taha, 2018 ). Moreover, wavelet

ransform (WT) is another commonly used feature to better deal

ith high fluctuation and variance of time series ( Huang & Wang,

018; Nguyen & He, 2015; Olsen & Samavati, 2008; Wang, Wang,

hang & Guo, 2011 ). WT of time series presents a better behav-

or typically with low volatility (more stable variance) than the

riginal time series, thus forecasting is in a better performance

 Conejo, Plazas, Espinola, & Molina, 2005 ). 

For the first time, Zhang and Benveniste (1992) , and then

rishnaprasad and Pati (1993) proposed that ANN performance

an be improved by using WT to generate lower frequency sam-

les as inputs of the ANN. It is noteworthy to mention that

oth continuous wavelet transforms (CWT, e.g., Fourier transforms

 Mallat, 1999 )), and discrete wavelet transforms (DWT, e.g., Haar

ransforms ( Haar, 1985 ) and Daubechies of order n (dbn) trans-

orms ( Daubechies, 1992 )) work partly well for preprocessing of

NN inputs. Researchers have commonly hybridized WT, and ANN

s WT-ANN forecasting models to improve the higher accuracy of
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performance ( Altunkaynak & Ozger, 2016; Bento et al., 2018; Chan-

dar, Sumathi, & Sivanandam, 2016; Doucoure, Agbossou, & Carde-

nas, 2016; Homayouni & Amiri, 2011; Hsieh, Hsiao, & Yeh, 2011;

Khuat, Le, Nguyen, & Le, 2016; Krishnaprasad & Pati, 1993; Lah-

miri, 2014; Li, Li, & Wang, 2016; Mishra, Soni, & Sharma, 2018; Qu,

Mao, Zhang, Zhang, & Li, 2019; Shi, Wang, Jiang, & Liu, 2018; Zhang

& Benveniste, 1992 ). 

Fourier (1807) with his theories in the field of frequency anal-

ysis and using scale varying basis functions and computing the

energy of a function in 1930s, Grossmann and Morlet (1984) ,

Mallat (1999) , Meyer (1992) , and Daubechies (1992) with their

works on wavelet applications, all have importance roles to de-

velop WT. 

B-spline wavelet of order d (BSd) is defined as a local DWT.

When d = 1 (BS1), it is known as Haar WT with discontinuous

wavelets, while d > 2, it is generated by smooth wavelets. The B-

spline wavelets are often chosen as good scaling functions since

their matrix filters are very simple and efficient ( Samavati & Bar-

tels, 1999; Bartels & Samavati, 20 0 0, 2011 ). Conventionally, B-

spline wavelets of higher orders are constructed with the goal

of semi-orthogonality, which results in the analysis of full matri-

ces ( Samavati & Bartels, 1999 ). An alternative approach for gen-

erating multiresolution matrices is the reverse subdivision, which

has been originally introduced by Samavati and Bartels (1999) ,

Bartels and Samavati (20 0 0) . By using this approach, it is possi-

ble to obtain banded matrices for biorthogonal B-spline wavelets,

whose bands are narrower than the ones conventionally produced

by B-spline wavelets. Olsen & Samavati used the reverse subdivi-

sion as a discrete approach for constructing a scheme of different

curves and surfaces ( Olsen & Samavati, 2008; Samavati, Amiri, &

Bartels, 2002 ). 

Multiresolution analysis has proven itself as a very compelling

mathematical framework in many applications ( Stollnitz, Derose,

& Salesin, 1996; Unser, 1997 ). Decomposition of a high-resolution

signal to low resolution and details signals, for multiple times,

provides an effective tool for better compression and also model

synthesize ( Finkelstein & Salesin, 1994; Samavati, Bartels, & Olsen,

2007; Stollnitz et al., 1996 ). Brunn, Sousa, and Samavati (2007) ex-

ploited multiresolution to achieve curve synthesis by capturing and

reusing artistic styles. Wecker, Samavati, and Gavrilova (2010) used

multiresolution in iris synthesis and contextual void patching in

terrains. Alderson and Samavati (2014) applied reverse subdivision

for optimizing line-of-sight queries in real-time navigation in large

terrains. Alderson, Mahdavi-Amiri, and Samavati (2018) used mul-

tiresolution for the offsetting spherical curves in vector and raster

form. Moltaji, Runions, and Samavati (2017) utilized subdivision

and multiresolution for partition of unity parametrics (PUPs). 

In contrast to Haar as BS1 ( Chandar et al., 2016 ), BSd of higher

order d > 1 has been rarely used for preprocessing of a time se-

ries in the predicting ANN model. In this paper, we employ BSd

in order to achieve a more accurate predicting ANN models such

as RNN. We particularly employ reverse subdivision multiresolu-

tion filters ( Bartels & Samavati, 20 0 0; Samavati & Bartels, 1999 ) in

Matlab code to be implemented to let ANNs act stronger in predic-

tion. The new combined model is named BSd-RNN, in which BSd

is used due to its local and smoothness properties. In this way,

first by applying a BSd multiresolution, the original time series is

decomposed into different frequency levels of resolution data sets

that all of them are smooth. By multiresolution of higher order on

the high-frequency time series, a very fitted smooth approximate

data set, and the several smooth detail data sets which are of high

frequencies with small wave amplitudes are obtained. Then, we

use all smooth decomposed data set as inputs of the network in

BSd-RNN model to predict a high-frequency time series. As far as

we searched, it is the first time that the efficient BSd multiresolu-

tion of higher order, based on reverse subdivision, is used for en-
bling the ANN model to forecast the high-frequency time series,

nd with more accuracy than similar common models. 

The rest of the paper is organized as follows: Section 2 de-

cribes background and methods in detail. In this section, we in-

roduce DWT, BSd multiresolution based on reversing subdivision,

wo types of ANNs (RNN and feed-forward neural network (FFNN)),

utoregressive integrated moving average (ARIMA), and generalized

utoregressive conditional heteroskedasticity (GARCH) models. Per-

ormance metric is also introduced in this section. The application

nd evaluation of the proposed BSd-RNN model for predicting a

olatility time series are presented in Section 3 . In this section,

he capability of the proposed BSd-RNN model in predicting the

olatility of some different index stock markets is evaluated by per-

ormance metric. Section 4 summarizes the main results and dis-

usses the reliability of the proposed BSd-RNN model compared

o another type of neural network, BSd-FFNN and other common

orecasting DWT-RNN models which use other DWT wavelets such

s Haar and Daubechies. Finally, Section 5 describes conclusions. 

. Background and methods 

The proposed prediction process consists of two steps: (1)

he original time series s(t) is preprocessed with some BSd, d =
 , 2 , 3 , 4 . (2) All decomposed data sets are fed as the inputs of

he RNN model. For comparison purposes, some common DWT-

NN are used as predictors consist of DWT-FFNN, Haar-RNN and

bn-RNN ( n = 3 , 4 ). In addition, the non-parametric proposed BSd-

NN model is compared with ARIMA and GARCH models. There-

ore, in the following, DWT, ANN, ARIMA, and GARCH models are

escribed in more detail. 

.1. Discrete wavelet transform 

DWT is a discrete implementation of the CWT, and just as accu-

ate as CWT, but more efficient ( Altunkaynak & Ozger, 2016 ). The

dea behind DWT is based on the multiresolution analysis (MRA),

here the original time domain is decomposed into several other

cales with different levels of resolution, in a process known as

ultiresolution decomposition. Two related functions φik and ψ ik 

epresent the scaling and wavelet functions as follows: 

ik (t) = 2 

−i/ 2 φ(2 

i t − k ) (1)

 ik (t) = 2 

−i/ 2 ψ(2 

i t − k ) (2)

here i and k are the scaling and translation variables, respec-

ively. Fig. 1 shows the MRA processing on time series s (t) , t ∈
 t 1 , t 2 , . . . , t T } which is decomposed into an approximation coeffi-

ients vector a ( t ) by using a low-pass (LP) filter and a detail co-

fficients vector d ( t ) by using high-pass (HP) filter in the wavelet

omain. The process of decomposition is executed iteratively on

he approximation coefficients of the previous level, to calculate

oth detail and approximation coefficients of the next level. There-

ore after j levels of decomposition, s ( t ) is decomposed into several

arts, a 1 (t) , a 2 (t ) , . . . , a j (t ) , approximation data sets with lower

esolutions, and d 1 (t) , d 2 (t ) , . . . , d j (t ) , detail data sets. The en-

ries a i (t) = (a ik ) k = < s (t) · φik (t) > are the coefficients which gen-

rate the following sequence of approximation curves in the nested

unctional subspaces V j ⊂ V j−1 . . . ⊂ V 1 ⊂ V 0 , where < · > is the

ot product of two vectors. 

 i (t) = 

∑ 

k 

a ik φik (t) , i = 1 , 2 , . . . , j (3)

nd the detail coefficient d i (t) = (d ik ) k = < s (t) · ψ ik (t) > generates

he following sequence detail signal: 

 i (t) = 

∑ 

k 

d ik ψ ik (t) , i = 1 , 2 , . . . , j (4)
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Fig. 1. The MLR processing in j levels on time series s ( t ). 
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hus, the original s ( t ) time series can be reconstructed as: 

 (t) ≈ g 1 (t) + 

j ∑ 

i =1 

h i (t) (5)

y decomposing a high-frequency time series s ( t ) into a set

f better-behaved time series g 1 ( t ) and constitutive time series

 i (t) , i = 1 , 2 , . . . , j with less fluctuation, time series forecasting

ill have higher accuracy ( Mandal, Haque, Meng, Srivastava, &

artinez, 2013 ). Therefore, in the proposed DWT-RNN model, all

ecomposed components of MRA on original time series, g 1 ( t ) and

 i (t) , i = 1 , 2 , . . . , j are simultaneously used as the input of the

NN. There is no theory concerning the determination of the best

evel of decomposition. It is suitable using of the j = [ log (T )] lev-

ls of decomposition, where T is the current time in the time series

 Altunkaynak & Ozger, 2016 ). 

Each Haar wavelet ψ ik ( t ) has a zero average over its support

2 i n, 2 i (n + 1)] . If f is locally regular and 2 i is small, then it is

early constant over this interval and the wavelet coefficient < f,

 ik > is thus nearly zero. This means that large wavelet coeffi-

ients are located at sharp signal transitions only. With a jump in

ime, the story continues, when Stromberg (1981) found a piece-

ise linear function ψ that also generated an orthonormal basis

nd gave better approximations of smooth functions. The system-

tic theory for constructing orthonormal wavelet bases was estab-

ished by Meyer (1992) , and Mallat (1999) . It was inspired by origi-

al ideas developed in computer vision by Adelson, Simoncelli, and

ingorani (1987) to analyze images at several resolutions. Digging

ore into the properties of orthogonal wavelets and multireso-

ution approximations brought to light a surprising relation with

lter banks constructed with conjugate mirror filters, and a fast

avelet transform algorithm decomposing signals with O ( N ) oper-

tions ( Mallat, 1999 ). 

.2. BSd multiresolution based on reversing subdivision 

In this article, we adopt a notation for representing BSd mul-

iresolution operation in simple matrix forms which has been

ound by Samavati and Bartels (1999) , and Samavati et al. (2002) .

Sd is used in decomposition and reconstruction of any curves and

urfaces in computer graphic models. They have denoted these ma-

rices by A i and B i as bounded LP filters, and P i and Q i as bounded

P filters, where the subscript i = 1 , 2 , . . . , j is used as the current

evel of resolution, and the relationship of the filters is as follows:

A i 

B i 

]
= [ P i | Q i ] 

−1 (6)

n the matrix form of BSd, the vector a i −1 is decomposed into two

arts: a (approximation coefficients) and d (detail coefficients)
i i 
hich are generated by using filters A i and B i for i = 1 , 2 , . . . , j as

ollows: 

 i = A i · a i −1 (7) 

 i = B i · a i −1 (8) 

n addition, the following formulas are used for the reconstruction

f a i −1 : 

 i −1 = P i · a i + Q i · d i (9)

ccording to (3), (4) , and (9) , for BSd multiresolution of time se-

ies s ( t ), t ∈ [ t 1 , t T ], a 0 = (s (t 1 ) , s (t 2 ) , . . . , s (t T )) represent by revers-

ng subdivision in j decomposition levels as: 

 (t) = a 0 = g 1 (t) + 

j ∑ 

i =1 

h i (t) (10)

herefore, s ( t ) is obtained by reconstructed relationship (10) . 

.3. Artificial neural network 

ANN is a computational method which is designed to imitate

 collection of neuron connections in the brain. Recently, ANNs

ave been developed their application in complex problems in the

orld. There are many types of ANN architectures; however, here,

nly two types of networks are called FFNN and RNN are dis-

ussed. 

.3.1. Feed-forward neural network 

FFNN consists of input, hidden, and output layers (see Fig. 2 ).

i) The input layer takes normalized input vectors of data for send-

ng to the hidden layers, (ii) one or more consecutive hidden layers

ontaining neurons to capture the nonlinearity in the samples, (iii)

n output layer consists of one or more neurons which represent-

ng the dependent variables. In Fig. 2 , the FFNN structure in which

n e 1 dimensional input vector x n gives an output value y n , where

 = 1 , 2 , . . . , N, is shown. In each layer, every neuron response is

iven by the non-linear activation function f ( · ) which enables the

ystem to learn nonlinear relationships, with a cost given by a bi-

sed weighted sum ( Bento et al., 2018 ). These weights are coef-

cients (parameters) of the ANN model. The size of each weight

epresents the relative strength of the connection. Considering an

FNN with M hidden layers, the relationship between the output

 n and the input x n can be expressed by the following relation: 

 n = f (W 

(M+1) · f (W 

(M) · . . . · f (W 

(2) · f (W 

(1) · x n + b 1 ) + b 2 ) 

+ . . . + b M 

) + b M+1 ) (11) 

here W 

(i ) ∈ R 

e i , i = 1 , 2 , . . . , M + 1 , e i is the number of neurons in

ayer i , and b is the bias. 
i 
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Fig. 2. The FFNN structure. 
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To build a model for forecasting a time series s t = s (t) ∈∈ [ t 1 , t T ]

at l steps ahead, the network is processed through three sections

( Kazemi et al., 2010 ) : (1) The training section, where the network

is trained to predict future data based on the past and present

data. (2) The test section, where the network is tested to stop

training or to continue training. (3) The evaluation section, where

the network ceases training and is used to forecast future data

and to calculate different measures of error. These networks are

so smart, and they can be successfully used for forecasting. This

model uses supervised learning which is a machine learning task

for learning a function that maps an input x n as follows: 

x n = (s n , s n +1 , . . . , s n + e 1 −1 ) , n = 1 , 2 , . . . , N (12)

where, the sample number is N = T − e 1 + 1 − l which are divided

into the training, test and evaluating samples, and a given target

output z n as follows: 

z n = s n + e 1 −1+ l (13)

The most important aspect of an ANN model is its learning ability.

The learning problem turns out to be finding the optimum weights

from a given input samples x n by updating the weight vector in

order to minimize the error, i.e., the difference between the target

output response z n and the network output y n (through a perfor-

mance function). Commonly, the chosen performance metric is the

mean squared error (MSE), given by the following expression: 

MSE = 

1 

N 

N ∑ 

n =1 

(y n − z n ) 
2 (14)

A good choice for training a network is the conjugate gradient

(CG) algorithm. CG avoids a time-consuming line-search per learn-

ing epoch, requires less memory usage, which makes the algorithm

faster than any second order algorithms. CG can train any network

which has differentiable activation functions. A full description of

CG algorithm implementation can be found in Moller (1993) . 

2.3.2. Recurrent neural network 

Unlike FFNNs, RNNs can use their internal state to process se-

quences of inputs. In a RNN with hidden layer m n (see Fig. 3 ), the

relationship between the output y n and the input x n can be ex-

pressed by the following relations ( Elman, 1990 ): 

m n = f (W x n + Um n −1 + b m 

) (15)

y n = f (V m n + b y ) (16)

where f ( · ) is an activation function such as tanh ( · ) ( Xing, Cambria,

& Zhang, 2019 ). Also, W, U, V and b are parameters matrices and

vector. 
.4. Autoregressive integrated moving average models 

The general ARIMA(p, r, q) model is given by Box, Jenkins, Rein-

el, and Ljung (2015) . This model is one of the most general class

f models for forecasting a time series which can be made to be

tationary by differencing. More precisely, ARIMA model is gener-

lized from autoregressive moving average (ARMA) model in which

he assumption on stationary of time series is not necessary. The

mportant characterization of ARIMA model is that the predictions

f the behaviour of a time series in the future depend on the

ast observations by a linear function and random errors, i.e., the

RIMA equation for forecasting a stationary series Y t has the fol-

owing form: 

(B ) ∇ 

r Y t = θ (B ) εt (17)

here r ≥ 1 is the degree of differencing, ∇ = 1 − B is the differ-

ncing operator, the lag operator B , is defined as BY t = Y t−1 , the op-

rator which gives the previous value of the series. φ( B ) and θ ( B )

re polynomials of degree p and q in B as below: 

(B ) = 1 − φ1 B − φ2 B 

2 − · · · − φp B 

p (18)

(B ) = 1 − θ1 B − θ2 B 

2 − · · · − θq B 

q (19)

.5. Generalized autoregressive conditional heteroskedasticity model 

GARCH model is a very popular model which is used alone

r in combination with other models in financial literature.

onaldson and Kamstra (1997) were one of the first demon-

trated that neural networks could capture the nonlinear effects

f volatility that GARCH models and their derivatives are not ca-

able of modeling. Since this work, there have been several stud-

es of hybrid models such as Bahrammirzaee (2010) , Bildirici and

rsin (2013) , Kristjanpoller and Minutolo (2016) , Kristjanpoller and

ernndez (2017) , Luo, Zhang, Xu, and Wang (2018) , Kim and

on (2018) , and Xing et al. (2019) . This study differs from the pre-

ious ones as it is the first high order B-spline wavelet hybrid ap-

lication to predict the return volatility of a stock index market. 

Given the characteristic of heteroskedasticity of economic and

nancial time series, the autoregressive conditional heteroskedas-

icity (ARCH) models and their generalized (GARCH) are estab-

ished for modeling by Engle (1982) , and Bollerslev (1986) . The

ARCH(p, q) considers that the current conditional variance σ 2 
t =

 ar(r t |F t−1 ) = E [(r t − μt ) 
2 |F t−1 ] (where F t is the information set

 σ -field) of all information through the time t and μt = E (r t |F t−1 )

s the conditional average of return) depends on p past conditional

ariances and on q past squared innovations (error terms). The
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Fig. 3. The RNN structure. 
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ontinuously compounded rate of asset return from time t − 1 to

 as follows: 

 t = 100 × (ln (p t ) − ln (p t−1 )) (20)

elation (20) is calculated as the first difference of the ln ( p t ),

here p t is the asset price at time t . Then, the GARCH(p, q) model

an be written as: 

 t = μt + a t (21) 

 t = σt ηt (22) 

2 
t = α0 + 

p ∑ 

i =1 

αi σ
2 
t−i + 

q ∑ 

j=1 

β j a 
2 
t− j (23) 

here ηt is a sequence of independent and identically distributed

andom variables with zero mean and unit variance, σ 2 
t is the con-

itional variance of ηt and αi , β j , and α0 are unknown coefficients

o be estimated. 

.6. Performance metric 

Several error metrics such as forecasting root mean square er-

or (FRMSE), forecasting mean absolute error (FMAE), and fore-

asting mean absolute percentage error (FMAPE) are used to mea-

ure the performance of the models in predicting the time series

atasets. These performance metrics are defined as ( Willmott &

atsuura, 2005 ): 

 RMSE = 

√ 

1 

N 

N ∑ 

k =1 

(σ 2 
k 

− ˆ σ 2 
k 
) 2 (24) 

 MAE = 

1 

N 

N ∑ 

k =1 

| σ 2 
k − ˆ σ 2 

k | (25) 

 MAP E = 

1 

N 

N ∑ 

k =1 

| σ
2 
k 

− ˆ σ 2 
k 

σ 2 
k 

| × 100 (26) 

here σ k is the actual volatility of the asset, ˆ σk is the respective

redicted volatility, and N is the number of data. 

. Application and evaluation of the proposed BSd-RNN model 

Prices of different financial assets such as currencies and stocks

re constantly fluctuating as traders buy and sell these assets. The

ariation in the return prices over a period of time is called volatil-

ty. The volatility tells us about how turbulent the return price is

nd is an indicator of the risk involved. A stock with high volatility
nvolves high risk, but is also seen as an opportunity to make prof-

ts by the traders. Therefore, forecasting the volatility is important

o trade in financial markets. 

Time series analysis is one of the most challenging topics for

nancial researchers. In particular, the prediction of asset price,

rice return and return volatility time series, which needs a spe-

ial analysis of trend volatility by focusing on historical data of

he market, is a difficult problem. On the one hand, most of the

orecasting models assume that there is some underlying stabil-

ty in the market, and it is such that the future will be like the

ast. So, an ANN model is a good choice ( Khuat et al., 2016; Vaisla,

010; Wang et al., 2013 ). Moreover, due to the existence of non-

tationary, high fluctuations and chaotic properties in the finan-

ial time series, they are known as the high-frequency time series

 Vaisla, 2010; Wang et al., 2011 ). Fig. 4 shows the charts of some

igh-frequency time series such as the price return and the return

olatility of the S&P 500 index market from 20 0 0 to 2019, which is

vailable in yahoo finance website ( https://finance.yahoo.com ). We

pply BSd to improve the RNN model for predicting some high-

requency financial time series such as the return volatility of sev-

ral stock indices. 

.1. Data 

In this section, we investigate the daily closing prices of the in-

ices of the S&P 500, NASDAQ, Dow Jones Industrial Average (DJIA),

nd NYSE. All the historical prices have been downloaded from ya-

oo finance website, which is a standard reference for such pur-

oses. We have considered the prices for the period from Jun 11,

0 0 0, to Jun 11, 2019. In this period, there were about 50 0 0 closing

rices. The historical index price was used to calculate the monthly

olatility time series. 

The historical volatility (HV; σ 2 
t , t ∈ [ t 1 , t T ] ) of every index rep-

esented as the variance of the price return in (20) . In partic-

lar, the HV is analyzed at 22 days, which is the volatility of

 month with daily data. Then, we selected 80% of HV samples

 N = T − e 1 + 1 − l) as the training, 15% as test, and the rest as

valuating samples. For the learning method, we chose the CG al-

orithm, and the learning rate and the momentum parameter were

rbitrarily set at 0.1 and 0.9, respectively. The training of the ANN

ould stop when the MSE error becomes less or equal to 10 −5 , or

hen the number of epochs reaches 10 5 . 

.2. BSd multiresolution on data set 

Mentioned above, a predicting RNN model is employed to pre-

ict the HV time series σ 2 ( t ), which show all the HVs in time in-

erval [ t 1 , t T ]. We would like to predict σ 2 (t T + l ) , at l steps ahead.

or this purpose, BSd is applied for multiresolution of the financial

https://finance.yahoo.com
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Fig. 4. The chart of daily index market time series S&P 500 from 2000 to 2019. 
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time series in j levels. Therefore, the HV time series is decomposed

into several subseries, a smooth approximate HV time series g 1 ( t ),

and detail time series h i (t) , i = 1 , 2 , . . . , j with smaller wave ampli-

tude. In general, by using BSd multiresolution, the original HV time

series s ( t ) can be reconstructed by the equal relationship of (10) .

Therefore, all decomposed components are simultaneously used in

the relations (11) and (15) as the new inputs of the RNN. 

Fig. 5 demonstrates the S&P 500 HV time series s (t) =
σ 2 (t) , t ∈ [ t 1 , t 32 ] , its local decomposition by using BSd, d = 3

(BS3), and another of order d = 1 (BS1, or Haar) of the j = 2 levels

of the decomposition. It is easily seen that the smooth approxima-

tion HV time series g 1 ( t ) obtained by BS3 with a lower frequency is

fitter than the ones obtained by BS1. The smooth detail price time

series h 1 ( t ) obtained by BS3 has fewer fluctuations with smaller

wave amplitude than the ones obtained by BS1. 

3.3. Application of the BSd-RNN model for predicting of volatility 

time series 

According to (21) –(23) and affecting factors on GARCH(3,1) for-

mula, we update the definition for input x n in relation (12) by: 

x n = (σ 2 
n −3 , σ

2 
n −2 , σ

2 
n −1 , ηn −1 , r n −1 , μn −1 , ˆ σ

2 
n −1 ) (27)
nd target output z n in relation (13) is changed by: 

 n = σ 2 
n (28)

he network output y n = ˆ σ 2 
n is obtained for predicting HV time se-

ies at one ( l = 1 ) step ahead by using MRA on HV time series σ 2 
t .

he smooth approximation time series g 1 ( t ), and detail time se-

ies h i (t) , i = 1 , . . . , j are also obtained (we can suppose j = 2 ). In

ddition, according to relations (10) and (27) , a new relationship

etween every input x MRA 
n and y n is prepared by: 

 

MRA 
n = 

(
g 1 ,n −3 , h 1 ,n −3 , h 2 ,n −3 , · · · , g 1 ,n −1 , h 1 ,n −1 , h 2 ,n −1 , 

ηn −1 , r n −1 , μn −1 , ˆ σ
2 
n −1 

)
(29)

nd the output y n in the DWT-RNN model is: 

 n = f (W x MRA 
n + Um n −1 + b m 

) (30)

 n = f (V m n + b y ) (31)

here f ( · ) is an activation function such as tanh ( · ). Also, W, U, V

nd b are parameters matrices and vector. 

Moreover, we prepare a similar definition with (27) for FFNN

nput x n by: 

 n = (σ 2 
n −3 , σ

2 
n −2 , σ

2 
n −1 , ηn −1 , r n −1 , μn −1 ) (32)
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Fig. 5. The S&P 500 volatility multiresolution by using Haar, and BS3 of the j = 2 levels of decomposition. 
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Table 2 

Performance metric of several models on different markets volatility 

forecasting at one steps ahead. 

Forecasting performance measures 
ccording to relations (10) and (32) , the relationship between ev-

ry new input x MRA 
n and y n is prepared by: 

 

MRA 
n = (g 1 ,n −3 , h 1 ,n −3 , h 2 ,n −3 , · · · , g 1 ,n −1 , h 1 ,n −1 , 

h 2 ,n −1 , ηn −1 , r n −1 , μn −1 ) (33) 

nd the output y n in the DWT-FFNN model with two hidden layers

 M = 2 ) is of the following form: 

 n = f (W 

(3) · f (W 

(2) · f (W 

(1) · x MRA 
n + b 1 ) + b 2 ) + b 3 ) (34)

.4. Experimental forecasting results of the BSd-RNN model 

In order to demonstrate the effectiveness of the BSd wavelets

f different orders ( d = 1 , 2 , 3 , 4 ) on RNN action, the indices of the

&P 500, NASDAQ, DJIA, and NYSE. were predicted by BS1-RNN,

S2-RNN, BS3-RNN, BS4-RNN, and RNN models, and the prediction

est results were compared by performance metrics. The results are

abulated in Table 1 . As it is shown, the ranking of predictive abil-

ty for BSd-RNN models is almost all superior to the RNN model. It

eans that the proposed model is able to warrant the accuracy of

he RNN by using the BSd. It is shown in Table 1 , among all BSd-

NN models, BS3-RNN and then BS4-RNN have better performance

han the others. 
Table 1 

Performance metric of BSd-RNN models on different markets volatil- 

ity forecasting at one steps ahead. 

Forecasting performance measures 

Index market Model FRMSE FMAE FMAPE 

S&P 

500 

BS3-RNN 0.0022 0.0012 0.0231 

BS4-RNN 0.0117 0.0292 0.0524 

BS2-RNN 0.0187 0.0314 0.0632 

BS1-RNN 0.0276 0.0354 0.0869 

RNN 0.0306 0.0503 0.0903 

NASDAQ BS3-RNN 0.0064 0.0053 0.0106 

BS4-RNN 0.0105 0.0079 0.0123 

BS2-RNN 0.0116 0.0087 0.0135 

BS1-RNN 0.0183 0.0161 0.0154 

RNN 0.0361 0.0274 0.0406 

DJIA BS3-RNN 0.0082 0.0060 0.0104 

BS4-RNN 0.0112 0.0062 0.0107 

BS2-RNN 0.0115 0.0067 0.0115 

BS1-RNN 0.0147 0.0100 0.0336 

RNN 0.0269 0.0177 0.0392 

NYSE BS3-RNN 0.0037 0.0046 0.0101 

BS4-RNN 0.0109 0.0085 0.0143 

BS2-RNN 0.0112 0.0187 0.0202 

BS1-RNN 0.0245 0.0193 0.0440 

RNN 0.0312 0.0245 0.0694 
. Comparison results of the proposed BSd-RNN model with 

he other common DWT-ANN models 

In time series modelling and forecasting, various types of

avelets such as Haar, Morlet ( Li et al., 2016 ), and Daubechies

avelets can be used. Haar WT has been extensively applied

ogether with the ANN model ( Chandar et al., 2016; Jothimani,

hankar, & Yadav, 2015 ). Nevertheless, because of its discontinu-

ty, it does not approximate high-frequency time series very well

 Lahmiri, 2014 ). dbn is popular because it is compactly supported

rthonormal wavelets and provide accurate time series predictions.

or example, db3, and db4 are widely used in time series forecast-

ng problems ( Bento et al., 2018; Homayouni & Amiri, 2011; Lah-

iri, 2014 ). 

In order to demonstrate the more effectiveness of BS3 in the

erformance of the RNN model, the predicting results of the pro-

osed BS3-RNN model was compared with the similar DWT-RNN
Index market Model FRMSE FMAE FMAPE 

S&P 

500 

BS3-RNN 0.0022 0.0012 0.0231 

db4 -RNN 0.0126 0.0249 0.0643 

db3-RNN 0.0223 0.0314 0.0859 

Haar-RNN 0.0276 0.0354 0.0869 

BS3-FFNN 0.1242 0.1491 0.2565 

GARCH 0.3578 0.3907 0.4356 

ARIMA 0.4956 0.4091 0.5793 

NASDAQ BS3-RNN 0.0064 0.0053 0.0106 

db4 -RNN 0.0141 0.0116 0.0117 

db3-RNN 0.0174 0.0146 0.0148 

Haar-RNN 0.0183 0.0161 0.0154 

BS3-FFNN 0.1097 0.1465 0.2114 

GARCH 0.3346 0.2542 0.3434 

ARIMA 0.3304 0.3555 0.3645 

DJIA BS3-RNN 0.0082 0.0060 0.0104 

db4 -RNN 0.0132 0.0103 0.0230 

db3-RNN 0.0189 0.0121 0.0284 

Haar-RNN 0.0147 0.0100 0.0336 

BS3-FFNN 0.1061 0.1313 0.1503 

GARCH 0.2237 0.2044 0.3497 

ARIMA 0.2589 0.2874 0.3909 

NYSE BS3-RNN 0.0037 0.0046 0.0101 

db4 -RNN 0.0162 0.0126 0.0361 

db3-RNN 0.0179 0.0138 0.0432 

Haar-RNN 0.0245 0.0193 0.0440 

BS3-FFNN 0.1169 0.2881 0.2088 

GARCH 0.2825 0.3272 0.2495 

ARIMA 0.3357 0.3123 0.2675 
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models such as Haar-RNN, db3-RNN, and db4-RNN. The compari-

son results for forecasting of four indices are tabulated in Table 2 .

As it is shown, the ranking of predictive ability for BS3-RNN mod-

els is almost always superior to the other models which use other

wavelets. Generally, for all markets, the performance of BS3-RNN,

db4-RNN, db3-RNN, and Haar-RNN models are better than the oth-

ers, respectively. The preprocessing of network input samples by

the continuous wavelets B-Spline of high order (BS3 and BS4) are

more appropriate than the discontinuous wavelet (Haar). Also, the

preprocessing of network input samples by BS3 as finitely differ-

entiable wavelet is more appropriate than the dbn n = 3 , 4 (db3,

db4), while db4 is differentiable. Moreover, the RNN model had

better performance than FFNN for forecasting of high-frequency

time series. 

The forecasting result errors of non-parametric BS3-RNN model

and parametric ARIMA and GARCH models are prepared in

Table 2 as well. As it is shown, The BS3-RNN model is more

accurate than other ones. There are considerable differences be-

tween the errors of GARCH and ARIMA models in one hand and

other models on the other hand. Indeed, the performance of non-

parametric and non-linear models is much better than the perfor-

mance of parametric and linear models. 

5. Conclusions 

The accuracy of an ANN model for predicting the behavior of

a time series in the future can be improved by using various

wavelets. In this paper, we selected BSd multiresolution as a pre-

processing tool to improve the RNN model, which was presented

for the prediction of a high-frequency time series. In this fore-

casting model, named BSd-RNN, the utilization of BSd was justi-

fiable from two aspects: Firstly, bounded matrices were used in

constructing low and high-pass filters. These tridiagonal matrices

are the cause of the linear algorithms which increase the efficiency

of the model. Then, decomposed smooth time series, which were

obtained from the BSd multiresolution were applied as the new

inputs of the RNN model. 

Based on the practical findings, the proposed BSd-RNN model

was an efficient model in forecasting nonlinear time series such as

volatility time series. As we had extensively investigated, among

of the BSd-RNN ( d = 1 , 2 , 3 , 4 ) models, BS3-RNN predicted future

volatility better than others. BSd-RNN model also predicted fu-

ture volatility better than other common DWT-RNN models such

as Haar-RNN, and dbn-RNN models. The proposed model had bet-

ter performance than DWT-FFNN, ARIMA, and GARCH models as

well. 
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