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Polygonal Silhouette Error Correction: A Reverse
Subdivision Approach

Kevin Foster, Mario Costa Sousa, Faramarz F. Samavati and Brian Wyvill

Abstract— A method for automatic removal of artifacts and
errors that can appear in silhouettes extracted from polygonal
meshes is presented and evaluated. These errors typically appear
in polygonal silhouettes due to the discrete nature of meshes
and numerical instabilities. The approach presented works in
object space on silhouette curves made by chaining together
silhouette edges and uses multiresolution techniques based on
reverse subdivision. Two hidden line removal methods along with
a traditional method to render strokes as 3D triangle strips in
object space are also presented.

Index Terms— Non-photorealistic rendering, Reverse Subdivi-
sion Multiresolution, Polygonal Silhouette Artifact Removal

I. I NTRODUCTION

Artists and technical/scientific illustrators commonly use
line drawings to effectively represent the form of 3D objects.
Such drawings are usually termedpure line drawings, consist-
ing entirely of lines that define the edges of shapes and use of
no tones [1] (Fig. 1). The medium of choice is typically pen-
and-ink due to its several appealing properties. Pen strokes
can represent virtually any shape if used properly [2], [3].
This makes them ideal for printing and harmonizing with text
due to their scale and use of the same ink [4]. Also, pen-and-
ink images handle duplication and degradation much better
than images created with traditional half-toning processes,
This article examines a particular form of pure pen-and-ink
illustration: contour (silhouette) drawings.

A contour (silhouette) drawing only shows the outline of
the subject, and usually does not use interior strokes (Fig. 1).
Artists place a great deal of attention on illustrating contours
and use them for many applications such as in cartoons,
technical illustrations, architectural design and medical text-
books. A general principle in drawing states that an accurate
set of contours highlighting an outline provides good per-
ception of mass [1]. This principle is supported by studies
in perceptual rendering which reveal that a few simple lines
defining the contour of an object often suffice to determine
its 3D surface [5]. Contours also convey important cues to
distinguish between different objects and for object-to-ground
recognition [6].

Artists illustrate contours with two processes [1], [3], [7]:

• by emphasizing the placement of the subject’s outline
outside the silhouette boundary of its form rather than
within it.
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Fig. 1. Several illustrations consisting of contour (silhouette) strokes.

• by carefully controlling the various characteristics or
qualities of the line, in particular the suggestion of move-
ment which is achieved by drawing long line segments
with various degrees of linear weight and emphasis.

Observe these processes in Fig. 1. The weight and emphasis
variation depends on the subject matter and on the information
that the illustrator wants to present. For example, observe how
line width variation on the seagull image (Fig. 1, top-left) is
used to imply shadow.

Non-photorealistic rendering (NPR) is a young research
field in computer graphics that aims to provide techniques to
help create images in expressive and interpretive styles such
as pen-and-ink. There has been significant research in non-
photorealistic rendering on contour extraction and stylization,
in particular for 3D polygonal mesh-based line stylization
algorithms [8], [9], [10], [11]. Note that in NPR, contour
drawings are referred to as silhouette drawings, and this
convention is used for the remainder of this article. Such
algorithms are usually organized in four main steps:

1) Extraction of individual silhouette edges from the mesh.
2) Linkage of silhouette edges together to form long,

connected paths, or chains.
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3) Removal of silhouette errors and artifacts from the
chains.

4) Stylization of the strokes.

Step 4 involves two main sub-processes: (1) smooth-
ing the stroke by fitting splines or using an interpola-
tion/approximation scheme and (2) creating line quality at-
tributes in the stroke such as width and brightness. Although
there is a great deal of work which extracts and stylizes
silhouettes from polygonal meshes (steps 1,2 and 4), there
are few examples that attempt to correct errors and artifacts
that can be created with object-space extraction approaches
(step 3, Figs. 4 and 5).

Object-space extraction is desirable because it allows for
control of stroke stylization, extracts silhouettes at a geometric
level instead of a pixel level and can also extract hidden
silhouettes from a surface. The artifacts that object-space
extraction creates occur because of numerical instability and
unsuitable edges from the polygonal mesh (the mesh is a
discrete approximation of a surface). The quality of the stroke
stylization process (step 4) and subsequent rendering results
are compromised due to these errors.

Correcting these errors has been previously explored [8],
[12], [10], [13]. These approaches remove errors with a set of
error-cases and corresponding solutions or they extract sub-
polygon silhouettes that do not contain errors. The results of
these methods are bound to the resolution and dimensions of
the polygonal mesh.

Our approach uses multiresolution based on reversing sub-
division [14], [15] to remove errors from the discrete raw
silhouette data (Sec. V). This approach results in good ap-
proximations to traditional hand-drawn pen-and-ink silhouettes
(Fig. 1). This system is resolution-independent as the multi-
resolution error removal filters can create coarse approxima-
tions of chains and can smooth the strokes to a higher level of
detail than that of the original data. The primary advantages
of this method are (1) error-corrected sub-polygon strokes can
be generated from the raw silhouette data without the need
to inspect individual error-cases and (2) the strokes generated
with this method include automatic stylization controllable by
the user to create strokes with various levels of accuracy.

The remainder of this article is organized as follows. First,
we provide background and related work (Sec. II). Then, we
introduce our system pipeline (Sec. III), describe our technique
to generate silhouette chains (Sec. IV), provide details for our
method to remove errors with multiresolution filters (Sec. V)
and review our stylization approach (Sec. VI). We then provide
results (Sec. VII) and conclusions with direction for future
work (Sec. VIII).

II. BACKGROUND AND RELATED WORK

We now present an overview of the work related to this
article. First, research focussing on silhouette extraction is de-
tailed (Secs. II-A to II-D). Then, we describe silhouette errors
and artifacts and provide methods that correct these errors
(Sec. II-E). Finally, we provide a review of multiresolution
techniques (Sec. II-F).

A. Silhouette extraction

There is a large body of work covering silhouette extrac-
tion and stylization. Efficient silhouette extraction is impor-
tant because silhouettes are view-dependent and need to be
reevaluated for each frame in an animation or after each
viewing adjustment. These methods work inobject-space(a
3D geometry-based approach),image-space(a 2D pixel-based
approach) or use a combination of both. Before presenting a
review of silhouette extraction methods, the definition of a
silhouette as used by researchers in NPR is provided.

B. Definition of a Silhouette

The traditional, artistic definition of a silhouette is the
outline of an object, or the boundary surrounding an object’s
shadow when the view direction is the same as the lighting
direction (Fig. 2). The NPR definition of a silhouette for a
3D surface differs from this slightly. In NPR, the silhouette is
defined as the curve on a surface where the normal direction1

at every point on the curve is ninety degrees from the view
direction (the direction from the eye to the point on the curve).
This means that an object can have many silhouettes, that they
can be inside the shadow boundary described above and that
some of these can be occluded, depending on the dimensions
and orientation of the object as displayed to the viewer.

Fig. 2. A silhouette drawing (using the artistic definition of a silhouette).

Mathematically, the silhouette for a smooth surface is de-
fined as follows: a pointX on a surface with normalNX is
on the silhouette for an eye positionE if the angle between
NX and (X − E) is 90 degrees (Fig. 3, left). This definition
includes interior silhouettes as well as the object’s outline.
Unfortunately, this definition does not hold for polygonal
meshes because surface normals for polygonal meshes are not
defined at arbitrary points on the surface (they are usually only
defined for each polygon or sometimes for each vertex). The
silhouette set for polygonal meshes is defined as the set of
edges which share a front-facing and a back-facing polygon
(Fig. 3, middle). The orientation of polygons is found as
follows. X is set to the polygon’s midpoint. Assuming the
polygon’s normalNX is pointing away from the surface, if
NX ·(X − E) > 0, it is back-facing and ifNX ·(X − E) < 0,

1The normal is the direction perpendicular to the surface at any position.
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Fig. 3. A silhouette point and a silhouette edge. The rightmost arrow denotes
the view directionV . Left: a silhouette point for a smooth continuous surface
is defined as any pointP whose normal is 90 degrees from the view vector.
Middle: a silhouette edge for a polygonal mesh is defined as any edge which
shares a front-facing (FF ) and a back-facing (BF ) polygon.

it is front-facing. The third case,NX · (X − E) = 0, means
that the polygon is exactly edge-on to the view direction. In
this case, all of the edges from the polygon are added to the
silhouette set.

The simplest approach is to find the set of silhouette edges
for a polygonal mesh is by brute-force. This method iterates
through each edge in the polygonal model and finds silhouettes
by determining the orientation for the polygons that the edge
belongs to, as described in the previous paragraph. While this
approach is easy to implement, there are many faster methods
to find silhouette edges.

C. Silhouette Extraction Algorithms

There is a large body of work that explores silhouette
extraction and stylization. These algorithms can be classified
either as image-space or object-space (or both), whether they
require visibility calculations or not, whether they extract
silhouette edges or pixels and whether they allow animation
or not [6] (Table I). Since our approach is primarily concerned
with addressing issues of object-space extraction, this sec-
tion focusses on object-space approaches. For completeness,
image-space and hybrid approaches receive brief attention
below.

Image-spacealgorithms analyze discrete 2D image buffers
created with data projected from the 3D scene and extract
discontinuities to create silhouette pixels [16], [17], [18].
Saito and Takahashi [16] present the foundation for image-
space silhouette extraction with several filters that estimate
the first-order and second-order differentials of the image.
Image-space methods based on this approach are generally
the fastest approach to extract silhouettes. This is because
they solve silhouette detection and visibility in a single step
and extract discontinuities from image buffers efficiently [16],
[17]. Furthermore, these methods are often very simple to
implement and entail little memory overhead. Unfortunately,
image-space methods only extract visible silhouettes at the
pixel-level; they suffer from aliasing artifacts and they do not
lend themselves well to stylization. This is because individual
pixels provide insufficient information to stylize a complete
stroke and methods for applying stroke texture, realistically
simulating width and stroke properties must manually be
coded. Object-space approaches provide most of this func-
tionality automatically.

Object-spacealgorithms are often used to extract silhouettes
where stylization of the silhouette is required or when the ac-
tual 3D silhouette edges are required. Object-space algorithms
extract geometric edges from the polygonal mesh (instead of
pixels) and have access to surface information, such as the
normal, for any point in the stroke. Furthermore, object-space
approaches can extract all parts of the silhouette, not just those
that are visible. They usually do this by comparing the view
direction to surface normals as described in Sec. II-B and
some methods use techniques to ignore edges that cannot be
silhouettes. These properties make this approach much more
suitable for stylization than image-space approaches. Unfor-
tunately, object-space approaches are more computationally
expensive than image-space approaches and often require a
secondary process to determine silhouette visibility.

Hybrid algorithms attempt to maintain the fast extraction
of image-space approaches and incorporate more stylization
control using object-space. These approaches do not extract a
geometrical representation of the silhouette. Instead, they use
a special rendering pipeline which modifies the position of
front-facing and back-facing polygons so that the silhouette is
highlighted when rendered with the z-buffer [19], [20], [21],
[22]. Most of these methods require several rendering passes
to function. For example, Raskar and Cohen’s approach [22]
uses a 2-pass rendering. During the first pass, all polygons are
rendered in the background colour with depth-testing enabled.
During the second pass the polygons are rendered again,
except this time they are draw in the silhouette colour with
front-face culling enabled. Silhouettes appear by employing
the equal-to depth function during this pass. The primary
advantage of hybrid approaches is that they provide more
stylization options than image-space methods at a comparable
speed. Unfortunately, they do not provide the stylization
control of object space approaches, can suffer from z-buffer
inaccuracy and only provide a pixel-level representation of the
silhouettes.

D. Object-Space Silhouette Extraction Methods

Specific techniques for object-space silhouette extraction
will now be discussed.

The “Edge-Buffer” technique [23], used in this article (Sec.
IV-A), extracts all silhouettes efficiently via a partial vertex
adjacency graph. This graph contains a set of bits for each edge
in the polygonal mesh. Every time the scene is rendered from
a different angle or the model moves, these bits are modified
on a per-polygon basis depending on if the polygon is front
or back-facing. Then, individual silhouette edges are quickly
extracted using bit-wise logical operators. The advantages of
this method are that it works with animated surfaces, it extracts
every silhouette edge (and other types of edges specified by
the user) and it does not require the expensive preprocesses
required by other guaranteed techniques detailed shortly [19],
[12], [24].

Other research attempts to lower the number of silhouette
tests stochastically by estimating which edges are most likely
to be silhouettes. Markosian et al. [9] use probabilistic testing
and chaining to find silhouettes. Their method tests edges that
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Approach Method Additional Precision Misc.
Operations

Reference
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[9]
[19]
[12]
[24]

Image Sp. Object Sp.√
√
√
√ √
√ √
√ √
√ √

√
√
√
√
√

Requires Visibility Test

√
√
√
√
√

Pixel Edge√
√
√
√
√
√
√

√
√
√
√
√

Allows Animation Intelligent Extraction√
√
√
√
√
√
√
√
√

√
√
√

TABLE I

A CLASSIFICATION OF POLYGONAL SILHOUETTE EXTRACTION METHODS.

were silhouettes in previous rendering steps and random edges
in the vicinity of these. When a silhouette edge is found,
their method recursively follows the silhouette until it loops
or degenerates. Unfortunately, this approach doesn’t guarantee
that untested edges are not silhouettes.

There are several other methods that lower the number
of silhouette tests but guarantee that all silhouettes will be
extracted [19], [12], [24]. These methods use various types of
space partitioning to determine quickly which faces contain
silhouettes. Unfortunately, spacial partitioning requires com-
plicated implementation and intensive pre-processing. This
makes such approaches not suitable for animation, memory
intensive and challenging to implement.

Gooch et al. [19] present a system for interactive techni-
cal illustration of polygonal meshes. This system includes a
module which colours the interior of the surface, a module
which creates silhouettes and two hybrid silhouette revealing
techniques. They also present an object-space software method
which uses a preprocessing step to allow a fast runtime
extraction. This preprocess projects the vertex normals for
each edge onto a sphere called a “Gauss Map” and saves
the arcs created. At runtime, silhouettes for a certain viewing
direction can be found by determining the arcs which intersect
a plane through the origin of the sphere. This method gains
in efficiency by storing arcs in a hierarchy which allows for
quick culling of regions that cannot contain a silhouette.

Hertzmann and Zorin [12] present a system which calculates
hatch marks and silhouettes. Their system also employs a
method that quickly culls faces which cannot contain a silhou-
ette based on geometric duality. Each vertex is mapped onto
a hypercube in 4D space using its position and tangent plane.
The problem of finding faces which intersect the silhouette is
reduced to intersecting the triangles in the 4D space with the
viewpoint’s dual plane. Any edge that intersects in this test
intersects the silhouette. The system’s speed gain comes from
an octtree space subdivision which subdivides the vertices on
each side of the hypercube and can quickly determine which
groups of edges contain silhouettes.

Sander et al. [24] find groups of faces that might contain
the silhouette using a hierarchical tree that stores mesh edges
and their associated faces and “anchored cones”. The system
binds two cones to each node in the tree. One cone represents
the viewpoint for the entire group of faces in a node to be

front-facing, and the other cone represents the position of
the viewpoint for all of the faces to be back-facing [6]. By
determining if the viewpoint lies inside any of the cones, their
system can quickly cull groups of faces which cannot contain
a silhouette.

The processing time required to set up the data-structures
used for some of these systems [24], [12] can be very
expensive for large polygonal meshes, making animation and
morphing difficult or impossible with current hardware. De-
spite this, these methods are useful to accelerate silhouette
extraction for static surfaces where they provide a large speed
increase over the brute-force approach.

E. Silhouette Error Correction

Silhouettes extracted directly from 3D meshes may contain
artifacts such as “zig-zags”, overlaps and loops (Figs. 4, 5).
The causes of these artifacts are:

1) Numerical instability: Methods that extract edges from
the polygonal mesh compare the result of a dot product
operation with zero. This can return incorrect results
where polygons are nearly edge-on to the view direction,
due to floating point precision problems.

2) Unsuitable edges from the mesh: Since the mesh is a
discrete approximation of a surface, edges that make up
this mesh will rarely conform exactly to the “actual” sil-
houette. Depending on the connectivity and orientation
of the edges, completely unsuitable edges might be used
in the silhouette.

Fig. 4. The silhouette of an ape mesh with highlighted errors and artifacts.
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Fig. 5. Four images showing various silhouettes and underlying mesh that
generated them. We present the silhouettes at a perturbed view to provide a
better understanding of the cause of the errors. Shaded polygons were back-
facing when the silhouettes were extracted.

These artifacts compromise the quality of the stroke stylization
process and subsequent rendering results. In Fig. 5, four
frames illustrate different combinations of artifacts. Silhouettes
for these images have been calculated with view directionα,
but are displayed with view directionβ, such thatα 6= β. Note
the black line, which is the extracted silhouette, the unshaded
front-facing polygons and the shaded back-facing polygons.
As the silhouette crosses the mesh surface, it moves back
and forth across an invisible threshold which is the “actual”
silhouette. Edges taken directly from the mesh only provide
an approximation to where the actual silhouette should appear.

Table II lists methods that provide polygonal mesh sil-
houette error correction. These either (1) correct errors from
silhouette chains created from the actual mesh edges [10],
(2) create more suitable, sub-polygon silhouette lines without
using the edges in the mesh [13], [12] or (3) do both [8].
These methods use object-space approaches [12], [8] or hybrid
combinations of image-space and object-space [10], [13].

Côrrea et al. [13] create continuous, smooth silhouettes on a
3D model. This system uses an image-space solution to gener-
ate new sub-polygon silhouette edges. Their system creates 2D
u,v-imageswhich are coloured based on the u,v coordinates of
the mesh. Discontinuities in this image correspond to visible
silhouettes and boundaries on the 3D model and are found
by analyzing pixel-neighborhoods. For each silhouette pixel,
a silhouette edge is mapped into object-space using the depth
buffer. Curves are created by joining these newly created
silhouette edges. Unfortunately, this system requires a large
amount of user input to function.

Northrup and Markosian [10] present a system which ex-
tracts silhouettes in object-space and performs corrections
in image-space. Silhouettes are extracted using the process
described in [9] and are projected to image-space. Then their
system checks for error-cases and applies the corresponding
solutions. These include elimination of undesirable silhouettes,
joining uneven endpoints and other operations to create smooth
chains. To stylize, the system renders corrected chains in
image-space using an “artistic-stroke” method to create a wide
range of expressive strokes and styles.

Isenberg et al. [8] also correct silhouette errors directly
from the edges by checking for various error-cases and pro-

viding a solution for each case. In their system, however,
stroke cleaning occurs in image-space and object-space. To
accomplish this, their system uses a two-pass approach which
first analyzes silhouettes based on the mesh and then checks
their appearance. In the first pass, adjacent edges connecting at
acute angles below a given threshold are replaced by a single
edge, to prevent “zig-zag” patterns. Also, triangle clusters
which create large artifacts on the silhouettes are identified and
removed. At this stage, the silhouettes contain only edges from
the mesh. The second pass removes silhouette “zig-zags” and
short segments by analyzing vertices in image space merging
them. Moreover, sharp angles in the silhouette are unlinked so
that good output is created during stylization. At this stage,
since vertices have been modified, the silhouette edges will
not follow the exact geometry of the surface.

Hertzmann and Zorin [12] present an object-space approach
that minimizes errors by creating new sub-polygon silhouette
edges for smooth polygonal meshes converted from free-
from surfaces. Their system relies on vertex normals instead
of standard face normals. Silhouette edges are created by
estimating the exact position where the silhouette crosses
edges from the mesh by interpolating vertex-normals along
the edge and joining adjacent pairs of these points to create
edges. Their system also supports a hatching algorithm to
create interior strokes along principal directions of curvature.

In contrast to these previous approaches, our error removal
technique does not require classification of errors and eval-
uation of fixes. Furthermore, like Isenberg et al. [8] and
Northrup and Markosian [10], our approach removes errors
from silhouette chains created from mesh edges instead of
procedurally generating new edges. Unlike these techniques,
our approach modifies silhouette edges using sub-polygon
resolution. Furthermore, the silhouettes thus generated are
resolution-independent which is useful to simulate realistic
pen strokes. This also proves to be useful for examining
silhouettes from detailed meshes closely and when extracting
silhouettes for simple meshes. Finally, the system can also
generate artistic expressive strokes.

F. Multiresolution

Multiresolution (Sec. V) is a technique whereby a set of
data can bedecomposedinto a set of coarse data and details,
each of which is usually half the size of the original data.
Then, the original data can be completelyreconstructedusing
only the coarse data and details.

Finkelstein and Salesin [25] demonstrate the first use of
multiresolution in NPR with a curve-editing system based on
wavelets. More recently, Kirsanov et al. [26] use coarsen-
ing methods to simplify silhouettes from detailed polygonal
meshes. More information on the wavelet multiresolution
approach is found in Stollnitz et al. [27].

To remove errors from polygonal silhouette chains, our Mul-
tiresolution Error Removal (MAR) approach uses a different
type of multiresolution that is based on reversing subdivision.
This multiresolution, developed by Samavati and Bartels [14],
[15], offers simple linear time operations [28] and several
different filter sets to operate. Furthermore, Samavati and



INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING 6

Approach Error-Removal Correction Source Precision Silhouettes
Method Corrected

Reference
Côrrea et al. [13]

Hertzmann, Zorin [12]

Northrup, Markosian [10]

Isenberg et al. [8]

Image Sp. Object Sp.√

√

√

√ √

Polygon Edges Sub-poly Edges√

√

√

√

Pixel Geometry√

√

√

√

Visible All√

√

√

√

TABLE II

A CLASSIFICATION OF POLYGONAL SILHOUETTE ERROR-CORRECTION METHODS.

Bartels present two versions of this approach,local [14]
and global [15] filters. The local filters are obtained based
on solving the best solution via a local least squares problem
while the global filters are obtained based on a global least
squares problem. These filters produce an optimal solution
intrinsically without any extra work in implementation. In the
case of the local filters, the implementation is very simple and
the coarse data it generates is the bestl2 approximation for a
set of data in a local neighborhood. In contrast, coarse data
found with the global approach is the bestl2 approximation
for the entire set of data. The global approach requires a more
complicated implementation, however it still produces results
in linear time.

III. O UR SYSTEM PIPELINE

To remove errors, our system (1) links single edges from
the Edge-Buffer [23] into long strokes, (2) removes artifacts
and errors from the silhouette using the MAR approach and
(3) stylizes the strokes. These are described in order in the
following sections.

IV. EXTRACTING SILHOUETTE CHAINS

To create silhouette chains, we employ a two-step process.
First, our approach uses the edge-buffer [23] (Sec. IV-A) to
extract individual silhouette edges. Once these silhouette edges
are extracted, the system creates silhouette chains using the
partial directed-graph information found in the Edge-Buffer
(Sec. IV-CC).

A. The Edge-Buffer

The Edge-Buffer, designed by Buchanan and Sousa [23], ef-
ficiently extracts feature edges from open or closed polygonal
meshes. This approach considers feature edges as silhouettes,
boundaries (edges which are only connected to one polygon)
and artist edges (edges specified by the user to always be
drawn). To this end, the system uses a specialized data
structure and a simple traversal algorithm to find all such edges
in a single pass.

B. Initialization

To operate, the Edge-Buffer approach requires two data-
structures: the Edge-Buffer itself and a data-structure for the
polygonal mesh that stores indexed faces and vertices. More-
over, each face stores the indices of the vertices they contain.
Once the polygonal mesh has been loaded and initialized in

such a structure, the Edge-Buffer is initialized as an arrayV
containing allm vertices in the mesh. For anyV [1 · · · m],
V [i] is the linked list of all the verticesvj adjacent to vertexvi

(Fig. 6a,b). Note that this list is sorted in increasing order of
vertex numbersj starting fromi, such that each pair(vi, vj)
forms an edge. Thus there is only one entry for eachi, j
combination, wherei < j. Note that an effect ofi, j ordering
is that higher indexed vertices have fewer links. Each node in
the linked list contains the following data (Fig. 6c):

1) j, the identifier of vertexvj adjacent tovi. If all vertices
are stored in an array, thenj is the index tovj in the
array.

2) five bit fields (F,B, Fa, Ba, A). Each of these fields
contains a boolean value used during run-time to extract
the silhouette, boundary and artist edges quickly. Their
use is explained in Sec. IV-B.1 below.

1) Run Time Operation:After initialization, feature edges
are ready for extraction and display using five bit fields
(F,B, Fa, Ba, A). F andB are used for silhouette and bound-
ary extraction andFa, Ba, and A are used to extract artist
edges.

First, the bit fieldsFBFaBa are initialized to 0. Then, the
system classifies every polygon in the mesh as either front
or back-facing using the dot-product operation (Sec. II-B). As
each polygon is checked, the bit fieldsFB for each of the
edges that make up the polygon are updated. This can be done
efficiently because each polygon has its edges cached in the
polygonal mesh’s data-structure. The bits are updated in the
following manner. The current value ofF is inverted if the
polygon is front-facing. Similarly the current value inB is
inverted if the polygon is back-facing. Once all polygons are
tested, non-boundary edges will have been visited twice and
boundary edges will have been visited once. Silhouette edges
are are extracted whenFB = 11, and boundary edges are
extracted when whenFB = 10 or FB = 01.

Artist edges are handled as follows: the user first initializes
all artist edges by setting theirA bit. TheFa andBa bit fields
are used to determine which of these edges are front-facing
or back-facing respectively. As each polygon is checked, the
Fa bit for each edge in the polygon is set to 1 if it is front-
facing. Likewise, theBa bit is set to 1 when the polygon is
back-facing. After all edges are processed, front-facing and
back-facing artist edges are extracted whenFaBaA = 101 or
FaBaA = 011 respectively.
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Fig. 6. A visual description of the Edge-Buffer: (a) a simple polygonal object, with vertex numbers listed; (b) an example of how edge adjacency information
is stored in the Edge-Buffer [23] for this polygonal object; (c) the data stored in each node in the linked lists.

C. Edge-Buffer modifications

The original Edge-Buffer system [23] extracts individual
edges as described in Sec. IV-A. The MAR approach requires
complete silhouette chains (Sec. V), so the Edge-Buffer must
be extended to create these chains from individual edges. Note
that the MAR approach treats boundary, silhouette and artist
edges (Sec. IV-A) equally; all types of edges extracted by the
Edge-Buffer are chained together.

A two-pass algorithm is used to chain individual silhouette
edges extracted by the Edge-Buffer. First, the system links all
extracted edges on the model by finding the connected com-
ponents of the Edge-Buffer (Fig. 7,top-right). The algorithm
iterates through all edges (vi, vj) for each vertexvi in the
Edge-Buffer. Once this step finds a silhouette edge, it proceeds
to vertex vj and searches for another silhouette edge. The
system continues in this fashion until it cannot find another
silhouette edge. This step must know which edges are already
part of a chain and which edges have not been used yet. This
is accomplished by adding another bit-field, the used bit “U ”,
to each Edge-Buffer node. Each time the view transformation
changes (eg. when generating animated sequences, or when
changing the view direction),U is initialized to 0. During the
chaining process, any extracted edge that is used in a chain has
its U bit set to 1. While creating future chains, any edge with
its U bit set to 1 is excluded from chaining. Thus, each edge
can only belong to one chain. Once all extracted edges have
been used, this portion of the algorithm is complete. At this
point the chains will only contain increasing vertex elements
(Fig. 7). This is due to the directed nature of the Edge-Buffer.
Thus, a second step is needed to join chains that do not have
increasing vertex numbers (Fig. 7,bottom-right).

In this second pass, the system joins chains with matching
vertex numbers on their bounds. If more than two chains can
be linked, priority is given to chains that will create long
loops when joined. Looping chains take precedence because
the MAR approach (Sec. V) handles looping and non-looping
chains slightly differently (non-looping chains are interpolated
at the start and end of the chain). Thus, it is important to
identify looping chains to avoid creating small new artifacts
at boundaries of the chain. The MAR approach also requires
a minimum chain length to function properly (the lowest is a

length of 4), depending on the type of filter used (Sec. V).
This chaining method cannot guarantee the longest con-

nected chains. Instead, it guarantees satisfactory long chains
for use with the multiresolution filters.

V. L OCAL AND GLOBAL FILTERS

Once complete silhouette chains have been constructed from
the Edge-Buffer, the MAR error removal approach is applied.
Before details are provided for this, an effective review of the
multiresolution techniques [15], [14] that form its base is in
order.

Multiresolution methods decompose a datasetCk+1 into a
low-resolution approximationCk and a set of high frequency
detailsDk. Note thatk is used in this document to specify
the level of detail in the data. The original dataCk+1 can
at any time be reconstructed fromCk and Dk. The process
of transformingCk+1 to Ck andDk is calleddecomposition,
while and generating the original dataCk+1 from Ck andDk

is calledreconstruction. These can be applied toCk+1 more
than once.

In the functional view,Ck+1 is the coefficient vector of
high resolution scaling functions,Ck is the coefficient vector
of low resolution scaling functions andDk is coefficient vector
of Wavelet functions. IfCk+1 is a silhouette chain,Ck shows
the overall sweep of the silhouette andDk shows silhouette
errors (Sec. II-E) because these are the high frequency portions
of the chain.

The multiresolution operations can be specified in terms
of the banded matricesAk, Bk, P k and Qk. The matrixAk

transformsCk+1 to Ck:

Ck = AkCk+1 (1)

andBk extracts details:

Dk = BkCk+1 (2)

P k andQk act onCk andDk to reconstructCk+1:

Ck+1 = P kCk + QkDk (3)

These matrices have a regular banded structure for every
resolution for the looping case. In the non-looping case, the
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Fig. 7. The two pass process used to chain silhouette edges.Left: An example polygon mesh with vertex and face numbers and its associated Edge-Buffer
structure.Top-right: The first step in silhouette chaining. In this example, two chains are created, shown with different colours on the polygonal mesh. These
are extracted individually, following nodes of the Edge-Buffer until no further connections can be created.Bottom-right: The second step for chaining. The
ends of each chain are examined for any matching vertex indices. Matches are joined with preference for creating looping chains.

matrices are regular except at the bounds of the matrix, where
data is interpolated. Examples (refer to [14]) of the non-
zero entries that can be used for the rows that make up the
Ak and Bk matrices and the columns that make up theP k

and Qk matrices are provided in Figs. 8-10. These matrices
can be viewed as filters that operate onCk+1, Ck and Dk

due to their regularity. Furthermore, the only implementation
difference betweenAk andAk−1 is their size. Consequently,
the superscript of matrices can be removed.

In order to find these four matrices, most multiresolution
research uses wavelet-based techniques [25], [27], [26]. In
the case of smooth curves, the resulting wavelets are often
inadequate (see appendix of Finkelstein and Salesin [25] or
page 94 of Stollnitz et al. [27]). For the MAR approach,Ck+1

is a discrete approximation of a silhouette curve and the only
requirement is use of the appropriate appropriateA, B, P and
Q filters. Therefore, a discrete approach of multiresolution
systems that directly operates on discrete data is fitted here
more effectively. Samavati and Bartels [14], [15] provide
this kind of multiresolution based on reversing subdivision.
They also demonstrate that their results are more effective for
discrete data sets than conventional wavelets. In the MAR
approach, their multiresolution filters constructed based on
reversingcubic B-Splinesubdivision,Chaikin subdivision and
Dyn-Levin interpolationsubdivision are used. The bands that
make up theA, B, P and Q filters are provided for these
systems in Figs. 8, 9 and 10.

For implementation,A andB are applied toCk+1 to obtain
Ck and Dk. Again by applyingP and Q filters on Ck and
Dk (or, as is done in the next section to remove errors, a
modified version ofDk), Ck+1 can be reconstructed. Recall
that these filters produce an optimal solution intrinsically
without any extra work in implementation, they usually require
no extra space and they provide linear-time operations. For

Fig. 8. The bands of the filters for the cubic B-Spline case (the A, B, P and
Q diagrams represent all non-zero entities of a row for theA andB matrices
and of a column for theP andQ matrices). The gray circles show the center
entity.

the local approach,A, B, P and Q are all regular banded
matrices. In the global approach,A and B are full matrices.
Nevertheless, they still have the regular structure. In order to
achieve linear time operations, the MAR approach solves the
following banded system for global decomposition [15]:

(P tP )Ck = P tCk+1 (4)

(QtQ)Dk = QtCk+1 (5)
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Fig. 9. The bands of the Chaikin filters.

Fig. 10. The bands of the Dyn-Levin interpolation filters.

In a recent work, Bartels et al. [29] demonstrate that the local
approximation is a good estimate of the global approximation.
For silhouette error removal, experiments comparing local and
global multiresolution show that for low resolution meshes,
global multiresolution is required to create accurate strokes
(Sec. VII). The drawback of using global multiresolution is
the need of solving the systems in Eqs. 4 and 5.

A. Other Multiresolution Approaches

The reverse subdivision multiresolution filters of Samavati
and Bartels [15], [14] were chosen over that of Finkelstein
and Salesin [25] and Stollnitz et al. [27] for three primary
reasons. First, reverse-subdivision multiresolution has been
demonstrated to be more effective for discreet data than
wavelet-based approaches [15], [14]. Second, Samavati and
Bartels provide various types of filters with a “local” or a
“global” scope while Finkelstein and Salesin and Stollnitz et
al. only provide filters for a wavelet-based cubic B-Spline
multiresolution. This provides variety, to properly remove

errors and stylize silhouettes, and efficiency, as the approaches
provided by Samavati and Bartels are much faster than the
wavelet-based approach (see Brunn et al. [30]). The third
reason that reverse subdivision multiresolution was chosen
over the wavelet-based approach is because the masks it
uses are simpler. The masks that make up wavelet-based
filters have a large width which contain complicated rational
numbers compared to a narrow width with simple fractions
used by Samavati and Bartels. Simple fractions are preferred
to minimize rounding errors. Also, the narrower mask width of
the reverse-subdivision filters further increases computational
efficiency.

B. Error removal pipeline

In this section, details are provided on how the multires-
olution techniques presented by Samavati and Bartels [15],
[14] are used in the Multiresolution Artifact Removal (MAR)
approach. MAR’s default silhouette error removal pipeline
decomposes silhouettes in two steps and reconstructs to the
original level of detail with a scaled-down version of the
high-frequency details to remove errors (Fig. 11). Note that
the user can change the number of times that the silhouette
is decomposed as large errors may require three steps of
decomposition and small errors may only require one step.
A discussion of this is provided in Sec. VII.

As shown in the previous section, normal reconstruction
with coarse information and high-frequency details returns the
coarse data to its exact original form. Scaling down the amount
of details means that the high-frequency data will be lessened
in the silhouette, resulting in removal of errors. The MAR
system modifies Equation 3 so that it can lessen the amount
of details included in reconstruction:

C̄k+1 = PCk + eQDk (6)

where e is a scalar between 0.0 and 1.0 that varies the
percentage of the detail data added to coarse data. The higher
the value ofe, the closer the stroke gets to the original data
extracted.

Raw silhouette chains from the Edge-Buffer can be thought
of as a low frequency “correct” path plus high frequency errors
(Fig. 5). Since the high frequency portion of the silhouette
chain is extracted and stored in details, a lower value fore
eliminates more errors as a lower percent of the high-frequency
details are included in the reconstructed strokes.

The error removal effect of the MAR approach is illustrated
in Fig. 12. In this image, the original silhouettes have been
decomposed and reconstructed once with global cubic B-
Spline filters. In the leftmost image in this figure, 100% of
the details are included in reconstruction (e = 1.0) resulting
in the exact original silhouette being regenerated. Moving right
in Fig. 12, fewer and fewer details are included, until the
rightmost image, where 0% of the details are included (e =
0.0). Note in the leftmost image that the jagged movement of
the silhouette on the beaver’s back has created some minor
artifacts. As details are removed, these high frequency “zig-
zags” are scaled down while the low frequency, correct path
of the silhouette is maintained.
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Fig. 11. The MAR approach uses multiresolution filters to decompose and reconstruct silhouette chains without errors. Here is an example session error
removal session for anape mesh with 7434 faces. Proceeding from left to right, the silhouette chains are first decomposed twice from levelC0 to C−2.
Then, the system reconstructs to levelC0 using scaled details (here,e = 0.3). The effect of this process is the removal of errors. Finally, the MAR approach
reconstructs past the original level of detail toC1 to provide a smoother more stylized silhouette.

Fig. 12. The effect of removing details. In this image, silhouettes from abeaver model are shown for two angles, head-on in the top row and from behind
with mesh information on the bottom row. One level of decomposition and reconstruction is used here with global cubic B-Spline filters. From left to right,
e = 1.0, e = 0.66, e = 0.33 ande = 0.0.

Fig. 13. Strokes generated by the MAR system for the input in Fig. 5.

In Fig. 13, the MAR approach has been applied to the
silhouettes illustrated in Fig. 5. Note that the high-frequency
noise has been removed and that the accuracy of the stroke
has been maintained.

The images provided in this work demonstrate that the
output of this system is suitable for pen-and-ink silhouette
illustration. Values from 0.0 to 0.4 are used fore, depending
on the detail in the original mesh used. A discussion of the
performance of this system is provided in Sec. VII.

C. Chain Size

The silhouette chains sometimes need to be modified before
applying MR filters. In the decomposition process, a dataset

Ck+1 is decomposed into a coarse approximationCk and
details Dk. If the length of Ck+1 is n, then the length of
Ck will be n/2 when the chain loops or2 + n/2 otherwise.
Since the length of the chain must be a whole number,
Ck+1 must have a length divisible by two for decomposition.
The MAR approach handles this by adding a single point
to any chain of odd length before performing any level of
decomposition. This point is added at the second last position
in the chain, interpolated between its neighboring points.
During reconstruction, the system removes these extra points
once they are reconstructed.

D. Resolution-Independent Strokes: Smoothing/Coarsening

In the MAR approach, reconstruction can proceed to a
higher level-of-detail than the original chain to smooth the
silhouette strokes or can stay at a low level-of-detail to coarsen
the strokes. For the higher levels of detail, since there are no
detailsDk associated with the strokes, this is accomplished
simply by eliminatingQDk in Equation 6 to create:

Ck+1 = PCk (7)

The P filter is actually a subdivision matrix. Thus, usingP
alone increases the smoothness ofCk. This is useful when the
input mesh has a low number of triangles or when one wants
to view the silhouettes from a larger mesh closely and rough
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edges are not desired in the final output. This is illustrated for
a mesh with a lower number of triangles in Fig. 14.

Fig. 14. The rightmost twoape images from Fig. 11. Here the system
performs reconstruction on corrected strokes above the original level of detail.
This results in a smoothing effect, making the geometry of the underlying
mesh less apparent.

With the MAR approach, the user has control over the
number of times to decompose and reconstruct, the method to
do this decomposition and reconstruction (Chaikin, cubic B-
Spline or Dyn-Levin), the scope of the method (local or global)
and the amount of details to include in the reconstruction (the
e value). Note that low-pass filters do not give this level of
control. A discussion of the results from using these different
approaches is provided in Sec. VII.

VI. STYLIZING

The MAR approach uses two steps to create appealing
strokes that approximate real hand-drawn pen-and-ink illus-
trations. First, silhouette chains that appear too coarse can
automatically be smoothed using the resolution-independent
chains (Sec. V-D). The second step to stylize the strokes is
to use the angled-bisector strip presented by Northrup and
Markosian [10]. This method converts the silhouette chains
into triangle strips which simulate pen strokes that vary in
width (controlled by the distance from the eye to each point in
the stroke). Points in the chain closer to the eye are stylized as
wide portions of the stroke while points farther away produce
narrower portions.

The MAR approach provides two options for Hidden Line
Removal (HLR). The first method works in image-space and
is very efficient, however it fails when used with silhouettes
from coarse meshes. The second method uses an image-space
technique to produce more accurate results. Both methods are
described in the next two sections.

A. Object Space HLR

For object-space HLR, the method from the original Edge-
Buffer system [23] is used. This method first renders the
polygonal mesh in white and then draws the silhouettes in
black. Thus, any strokes on the back-facing side of the surface
will be occluded by the white mesh. To ensure that the mesh
does not partially occlude edges on the front side of the
surface, the silhouette edges are displaced away from the mesh
slightly.

While this approach is acceptable for the Edge-Buffer
system, it does not always work with the strokes generated
by the MAR approach because these processed strokes do not

adhere exactly to the mesh (see discussion in Sec. VII). Thus,
strokes that should be visible may be moved slightly behind
the mesh and thus be improperly occluded and strokes that
should be invisible may be moved enough so that they are seen.
This effect is negligible for dense meshes, but is increasingly
noticeable for coarser meshes (Sec. VII). This is why portions
of the silhouette are missing in Figs. 15 (middle) and 19. Some
strokes from the local filters in Fig. 21 (bottom-left) are also
improperly handled at the cat’s paws and ear.

A simple solution for this problem is to displace the strokes
slightly towards the eye. This approach has been used for all
of the result images in Sec. VII. Unfortunately, depending on
the geometry of the mesh, this approach might not work for
all parts of the stroke (Figs. 15(middle), 19, 21). Specifically,
if multiple silhouettes exists at very close depths, this method
may incorrectly display occluded silhouettes. Furthermore, if
the mesh has many sharp features, this might not reveal the
complete stroke in certain places. In these situations, a stronger
form of HLR is required, as is presented in the next section.

B. Image Space HLR

Hidden line removal can also be accomplished with an
image-space approach. In this approach, the assentation is that
if a raw, unprocessed edge2 is visible, then its corresponding
processed edge (or edges, if the processed silhouette chain is at
a higher level of detail than the unprocessed chain) is visible.
To determine if an unprocessed silhouette edge is visible, anID
buffer is used [10].Unprocessedsilhouette edges are drawn in
unique colours in the ID buffer along with a white version of
the mesh to perform occlusion (Fig. 15, left). Unique colours
are used so that a list of visible unprocessed edges can be
created by analyzing each pixel of the ID buffer. Once the
system has built this list, it draws the following processed
edges generated by the MAR approach:

• processed edges whose corresponding unprocessed edge
was found to be visible in the ID buffer

• r non-visible edges between two visible edges; wherer
is related to the size of the errors; In the MAR approach,
r = 2 is used.

The extra r edges are drawn because the MAR approach
changes vertex positions in the chain; therefore, small groups
of invisible edges before processing, usually those found at
error positions, will become visible after processing. These
must be drawn so that small breaks do not appear in the stroke.

This method provides more accuracy than the object-space
approach, however it is computationally more expensive. The
extra computation time required is directly linked to the
number of pixels that must be analyzed. This step takes on
average an extra 90 milliseconds for an 800 by 800 pixel
display.

VII. R ESULTS AND DISCUSSION

The MAR approach can generate error free strokes with
minor user input for most meshes. Results generated by the

2An unprocessed edge, is an unmodified silhouette edge extracted from the
polygonal mesh before the MAR approach has been applied.
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Fig. 15. Top: raw silhouette edges, each with a unique colour.Middle: results
of object-space HLR on processed strokes.Bottom: results of image-space
HLR on the processed strokes.

system are illustrated in Figs. 17- 23. The MAR process
achieves fast computation rates including preprocessing (build-
ing the Edge-Buffer) and rendering (chaining, multiresolution
filtering, and stroke stylization). Furthermore, the multireso-
lution methods employed [14], [15] operate quickly and can
produce resolution-independent silhouettes.

MAR is more suitable for finer, denser meshes as it might
remove important detail from meshes with a low polygon
count. For these coarse meshes, MAR presents a tradeoff
between feature-preservation and quality of filtering (directly
controlled by the valuee). It can sometimes be impossible
to remove errors from silhouettes of simple meshes without
losing stroke accuracy (Fig. 19). A solution to this is to
subdivide these meshes using a method such as Catmull-Clark
or Doo-Sabin subdivision before extracting and correcting
silhouettes.

Running times are provided in Table III for various polygo-
nal meshes for the local and global multiresolution approaches,
following with a discussion of the quality of the results with
notes on mesh size, user input, the global and local approaches
and the different filter types. Finally, the MAR approach is

Model Fig. Polygons Num. Chain Local Global
Chains Length Time Time

Ox 19 652 11.4 16.3 0.414 1.55
Ape 13 1490 35.0 24.8 0.742 7.17

Beaver 12 2286 13.8 39.1 0.613 3.669
Face 22 2940 24.5 23.8 0.922 7.01

Kleopatra 23 4092 8.6 38.9 0.437 3.207
Cat 21 7819 41.7 27.9 2.241 39.84

Toutalis 17 12796 30.4 20.1 1.065 13.671
Inner ear 18 32702 99.4 27.1 9.589 155.73

Foot 20 46045 180.6 29 60.007 77.195

TABLE III

RUNNING TIMES (IN MILLISECONDS) FOR ERROR-CORRECTION FOR THE

MESHES ILLUSTRATED IN THIS ARTICLE. THESE RESULTS ARE PLOTTED

IN FIG. 16.

compared to other error removal approaches [13], [12], [10],
[8].

A. Timing

Table III provides running times for the system, when two
levels of decomposition and reconstruction for local and global
cubic B-Spline filters are used. The provided computation
times were gathered using a 2.65 GHz Pentium 4 with
OpenGL/ATI Radeon 9700 graphics and 1 gigabyte of RAM
running Windows XP.
These results are averaged from 256 tests with silhouette
chains extracted at random viewing directions and are plotted
in Fig. 16. These results illustrate that the MAR approach is
efficient; meshes less than about 20000 faces usually run in
real time and larger meshes, such as the foot (Fig. 20), run at
interactive speeds. The speed of the multiresolution filters is
determined by the number and size of the silhouettes extracted.

These results also reveal that the global approach takes
more time to operate than the local approach. This is because
global multiresolution requires solutions to Equations 4 and
5. Fortunately, the results for the global approach are still
realtime or interactive for the small to medium-sized meshes of
sizes up to 30,000 triangles displayed in Table III. The added
accuracy of global methods is not required for high resolution
meshes (of size greater than about 10,000 faces) because the
strokes from large meshes adhere well to model. This is due
to the higher resolution and smaller average error size in the
silhouette chains extracted from these meshes.

B. User Input

Meshes with more than about 10000 faces require little or
no user-input (Figs. 17, 18 and 20). For these meshes, error
free strokes with no accuracy loss can often be generated with
local multiresolution using two levels of decomposition and
reconstruction and some smalle value for details. The more
detailed the mesh, the smallere can be while still maintaining
accurate strokes. We employede <= 0.1 meshes larger
than 10000 faces. To generate accurate strokes for smaller
meshes (Figs. 11, 19) or to accommodate small sharp features
on larger meshes (those only defined by several triangles),
the global multiresolution approach must be used (see next



INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING 13

Fig. 16. A plot of the MAR approach’s timings versus the number of faces
in the polygonal meshes provided in Table III. The solid line represents the
average execution time for the local multiresolution approach. The dotted line
represents the average execution time for the global approach. The expense of
the global approach is always higher than the local approach, but appears to
be highly variable with respect to the length and number of silhouettes from
the mesh.

section for a detailed discussion) with precise input for the
amount of details and the number of decomposition and
reconstruction steps. It is in these situations that varyinge
can result in a noticeable tradeoff between error removal and
feature preservation. Accurate strokes can be generated for
smaller meshes if the mesh is subdivided before extracting
silhouettes; however, this requires a subdivision preprocess
and will not generate an accurate error-free silhouette for the
original mesh—the silhouette of the subdivided mesh will be
corrected.

C. Global Multiresolution VS. Local Multiresolution

The cubic B-Spline, Dyn-Levin and Chaikin filter matrices
(Figs. 8-10) have been tested with local and global multires-
olution methods.

Visually, the global method produces more accurate results,
an effect most noticeable for meshes with a smaller number
of faces and edges. Global results are directly compared to
local results in Figs. 21 and 23. Note in Fig. 21 that although
the local method (Fig. 21bottom-left) appears to solve most
of the errors highlighted in the raw image (Fig. 21top), it
loses accuracy in several areas, notable especially around the
cat’s front paws and ear. This image was rendered using the
object-space HLR approach and the loss of accuracy is the
reason that some strokes improperly hidden and revealed. The
global approach (Fig. 21bottom-right) maintains accuracy,
removes all identified errors and is accurate enough so that the
object-space HLR approach handles all parts of the silhouette
curves properly. In Fig. 23, local and global silhouettes for all
three filters are shown at an alternate angle. In these images,
the underlying mesh is also rendered with shaded back-facing
polygons to reveal how accurate the processed silhouettes are.
Also, Fig. 23 displays local results (left-column) and global
results (right-column). In the cubic B-Spline local example
(top-left), the processed stroke loses the mesh significantly

(most noticeable at the middle part of the silhouette). The
cubic B-Spline global approach does not suffer from this loss
of accuracy.

As presented in Sec. VII-A, the expense of global methods
increases with the size and number of silhouettes. Fortunately,
the visual accuracy improvement is usually only useful for
smaller sized meshes (Figs. 11, 13, 12, 19, 21) where the
solution to the systems used in the global approach can be
found quickly.

In this article, we employed local methods for Figs. 13
(left column), 17, 18, 20, and 21 (bottom-left). We employed
global methods for Figs. 11, 13 (right column), 12, 19 and
21 (bottom-right). Figs. 22 and 23 illustrate the results of
executing both the local and global multiresolution methods
for each filter implemented in the system.

D. Cubic B-Spline Subdivision VS. Dyn-Levin Interpolation
VS. Chaikin Subdivision

There are three different sets of multiresolution filters [14],
[15] implemented in the MAR approach (providing the
A,B,P ,Q matrices, Sec. V): cubic B-Spline subdivision, Dyn-
Levin interpolation and Chaikin subdivision. Each of the filters
produce slightly different results when used to remove errors
from the silhouette curves. For large meshes with dense details,
the different effects of the filters are not particularly apparent
because the starting silhouette is very detailed and the errors
are not large compared to the correct detail in the chain. Thus,
it is difficult to see regions where the filters produce different
results for detailed meshes, unless about three or more levels
of decomposition are used. It is also difficult to classify the
results of the filters for coarse meshes because, various input
data can produce drastically different results. Despite this, it
is important to understand the general differences between the
filters to choose which filter to try first when correcting errors
in silhouettes from coarse meshes and for large meshes when
viewed closely.

The cubic B-Spline filters are based on a subdivision scheme
and the points generated areC2 continuous curves. This is the
highest continuity of the three methods and makes appealing
smoothed strokes. This continuity comes from the B-Spline
filters’ larger mask width. This larger width means that errors
are removed quickly. However, this also means that the cubic
B-Spline approach is more prone to inaccuracy over the other
filters because it is a subdivision approach and the mask
uses more influence from neighboring points (observe this in
the local case for cubic B-Spline in Fig. 23). Thus slightly
higher values fore might be required with these filters. Fig.
22 is provided to illustrate this effect. In this image, strokes
generated with the cubic B-Spline filters (left column) give the
best impression of the face. The other two methods generate
less appealing bumpy results, most noticeable in the error-
filled temple areas.

The Dyn-Levin filters are created from a different subdi-
vision method which is based on interpolation. Thus, strokes
processed with this method adhere better to the original mesh
than the B-Spline based methods. Although a larger mask
width (see Samavati and Bartels [14]) allows the Dyn-Levin
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Fig. 17. Top: Original silhouette from a model of theToutalis asteroid. Bottom: Results after processing with the MAR system. In this session, two levels
of global cubic B-Spline decomposition and reconstruction withe = 0.1 were used. Shaded polygons are back-facing.

Fig. 18. Top: Original silhouettes from aninner-ear model.Bottom: the results after processing two levels of decomposition and reconstruction with local
cubic B-Spline filters ande = 0.0. Stroke thickness varies in this image as a function of depth.
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Fig. 19. Top-Left: raw silhouette from a coarseox mesh.Top-Right: processed strokes with global cubic B-Spline filters.Bottom row: alternate views of the
silhouette with the original strokes (left), processed strokes with global cubic B-Spline filters (middle) and global Chaikin filters (right). In both cases, two
levels of decomposition and reconstruction are used withe = 0.35. This is an example of the system producing poor accurate output: the corrected strokes
do not adhere well to the original mesh due to the low resolution of the initial silhouettes.

approach to remove errors with about the same settings as the
cubic B-Spline approach, this method can exaggerate some
features as a side effect of the interpolation. Observe this
exaggeration in the middle column in Fig. 22, where in the
local case, the filter has pointed the head slightly in one
direction and in the global case, the filter has distorted the right
temple slightly. These filters should be used when accuracy of
strokes is desired over quality of the final image.

The Chaikin subdivision filters are the fastest to execute
due to the fact that their masks are the narrowest [14].
The Chaikin filters provide a quadratic B-Spline subdivision
which offersC1 continuity. The result of using these filters
on silhouette chains is somewhere between use of cubic
B-Spline subdivision and Dyn-Levin. The processed strokes
adhere better to the mesh than with cubic B-Spline, but not
as accurately with as Dyn-Levin. This is visible in Fig. 23
(left-column). It is important to note that in order to remove
errors with the Chaikin filters, fewer details and sometimes an
additional step of decomposition and reconstruction must be
used in the MAR pipeline. Thus, after removing errors, strokes

processed with Chaikin filters usually adherelessaccurately
to the mesh than with cubic B-Spline. These problems are
due to the limited scope of the Chaikin mask. In Fig. 22,
all strokes are processed with one level of decomposition and
e = 0.2. The strokes processed using the Chaikin filters (right-
column) curve inwards and outwards strangely, still following
the implying some of the “zig-zags” in the silhouette (this is
most noticeable in the temples). Due to these problems, these
filters are not recommended for use with this system when
accuracy becomes important for low quality meshes.

For smaller meshes where accuracy becomes an issue, the
cubic B-Spline filters should be used for the best looking
strokes and the Dyn-Levin filters should be used for the most
accurate strokes. When larger meshes are used, cubic B-Spline
is recommended, unless fast results are required. In this case,
the Chaikin filters should be used because its smaller mask
width lowers execution times.
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Fig. 20. A detailedfoot mesh. Removing silhouette errors on large meshes is more important when zooming in on the mesh. Errors are circled for three
enlarged areas. These images use two levels of decomposition and reconstruction,e = 0.2 and local cubic B-Spline filters.

Fig. 21. Top: Raw silhouettes extracted from acat mesh.Bottom-left: local B-Spline subdivision with two steps of decomposition and reconstruction 30%
details included.Bottom-right: global B-Spline with the same settings.
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Fig. 22. Left: Silhouette from ahead mesh with several large errors at the temples and six results of running, from left to right, B-Spline, Dyn-Levin and
Chaikin filters on the silhouettes using one level of decomposition and reconstruction with 20% details included. The top row uses local filters and the bottom
row uses global filters.

E. Comparison to Previous Work

As detailed in Sec. II-E, four methods have already been
presented for silhouette error correction. Of these methods,
there are two main approaches. Northrup and Markosian [10]
and Isenberg et al. [8] use the approach of correcting raw
silhouette edges extracted from the polygonal mesh. Corrêa et
al. [13] and Hertzmann and Zorin [12] ignore raw silhouette
edges from the mesh and to generate new, better edges to
approximate the silhouette.

The MAR approach, like Isenberg et al. [8] and Northrup
and Markosian [10], corrects silhouette edges directly from the
mesh. It offers an improvement over their approaches because
it provides a general solution. In other words, since the method
is evaluated evenly over the complete chain, no errors are
missed. Isenberg et al. [8] and Northrup and Markosian [10]
require a series of error-cases and corresponding solutions
which occasionally miss errors. Another important distinction
between the systems is that the MAR approach corrects
errors in all strokes (Fig. 24, middle), while Northrup and
Markosian’s [10] method and Isenberg et al. [8] only correct
visible strokes. This is useful when some sort of transparency

stylization is desired, however it can mean processing many
extra silhouettes for noisy meshes, such as those produced by
range-scans (Fig. 24). A significant drawback of the MAR ap-
proach to Isenberg et al. [8] and Northrup and Markosian [10]
is that it cannot generate accurate strokes for coarse meshes
(Sec. VII-B, Figs. 21, 19), while their approaches are not
affected by the detail of the mesh.

Hertzmann and Zorin [12] and Corrêa et al. [13] provide
techniques that generate new, more suitable edges for sil-
houettes. Hertzmann and Zorin [12] provide a more general
version of these two methods which will now be discussed.
In their approach, silhouettes are generated by estimating
the exact position on the polygonal mesh that the silhouette
would intersect if the polygonal mesh were a smooth sur-
face. Both the MAR approach and Hertzmann and Zorin’s
approach generate sub-polygon silhouettes close to the “ac-
tual” silhouette for the polygonal mesh (if it was a smooth
surface) and do not miss individual errors. Furthermore, both
approaches have problems with coarse meshes. Hertzmann and
Zorin’s approach experiences problems performing hidden line
removal for these meshes because their interpolated strokes
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Fig. 23. An analysis of the effects of various filters viewed from an angle alternate to that used to extract silhouettes from theKleopatra asteroid model.
Top: The raw silhouettes. Shaded faces are back facing.Left-column, from top to bottom: Local B-Spline, Dyn-Levin and Chaikin approaches.Right-column:
Global filters in the same order. In all images,e = 0.0 is used with two levels of decomposition and reconstruction.

might go over a back face and become invisible due to z-buffer
occlusion. In the case of the MAR approach, issues of stroke
accuracy arise for coarse meshes (Sec. VII-B, Figs. 21, 19).
The primary difference between these two approaches is that
Hertzmann and Zorin’s approach generates edges exactly on
the mesh while the MAR approach smoothes edges to various
levels of accuracy controlled by the user.

The following scheme should be used to choose between
the approaches. If completely accurate corrected silhouettes
are desired, Hertzmann and Zorin’s [12] approach should
be used because it is guaranteed to produce accurate error-
corrected chains. If resolution independent strokes smoothed
independent of mesh geometry are desired, the MAR approach
should be used. The only case where this does not hold
is for very coarse meshes where the approaches presented

by Isenberg et al. [8] or Northrup and Markosian [10] will
produce the best results.

VIII. C ONCLUSIONS AND FUTURE WORK

The MAR approach efficiently computes 3D stylized,
smooth, error-free silhouettes in a pen-and-ink style. Users can
provide input to the system to determine the type of silhouette
strokes generated. A comparison between real artwork in this
style and the results of the system are displayed in Fig. 25.
Our approach represents an improvement over previous works
because:

• it provides resolution-independent silhouettes not bound
to the geometry of the mesh. This means the silhouettes
can be smoothed or coarsened to a different resolution
from the raw silhouette and provide a more realistic
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pen-and-ink style. Smoothing is important to create nat-
ural looking silhouettes and is critical for a realistic
effect when one views silhouettes from detailed meshes
closely, or when one views silhouettes of simple meshes.
Coarsening is useful to create simpler strokes from very
complicated meshes, benefiting systems such as Kirsanov
et al. [26];

• it does not require specialized error/solution cases to
remove errors and thus provides a more general solution
than previous techniques.

• it generates sub-polygon strokes (closer to the real loca-
tion of the silhouette) for arbitrary meshes efficiently.

A. Limitations and Future Work

The MAR approach has several limitations which present
opportunities for future research. First, stroke accuracy can be
lost with coarse meshes. In these cases, only artistic smooth
strokes can be generated. Processes to maintain accuracy
should be explored. Perhaps an approach that varies the
amount of detail included along the chain during reconstruc-
tion could be applied to this problem. Although subdividing
the mesh before extracting and correcting silhouettes solves
this problem, this solution only provides a modified smooth
silhouette (not the exact silhouette for the original mesh).
Another limitation is the lack of a robust and efficient Hidden
Line Removal approach. New methods for HLR must be
investigated for the MAR approach. Finally, a limitation of
all object-space methods is that they do not provide a way
to eliminate duplicate silhouette chains that occur in noisy
meshes, such as those produced by range-scans (Fig. 24).

A formal evaluation has not yet been performed for the
MAR approach. Results have been evaluated:

1) in terms of performance, by comparing to previous
methods and evaluating execution times (Sec. VII-A)

2) visually, by comparing them directly to images gener-
ated by pen-and-ink (Fig. 25)

A detailed evaluation of these techniques requires expertise in
the human-computer interaction area and is considered beyond
the scope of this article.

Another area of future research is to use a MAR-like
multiresolution pipeline to stylize interior strokes as an im-
provement to traditional B-spline or low-pass filtering methods

Fig. 24. Silhouettes extracted from a detailed scan mesh of a skull.Left:
with Hidden Line Removal (HLR).Middle: without HLR. Right: a side view
of the silhouette edges extracted.

Fig. 25. Comparing real pen-and-ink silhouette rendering to the results
of the MAR approach.Top-row: a real illustration of a seagull and images
of a similar level of detail generated with the system.Bottom-row: a real
illustration of a plant (left), and images of several plants generated with the
system.Plant meshes courtesy Martin Fuhrer.

[31], [11]. The MAR approach could also be combined with
the approach presented by Kalnins et al. [32] for coherent
silhouettes.
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