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Abstract

In this paper we present a new multiresolution technique for general topology
surfaces based on reversing subdivision with energy minimization. We first
introduce a general reverse subdivision approach that starts from a trial set
of biorthogonal multiresolution filters and refines the resulting coarse points
using local masks. The refinement step tries to find a good approximation
of the fine points while minimizing the local energy of the coarse points in a
least-squares sense. This approach is then used to find smooth reverse of the
Loop and Catmull-Clark subdivisions. We discuss the advantages of using
this technique in various surface editing and synthesis applications.

Keywords: multiresolution, reverse subdivision, energy minimization, Loop
subdivision, Catmull-Clark subdivision

1. Introduction

Subdivision techniques are now widely used in modeling applications. An
artist or modeler can create an object in a coarse level and subdivide it ef-
ficiently to a smoother representation. On the other hand, multiresolution
(MR) techniques can be used to find a coarse approximation of a fine ob-
ject in a process called decomposition. This process can be constructed by
reversing the subdivision rules. However, when the high-resolution data is
not directly resulted from subdivision, some additional information should
be stored at every level of decomposition. This extra information or error
is captured as detail vectors by a linear combination of functions known as
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Figure 1: (a) A model with 2, 752 faces. (b) Reverse Loop subdivision. (c) Smooth reverse
Loop subdivision.

wavelets. Details are then used to generate the original fine data in a process
called reconstruction. Since detail vectors contain the high-energy portion of
the models they are usually considered as representatives of the key charac-
teristics of the objects.

Details resulted from MR, play an important role in example-based appli-
cations. In these applications details of a high-resolution model are extracted
and then re-applied to a different low-resolution base model. In the conven-
tional techniques for MR, details are not necessarily a good representative of
the characteristics information of the fine points. They may contain some po-
sitional information to compensate the extra deviations of the coarse points
during decomposition. Consequently, the resulting by-example techniques
from these kinds of MR may not provide high-quality synthesized models.
Therefore, if we can extract details that better approximate characteristics of
the high-resolution objects, we would be able to synthesize objects with more
precise characteristics. As pointed out in [1] and [2], in order to have details
with the best characteristics, it is necessary to have a low energy (smooth)
coarse approximation of the high-resolution model.

Since subdivision is a smoothing operation its reverse may create a high-
energy coarse approximation. Therefore, after some levels of decomposition
it is usually hard to find a correspondence between the overall structure of
the coarse points and the original fine points. Fig. 1 shows a fine mesh with
2, 752 faces and its second level of decomposition using two different reverse
subdivision techniques. As shown, the coarse mesh in Fig. 1(b) is not a
good choice for MR editing applications. For example, it is hard to scale
the lower fin of the fish model because the related vertices are not visible
enough and also their correspondence with the original fine mesh is hard to
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determine. In contrast, the smooth coarse mesh in Fig. 1(c) preserves the
overall structure of the original fine mesh which makes it a better choice for
MR editing applications.

Recently, Sadeghi and Samavati [3] introduced a reverse subdivision tech-
nique mostly for curves and simple multivariate meshes that considers the
smoothness of the coarse points as a factor in the decomposition process.
In their framework two goals of preserving a good approximation of the fine
points and reducing the energy of the coarse points are balanced in a global
least squares sense. While their approach improves current curve synthesis
and tensor-product surface synthesis applications, it is not clear how it can
be extended to general topology surfaces. The main reason is that their de-
composition operation acts globally on the entire high-resolution points to
create low-resolution points and details. Therefore, for a small perturbation
of the fine points (e.g. relocation of a fine point) all of the low-resolution and
consequently all of the details are involved. However, subdivision surfaces
are constructed through local masks and it is desired that the corresponding
reverse subdivision (RS) be created through local operations. This limitation
of Sadeghi and Samavati’s work motivated us to focus on constructing local
MR operations in order to extend their approach to subdivision schemes of
general topology surfaces.

This paper contributes a novel multiresolution technique for arbitrary
topology surfaces, Loop [4] and Catmull-Clark [5], based on reversing subdi-
vision with energy minimization of the coarse mesh. In our method we first
apply a trial set of reverse subdivision filters to a fine mesh with subdivision
connectivity and then refine the resulting coarse mesh using weighted local
least-squares to minimize its local subdivision error and local energy. The
refined coarse mesh in our approach better preserves the overall structure of
the fine mesh. This improves the MR editing of the fine mesh. Also our ap-
proach creates more meaningful residuals for synthesizing applications. We
take advantage of a compact representation for MR setting and have lin-
ear processing time for all of the MR operations. The effectiveness of our
approach is demonstrated through example mesh editing and synthesis ap-
plications.

The paper is organized as follows: In section 2 the related work to this
research is reviewed. Details of our construction method is covered in section
3. Section 4 demonstrates flexibility of our approach with different multires-
olution schemes for general topology surfaces. In section 5 some example
results of our method are discussed. Finally, section 6 concludes the paper
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and proposes the future directions.

2. Related work

In a multiresolution representation a set of fine points Cn is decomposed
to a set of coarse points Cn−1 and some wavelet coefficients Dn−1 called
details. The decomposition is done using analysis filter matrices An and Bn

as

Cn−1 = AnCn

Dn−1 = BnCn.
(1)

Detail vectors allow the original fine points to be restored using synthesis
filter matrices P n and Qn in the reconstruction process as

Cn = P nCn−1 +QnDn−1. (2)

In a biorthogonal multiresolution system the MR filters An, Bn, P n and Qn

satisfy the biorthogonality condition[
An

Bn

]
[P n|Qn] =

[
I 0
0 I

]
= I (3)

that implies the reconstruction is inverse of the decomposition [6]. Cn can be
decomposed repeatedly several times to create a hierarchy of coarse points
C l, C l+1, . . . , Cn−1 and details Dl, Dl+1, . . . , Dn−1 where l < n.

Samavati and Bartels [7] pioneered an approach for multiresolution by
reversing the subdivision rules with least-squares data fitting. Their method
ensures that subdivision of the low-resolution model is a good approxima-
tion of the high-resolution model. They construct the global least squares
formulation

min
∥∥Cn − PCn−1∥∥2

2
(4)

to obtain the Cn−1 and a compact representation of residuals with corre-
sponding An, Bn and Qn in linear time. Later, Bartels and Samavati [8] im-
proved this approach by deriving local reverse subdivision filters using local
linear conditions (LLC). Then Samavati et al. [9] used this local approach to
construct multiresolution filters for Doo-Sabin [10] subdivision surface. The
derived filters are sparse and result in a coarse surface which is locally closest
to the original fine surface in a local least squares sense.
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Multiresolution systems have been successfully used in a number of ap-
plications on curves and surfaces. Finkelstein and Salesin [11] describe a
wavelet-based multiresolution representation to support variety of display
and editing operations on curves. Kobbelt and Schröder [12] present a
multiresolution setting based on interpolating subdivision schemes for mak-
ing variationally optimal curves and associated wavelets. Lounsbery et al.
[13] use wavelet representations based on subdivision surfaces for variety of
multiresolution applications on compact surfaces with arbitrary topology.
Kobbelt et al. [14] develop a multiresolution technique for interactive detail-
preserving mesh modification based on incremental mesh decimation and
discrete fairing. They deform a smoothed region of an arbitrary triangular
mesh which does not require having subdivision connectivity and add back
the details. However, the non-uniform parameterization of the meshes in
their hierarchical setting generates large detail vectors. They have to change
the connectivity of the smoothed mesh in order to reduce the number of the
pathological configurations. Even after this refinement some artifacts are
observed on their reconstructed high-frequency surfaces because they do not
optimize the corresponding detail vectors. Zorin et al. [15] demonstrate a
set of algorithms for interactive MR editing of the meshes with subdivision
connectivity. In their work dynamic manipulation of the vertices at a smooth
coarse level makes topological edits to the mesh. As the authors stated, their
smoothing filters are not the dual of subdivision filters (Loop). Therefore,
their smoothing lacks a local shape control and magnifies the low frequency
surface features. This has a negative impact on the quality of their detail
vectors. Samavati et al. [16] have constructed a more efficient MR system by
reversing Loop subdivision. They also reverse the texture-mapping process
of the multiresolution surfaces. Lanquentin and Neveu [17] have constructed
a reversal method for Catmull-Clark subdivision by solving a linear system
of equations. Both of the [16] and [17] only derive the reverse operation A
and the other operations of MR are not derived.

Bertram [18] constructs biorthogonal wavelets for Loop subdivision based
on the lifting scheme [19]. He rewrites the subdivision rules with some ad-
ditional free parameters in a way that regular subdivision is unchanged but
an inversion of the rules produces a MR system. Bertram [20] also provides
biorthogonal wavelet construction for MR modeling of large-scale isosurfaces
using Catmull-Clark subdivision. The computation of this wavelet transform
is based on the local lifting-style filtering operations. Li et al. [21] construct
fairly stable biorthogonal wavelets for Loop subdivision in a similar way to
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Bertram but with simpler representation especially around the extraordinary
vertices. Although these techniques improve the speed of the wavelet analy-
sis, their performance depends heavily on a variety of free parameters. Olsen
et al. [22] utilize the distinction between even and odd vertices of subdi-
vision schemes to find a set of trial filters, similar to lazy wavelets. These
trial filters are then refined locally by an optimization step to reduce the de-
composition error. This approach is demonstrated for cubic B-spline curves
and Loop subdivision surfaces. Later, Olsen and Samavati [23] could find
discrete MR construction for variety of subdivision schemes including Dyn-
Levin-Gregory curves and Catmull-Clark surfaces. The last two approaches
([22] and [23]) provide a compact and efficient representation for multiresolu-
tion setting without any direct use of wavelets. However, the detail vectors in
these techniques are not a good representative for characteristics information
because the energy of the coarse data is not minimized.

Manipulating a surface while preserving its geometric details is a crucial
part of many surface editing applications. Forsey and Bartels [24] introduce a
uniform framework for editing shapes at various levels of details based on hi-
erarchical B-spline refinement (H-splines). The main limitation of H-splines
is that they can only represent parametric and tensor-product surfaces. Eck
et al. [25] provide a mesh simplification algorithm based on harmonic maps
for various MR applications on arbitrary meshes including: compression,
powerful editing and level-of-detail control. Their algorithm causes some dis-
tortion because they compute global smooth parameterizations for a coarse
base domain rather than using a local neighborhood. Lee et al. [26] at-
tempt to address this issue by hierarchical parameterization of the original
mesh over the base domain containing a small number of triangles. They use
fully automatic and user constrained remeshing operations to achieve a mesh
with subdivision connectivity suitable for MR editing. Biermann et al. [27]
present a MR-based feature transfer algorithm for Catmull-Clark surfaces.
Feature transfer is a way of editing a model using the characteristics of other
models. As stated in [1] the best feature transfer results are achieved when
all of the high-energy data is stored in the details. In order to store all of the
characteristics information in details we need a multiresolution system that
creates smooth coarse points.

Taubin [28] derives Laplace smoothing operator based on generalized
Fourier analysis for arbitrary topology surfaces. His algorithm reduces the
problem of mesh fairing to low-pass filtering and produces smoothing with-
out shrinkage. Sorkine et al. [29] provide an interactive detail preserving
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surface editing technique based on rotation and scale invariant Laplacian
coordinates. This technique is used for feature transfer as well as mixing,
and transplanting partial surface meshes. None of [28] and [29] support hi-
erarchical representation for details. Kobbelt et al. [30] enable true free
form MR editing with suitable detail encoding for arbitrary meshes with no
restrictions on the connectivity. They first find a smooth base surface us-
ing constrained discrete fairing. Then define the high-resolution mesh based
on the normal displacements of the low-frequency vertices. However, in the
multi-level smoothing step of their method they iteratively solve a global
system using Gauss-Seidel scheme that is costly and time consuming for a
minimum-error approximation. In contrast, a fast multi-level smoothing re-
sults in smooth coarse approximation which does not preserve the overall
structure of the fine mesh and consequently is not suitable for MR edit-
ing. In general, the MR techniques that remove the subdivision connectivity
constraint need extra optimization steps which are better justified in the cat-
egory of progressive meshes. In addition, the subdivision connectivity can be
achieved by remeshing or by the advent of the new sketch-based techniques
that directly build freeform surfaces with subdivision connectivity [31, 32].
Using these techniques we can avoid the extra optimization steps in the MR
construction.

Recently, Sadeghi and Samavati [3] have considered smoothness of the
coarse points in the reverse subdivision technique. They start their con-
struction from a trial set of multiresolution filters and use a global least
squares formulation to minimize the energy of the coarse points while reduc-
ing the subdivision error. By enhancing the results in real-time, full set of
biorthogonal MR operations are constructed in the form of banded matri-
ces. Although the result of using this approach in synthesizing applications
seems promising, they do not discuss the possibility of extending their ap-
proach to general topology surfaces. As discussed in section 1, they use a
global optimization technique for MR that cannot be naturally extended to
multiresolution representation for general topology surfaces. The main rea-
son for this deficiency is the lack of local operations to support smooth reverse
subdivision. Therefore, by finding a local RS approach that minimizes the
energy of the coarse points we can extend their work to MR techniques for
general topology surfaces (Loop and Catmull-Clark).
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3. Construction method

In this section we describe our local RS approach to find coarse models
with minimum subdivision error and minimum energy. Our construction is
demonstrated in detail for cubic B-spline curves. We will use this approach
later in section 4 for MR construction of common surface subdivision schemes.

3.1. General approach

Here we describe our general approach for including the smoothness of
the coarse points in the MR construction. As discussed in section 1, the
resulting smooth coarse models preserve the overall structure of the fine
models. Since reverse subdivision schemes for general topology surfaces are
built through local operations we need to find a local MR approach that
satisfies our optimization goals.

In our construction we first find local MR masks for the given subdivision
scheme. This can be done in various ways; we use an approach similar to
LLC [8] by constructing MR for a local neighborhood of the data points. We
can start from neighborhoods with different sizes to find the local subdivi-
sion mask P . From P we can derive trial multiresolution masks Ã, B̃ and
Q̃. Then we refine the coarse vertices resulted from trial mask Ã locally in
a least squares sense to satisfy our desired optimization goals. From this
refinement, the multiresolution masks are modified respectively. Due to the
uniformity of subdivision, the least squares solution form a local mask that
can be used repetitively on different locations to cover the entire data points.
Therefore, we do not need to solve this local least squares again for all of the
coarse points. As discussed in detail by Bartels et al. [33], the global least
squares solution is well estimated by this local least squares solution and the
estimation rapidly improves with the size of the local least squares problems.

To simplify our notation we focus only on one decomposition and recon-
struction step. We start from a local set of fine points F and find trial coarse
points C̃ and trial detail vectors D̃ locally using Ã and B̃ respectively. For a
coarse point such as c̃i, we localize the construction of MR in a local neigh-
borhood N(i) (indices of neighboring vertices of c̃i). We would like to change

the trial coarse points C̃ to their final position C by using a perturbation
vector ∆ = [δj] as {

cj = c̃j + δj j ∈ N(i)
cj = c̃j j /∈ N(i).

(5)
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Figure 2: Decomposition process of local smooth reverse subdivision.

The goal is to minimize

Etotal(∆) = ωEsubdiv(∆) + (1− ω)Eenergy(∆) (6)

where Esubdiv(∆) denotes the Euclidean distance between PC and F known
as residuals

R = F − PC (7)

and Eenergy(∆) denotes the energy of C in the local neighborhood. The
weight parameter 0 ≤ ω ≤ 1 controls the importance of the subdivision
fitness versus energy minimization.

Eq. (6) is a local weighted least squares problem and can be solved
one time for the local neighborhood. To obtain all of the coarse points,
the local window should be formed for all valid i values (and for all of the
resolutions). Depending on the width of the neighborhood, local windows for
nearby points can collide and consequently it is possible to obtain multiple
perturbation vectors per point. Approaches similar to [9] can be employed
to use these multiple perturbations to lower Esubdiv in construction of MR.
However, such techniques make our approach for finding a reverse subdivision
mask that also includes Eenergy very complicated. Therefore, for preventing
this multiplicity we only perturb the central vertex c̃i by vector δi.

Fig. 2 demonstrates our decomposition process with the optimization
step denoted by S. R contains the residual vectors necessary to reconstruct
the original fine points.

In our reconstruction process we can generate the original fine points from
the trial coarse points and trial details

F = PC̃ + Q̃D̃. (8)
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If it is important to keep the residuals (e.g. in synthesizing applications), F
is found from Eq. (7).

The advantage of this local approach is that we have a compact repre-
sentation which is extensible to the subdivision schemes for general topology
surfaces.

3.2. Cubic B-spline

To demonstrate the general approach in a simple example scheme, we
explain details of our construction for cubic B-spline curves. We will use the
local cubic B-spline smooth reverse subdivision later in section 4 for boundary
treatment of smooth reverse Loop and Catmull-Clark subdivisions.

Cubic B-spline is an important primal (edge-split) scheme that displaces
even vertices and creates odd vertices at the midpoint of the edges. We start
our construction from trial cubic B-spline MR filters [34]

a =
[
−1

2
2 −1

2

]
b =

[
1
4
−1 3

2
−1 1

4

]
p =

[
1
8

1
2

3
4

1
2

1
8

]
q =

[
1
4

1 1
4

] (9)

in a local neighborhood of width seven fine points. For more accurate
approximation we can start with larger neighborhoods. In order to have
symmetric indexing in this neighborhood we denote fine points by F =
{f−3, f−2, f−1, f0, f1, f2, f3} and the trial coarse points by C̃ = {c̃−1, c̃0, c̃1}.
Fig. 3 shows the local neighborhood of seven fine points and corresponding
trial coarse points. This configuration is formed to determine local filters
corresponding to the center point c̃0. Therefore, we have two trial detail
vectors in this neighborhood that when multiplied by Q̃ will provide three
trial residuals denoted by R̃ = {r̃−1, r̃0, r̃1} as shown in Fig. 3.

Our goal is to minimize the discrete curve energy of the final coarse curve
in this neighborhood. To approximate the curve energy around c0 we use
discrete Laplacian definition [28]

∆c0 = c−1 − 2c0 + c1. (10)

Hence, as used in [3] we can formulate the local energy minimization goal as

Eenergy(δ0) = ‖c−1 − 2c0 + c1‖22 . (11)
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Figure 3: Notation for decomposition of the fine points fi to the coarse points c̃i in a
neighborhood of seven fine points using trial cubic B-spline filters. Red arrows denote
trial residuals. Subdivided coarse points are denoted by f̃i.

As mentioned in section 3.1 in order to prevent multiple perturbations we
set c−1 = c̃−1 and c1 = c̃1 which helps to re-write our energy error in terms
of δ0 as

Eenergy(δ0) = ‖c̃−1 − 2(c̃0 + δ0) + c̃1‖22 . (12)

To approximate the subdivision error in the local neighborhood we use a
notation based on the final residuals (R)

Esubdiv(δ0) = ‖r−1‖22 + ‖r0‖22 + ‖r1‖22 . (13)

The displacement of c̃0 by δ0 changes the positions under act of the subdivi-
sion. Therefore, we can re-write Eq. (13) in terms of the trial residuals and
the perturbation vector δ0 as

Esubdiv(δ0) =

∥∥∥∥f−1 − (f̃−1 +
1

2
δ0

)∥∥∥∥2
2

+

∥∥∥∥f0 − (f̃0 +
3

4
δ0

)∥∥∥∥2
2

+

∥∥∥∥f1 − (f̃1 +
1

2
δ0

)∥∥∥∥2
2

=

∥∥∥∥r̃−1 − 1

2
δ0

∥∥∥∥2
2

+

∥∥∥∥r̃0 − 3

4
δ0

∥∥∥∥2
2

+

∥∥∥∥r̃1 − 1

2
δ0

∥∥∥∥2
2

. (14)
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Now both Esubdiv and Eenergy are in terms of δ0 and this refinement vector is
found from solving the weighted least squares in Eq. (6).

In order to have more economic representation for the residuals, we can
use the idea of constrained wavelets [22]. Using the inherent structure of sub-
division schemes, the fine points are broken up to two disjoint sets even/odd.
Then after decomposition, vertices labeled as “even” are replaced with a
point in the coarse resolution and vertices labeled as “odd” with a corre-
sponding entity from the details. Because of the linear and local nature of
subdivision schemes, even details can be computed by a linear combination
of the odd details. In the case of cubic B-spline we have

d̃0 =
1

4
(d̃−1 + d̃1). (15)

The advantage of this approach is that coarse points and details will not
take more space than the fine points. Using Eq. (7) and (15) we can simplify
Eq. (14) as

Esubdiv(δ0) =
17

16
‖δ0‖22 −

11

8
(d̃−1 + d̃1)δ0 +∥∥∥d̃−1∥∥∥2

2
+
∥∥∥d̃0∥∥∥2

2
+
∥∥∥d̃1∥∥∥2

2
. (16)

Now we can use Esubdiv in Eq. (6) and solve the local least squares formulation
to find δ0 as

δ0 =
11ω

64− 47ω
(d̃−1 + d̃1) +

32− 32ω

64− 47ω
(c̃−1 − 2c̃0 + c̃1). (17)

The final coarse point c0 is obtained from c0 = c̃0 + δ0.
By changing the center of the local neighborhood and repeating the above

steps we can find any ci in C. Notice that it is not necessary to solve the
local least squares problem for all the coarse points, but Eq. (17) can be
used as a mask-like operation. Obviously, perturbing the coarse points alters
the residuals. After finding C, the final residuals can be found from Eq. (7).
Using R and the final coarse points we can reconstruct the fine points.

Fig. 4 shows a face profile with 96 points and three levels of its local
cubic B-spline smooth reverse subdivision. As shown, it gradually loses its
energy during reduction of the resolution by reverse subdivision.

Fig. 5 compares extracting and re-using details of the face profile in Fig.
4(a) using local cubic B-spline RS filters introduced by Bartels and Samavati

12



Figure 4: A closed curve with 96 points and its three levels of local cubic B-spline smooth
reverse subdivision.

[8] and local cubic B-spline smooth reverse subdivision. Fig. 5(a) visualizes
the first level of the residual vectors (the green lines) as differences between
the fine points in Fig. 4(a) and subdivision of the coarse points (the blue
curve) using Bartels and Samavati’s filters. Fig. 5(b) visualizes the residual
vectors obtained in a similar way using our approach. We then replace the
coarse points with an ellipse containing 48 points (see Fig. 5(c)). Fig. 5(d)
shows the synthesized curve using Bartels and Samavati’s filters while Fig.
5(e) shows similar synthesis result using local cubic B-spline smooth reverse
subdivision. Due to the smoothness of the coarse points in our approach,
detail vectors capture the characteristics of the curve more precisely. This
can be verified by comparing the right side of the curves in Fig. 5(d) and
Fig. 5(e).

When we change the base path of the original curve, it is necessary to
transfer details with the same orientation to the new path. In order to prop-
erly re-orient original details at destination points we use the method intro-
duced by Forsey and Bartels [24]. We first create a local parallel transport
frame [35] at each point on the curve. Then convert the world coordinates
of the detail vectors to that local frame in order to have a local coordinate.
During reconstruction, the orientation of these local details will be aligned
with the corresponding local frame on the new curve.

All of the previous discussions were based on the regular cubic B-spline
filters. For smooth reverse Loop and Catmull-Clark subdivisions (section 4)
we sometimes need to treat the points lying on a crease or boundary of the
surface as an open curve. Here we discuss how our approach can be extended
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Figure 5: (a) Residual vectors using Bartels and Samavati’s cubic B-spline RS filters. (b)
Residual vectors using local cubic B-spline smooth reverse subdivision. (c) New base path
with 48 points. (d) Synthesized model using Bartels and Samavati’s filters. (e) Synthesized
model using our approach.

to the curves with boundaries. We start our boundary construction from the
short cubic B-spline boundary scheme [34] and use our general approach for
refinement. We need to use a different local indexing for the boundaries as
C = {c0, c1, c2} and F = {f0, f1, f2, f3, f4, f5, f6}. Based on this setting, the
extra-ordinary vertices at the beginning of the curve are expressed as

f̃0 = c̃0

f̃1 =
1

2
c̃0 +

1

2
c̃1

f̃2 =
3

4
c̃1 +

1

4
c̃2

f̃3 =
3

16
c̃1 +

11

16
c̃2 +

1

8
c̃3. (18)

Since Q̃ in [34] is just defined for regular case, using Eq. (7) and (8) we

obtain r̃0 = r̃1 = 0. This means that f0 = f̃0 and f1 = f̃1. Since we usually
clamp the start and end points of an open curve in MR, we ignore Eenergy
and only minimize Esubdiv to interpolate the position of c0 = c̃0. This allows
c̃1 to be determined without error as c1 = c̃1 = 2f1 − f0. Since we do not
perturb the first two trial coarse points we have δ0 = δ1 = 0. In order to find
the refinement vector associated with c̃2 we approximate subdivision error in
the local neighborhood of the first seven fine points using an equation similar
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Figure 6: An open curve with 121 points and its three levels of local cubic B-spline smooth
reverse subdivision.

to Eq. (14). The energy term is calculated similar to Eq. (11). By solving
the resulted weighted least squares we can find δ2 and c2.

Using constrained wavelets’ notation presented in Eq. (15) we can sim-
plify representation of the subdivision error as

Esubdiv(δ2) =
201

256
‖δ2‖22 − (

27

32
d̃2 +

43

32
d̃4)δ2 +∥∥∥d̃2∥∥∥2

2
+
∥∥∥d̃3∥∥∥2

2
+
∥∥∥d̃4∥∥∥2

2
(19)

and the final δ2 as

δ2 =
128ω

1024− 823ω
(
27

32
d̃2 +

43

32
d̃4) +

512− 512ω

1024− 823ω
(c̃1 − 2c̃2 + c̃3). (20)

The refinement vector for any other regular c̃i is calculated from Eq. (17) by
centering the neighborhood on c̃i. Due to the symmetrical situation, we can
construct extra-ordinary points at the end of the curve in a similar way to
our construction at the beginning of the curve. After finding C we can find
the final residual vectors from Eq. (7) using boundary masks expressed in
Eq. (18).

Fig. 6 shows an example of applying our local cubic B-spline smooth
reverse subdivision boundary filters tree times to an open tree profile. It
shows that smooth low-resolution curves follow overall structure of the orig-
inal curve. The general approach we presented in section 3.1 can be used in
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a similar way for other curve schemes such as Chaikin [36] and Dyn-Levin-
Gregory [37]. Bartels and Samavati have introduced local trial Chaikin re-
verse subdivision filters at [8]. Also the MR setting of Olsen and Samavati
[23] can be used as trial filters for local Dyn-Levin-Gregory smooth reverse
subdivision.

4. Subdivision surface schemes

In this section we use the general approach introduced in section 3.1 to
derive our MR representations for general topology surfaces. The local nature
of our approach allows us to extend it to surfaces with arbitrary topology.
Here we present details of our construction for smooth reverse Loop and
Catmull-Clark subdivision schemes.

4.1. Loop subdivision

Loop subdivision [4] is a subdivision scheme for triangular meshes with
C2 continuity at the regular vertices. It splits each triangular face into four
new triangles and smoothly repositions the resulting vertices using positional
masks.

As discussed in section 3.1, in order to construct local smooth reverse
subdivision we need to start from a set of trial masks P , Q̃, Ã and B̃ in a
local neighborhood of the given subdivision scheme. For Loop subdivision
the local neighborhood is imposed by the local trial masks of Loop subdi-
vision. In our work we start from Olsen et al.’s [22] compact trial masks
for Loop subdivision. Then refine them to find coarse points that are good
approximations of the fine points and have minimum surface energy in their
local neighborhood. The local neighborhood on the surface is a 1-ring of the
coarse vertices denoted by C̃ = {c̃0, c̃1, . . . , c̃n−1, c̃n}. In this 1-ring neighbor-
hood as shown in Fig. 7, by centering the Loop subdivision masks around
the coarse vertex c̃0 with valence n the vertex-vertex (even) mask is defined
as

f̃0 = (1− nβ)c̃0 + β
n∑
i=1

c̃i (21)

where β = 1
n

(
5
8
−
(
3
8

+ 1
4

cos
(
2π
n

))2)
and edge-vertex (odd) mask for i =

1, 2, . . . , n is defined as

f̃i =
3

8
(c̃0 + c̃i) +

1

8
(c̃i−1 + c̃i+1). (22)
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Figure 7: Notation for the reverse Loop subdivision centered around an even vertex f0.
The local neighborhood is shown for 1-ring of the trial coarse vertices c̃i. Trial residuals
are denoted by r̃i.

These masks define the mask P of the Loop subdivision in the local neigh-
borhood. Based on the trial Loop MR masks of constrained wavelets [22],
detail vectors are simply defined as

d̃0 = f0 − (1− nβ)c̃0 + β
n∑
i=1

c̃i (23)

for even vertices and

d̃i = fi −
(

3

8
(c̃0 + c̃i) +

1

8
(c̃i−1 + c̃i+1)

)
(24)

for neighboring odd vertices (i = 1, 2, . . . , n).

This means that the initial setting for the details d̃i is the same as the
trial residuals r̃i. To achieve an economic representation for the details, they
are constrained such that details at even vertices can be found from a linear
combination of the details at adjacent odd vertices. Using this condition as
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described in [22], we obtain

d̃0 =
8β

5

n∑
i=1

d̃i. (25)

Therefore, the wavelets coefficients are a subset of d̃i (associated to odd

vertices). In addition, Eq. (25) helps to define Ã for finding trial coarse
vertices as

c̃0 =
5

5− 8nβ
f0 −

8β

5− 8nβ

n∑
i=1

fi. (26)

These trial coarse vertices neither satisfy minimization (in a local sense)
of the subdivision error nor minimization of an estimate of the energy. We
would like to refine the position of c̃0 to its final position c0 = c̃0 + δ0 to
minimize a weighted combination of the subdivision error and a local esti-
mate of the surface energy. Similar to the curve case, we keep the position
of the neighbors of c0 fixed. Therefore, the subdivision error around c0 is
defined as sum of the magnitudes of the final residuals (differences between

fine vertices fi and subdivided coarse vertices f̃i) in the local neighborhood.
Using perturbation vector δ0 we can represent this error in terms of the trial
residuals

Esubdiv(δ0) = ‖r̃0 − (1− nβ)δ0‖22 +

‖r̃1 −
3

8
δ0‖22 + . . .+ ‖r̃n −

3

8
δ0‖22. (27)

Using the direct connection between residuals and detail vectors (Eq. (23)
and (24)) and Eq. (25) we can find a compact representation for Eq. (27) as

Esubdiv(δ0) =

(
n

9

64
+ (1− nβ)2

)
‖δ0‖22 (28)

−

(
2(1− nβ)d̃0 +

3

4

n∑
i=1

d̃i

)
δ0 +

n∑
i=0

∥∥∥d̃i∥∥∥2
2
.

To include the energy term into the minimization model we need to ap-
proximate the surface energy at the final coarse points. We use discrete
Laplacian operator [38] as an approximation of the energy at c0. As shown
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Figure 8: Discrete Laplacian vector (green) and the refinement vector (red) for a 1-ring of
the trial coarse points.

in Fig. 8, Laplacian operator is defined as a vector from c0 to the center of
the neighboring trial coarse points

M =
1

n

n∑
i=1

c̃i. (29)

Therefore, by perturbing c̃0 to c̃0 + δ we can minimize the approximation of
the energy part as

Eenergy(δ0) =

∥∥∥∥∥
(

1

n

n∑
i=1

c̃i

)
− (c̃0 + δ0)

∥∥∥∥∥
2

2

. (30)

Now we can use Eenergy and Esubdiv in the weighted least squares formu-
lation of Eq. (6) to find the refinement vector δ0 as

δ0 =

(
8β
5
ω(1− nβ) + 3

8
ω
)∑n

i=1 d̃i

ω(n 9
64

+ (1− nβ)2) + (1− ω)
+

(1−w)
n

∑n
i=1 c̃i − (1− ω)c̃0

ω
(
n 9

64
+ (1− nβ)2

)
+ (1− ω)

. (31)
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Algorithm 1 Smooth reverse Loop subdivision

Input: F , ω and local multiresolution masks of P , Q̃, Ã and B̃

1: C̃ = ÃF as shown in Eq. (26)

2: D̃ = B̃F as shown in Eq. (24) and Eq. (25)
3: δ0 = Solution of the least squares (6) using Eq. (28) and Eq. (30) as

shown in Eq. (31)
4: c0 = c̃0 + δ0

Output: c0

Algorithm 1 summarizes the decomposition step of smooth reverse Loop
subdivision in a local neighborhood. We only need to solve the least squares
(6) one time for the local neighborhood. After that, by moving the center
of the local neighborhood to all c̃i and using the mask of δ0, the final C is
determined. Since the energy of C is minimized, we can have details that
better approximate characteristics of the high-resolution mesh. After finding
C, the final residuals can be found from Eq. (7) to be used in synthesizing
applications.

To have a compact representation for the reconstruction (Eq. (8)) we
can just use the trial decomposition filters of the constrained wavelets. Then
after decomposition we can replace the even vertices with their corresponding
coarse vertex and odd vertices with details. Even details can be computed
from their neighboring odd details using Eq. (25).

Fig. 9(a) shows a mesh with 5, 888 faces and its second level of decom-
position using reverse Loop subdivision approach introduced by Li et al.
[21] (see Fig. 9(b)) and smooth reverse Loop subdivision approach (see Fig.
9(c)). As shown, our approach minimizes the energy of the coarse vertices
while preserving the overall structure of the mesh. However, Li et al.’s masks
create some unwanted artifacts at sharp edges and magnify the scale of the
mesh. This makes it hard to edit the fine mesh using Fig. 9(b).

In the Loop subdivision if the mesh contains boundary vertices, we sub-
divide them using cubic B-spline scheme. Thus for smooth reverse Loop
subdivision, boundary treatment can be achieved using local cubic B-spline
smooth reverse subdivision approach discussed in section 3.2.

4.2. Catmull-Clark subdivision

Catmull-Clark subdivision [5] is a C2-continuous scheme based on the
cubic B-spline for arbitrary meshes (no restriction on the valence of vertices
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Figure 9: (a) A mesh with 5, 888 faces and its second level of decomposition using (b) Li
et al.’s reverse Loop subdivision and (c) smooth reverse Loop subdivision.

or faces). After one level of Catmull-Clark subdivision, all of the faces on
the new mesh will consist only of quads.

Based on the general approach discussed in section 3.1 in order to con-
struct local smooth reverse subdivision we should start from a set of trial
masks P , Q̃, Ã and B̃ in a local neighborhood. We start from trial Catmull-
Clark masks provided by Olsen and Samavati [23] and refine them toward our
optimization goals. Since Catmull-Clark subdivision supports wider range of
surfaces, the subdivision masks are more complex than Loop subdivision.
As shown in Fig. 10 the 1-ring neighborhood of a vertex-vertex vk at level k
with valence n consists of the edge-vertices eki and face vertices fki,j. After one
level of subdivision, the 1-ring neighborhood of vk+1 contains edge vertices
ek+1
i and face vertices fk+1

i .
The subdivision masks of Catmull-Clark subdivision are represented as

fk+1
i =

1

nfi

(
vk + eki + eki+1 +

∑
j

fki,j

)
(32)

ek+1
i =

1

4

(
vk + eki + fk+1

i−1 + fk+1
i

)
(33)

vk+1 =
n− 2

n
vk +

1

n2

∑
i

eki +
1

n2

∑
i

fk+1
i . (34)

In this notation the vertex-vertex mask in Eq. (34) is considered as the
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Figure 10: Notation for the neighborhood of vk and vk+1. The 1-ring neighborhood of vk

consists of eki and fk
i,j . The 1-ring neighborhood of vk+1 consists of ek+1

i and fk+1
i .

even mask and the edge-vertex mask in Eq. (33) and the face-vertex mask in
Eq. (32) are considered as the odd masks of the P in the local neighborhood.
By rewriting the Eq. (34) as vk+1 = n−3

n
vk + 4

n2

∑
i e
k+1
i − 1

n2

∑
i f

k+1
i the

corresponding vertex-, edge- and face- details are expressed as

d̃v = vk+1 −

(
n− 3

n
ṽk +

4

n2

∑
i

ẽk+1
i − 1

n2

∑
i

f̃k+1
i

)
(35)

d̃ei = ek+1
i − ẽk+1

i (36)

d̃fi = fk+1
i − f̃k+1

i (37)

where ṽk is the coarse approximation and ẽk+1
i and f̃k+1

i are resulted from the
subdivision of the coarse mesh. Olsen and Samavati [23] utilize the even-odd
distinction of the vertices to find the details at even vertices from a linear
combination of the details at neighboring odd vertices as

d̃v =
4

n2

∑
i

d̃ei −
1

n2

∑
i

d̃fi , i = 1, 2, . . . , n. (38)
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Figure 11: Decomposition of a valence-3 vertex vkn=3 using a non-valence-3 neighbor ṽkn 6=3

at the coarse level and fine vertices fk+1
a , fk+1

b and ek+1.

Using this constraint, the Ã mask for finding trial coarse vertices is given as

ṽk =
n

n− 3
vk+1 − 4

n(n− 3)

∑
i

ek+1
i +

1

n(n− 3)

∑
i

fk+1
i . (39)

It should be noted that Eq. (39) is not defined when valence of vk is three
(n = 3). An alternative solution is to violate the wavelet constraint and ex-
plicitly store details for each of these vertices. Fig. 11 shows a valence-3
vertex vkn=3 with one of its non-valence-3 coarse neighbors ṽkn6=3. By reversing
the edge subdivision mask of Eq. (33) and using the Eq. (39) for decompo-
sition of ṽkn6=3, an approximation of vkn=3 can be found as

vkn=3 ≈ 4ek+1 − ṽkn 6=3 − fk+1
a − fk+1

b . (40)

This approximation can be enhanced by averaging the results of Eq. (40)
for all adjacent vkn6=3 vertices. However, because of storing an explicit detail

vector for vkn=3 the detail constraint is violated.
Now that a trial representation for the coarse vertices is found, we can

refine them to satisfy minimization of the subdivision error as well as min-
imization of the discrete local energy. In our refinement step we replace ṽk

by vk = ṽk + δ to satisfy these two goals. Subdivision error is represented
as sum of the differences between fine vertices and subdivision of the refined
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coarse vertices

Esubdiv(δ) = ‖dv‖22 +
∑
i

‖dei‖22 +
∑
i

‖dfi ‖22

= ‖d̃v − rδ‖22 +
∑
i

‖d̃ei − siδ‖22 +
∑
i

‖d̃fi − tiδ‖22 (41)

where

r =
n− 2

n
+

1

n2

∑
i

1

nfi
(42)

si =
1

4

(
1 +

1

nfi
+

1

nfi−1

)
(43)

ti =
1

nfi
(44)

and d̃v, d̃ei and d̃fi are resulted from Eq. (35), (36) and (37).
Eq. (41) can be simplified to

Esubdiv(δ) =

(
r2 +

∑
i

s2i +
∑
i

t2i

)
‖δ‖22 − 2

(
rd̃v +

∑
i

sid̃
e
i + tid̃

f
i

)
· δ +(

‖d̃v‖22 +
∑
i

‖d̃ei‖22 +
∑
i

‖d̃fi ‖22

)
. (45)

To minimize the energy of the coarse points around vk we use discrete
Laplacian operator [28] for vk and its adjacent edge-vertices ẽki as

Eenergy(δ) =

∥∥∥∥∥
(

1

n

∑
i

ẽki

)
− (ṽk + δ)

∥∥∥∥∥
2

2

. (46)

Now by using Esubdiv and Eenergy in Eq. (6) and utilizing the detail constraint
(Eq. (38)) the refinement vector δ can be found as

δ =

∑
(4ω
n2 r + ωsi)d

e
i +
∑

(−ω
n2 r + ωti)d

f
i + 1−w

n

∑
ẽki − (1− ω)ṽk

ω (r2 +
∑
s2i +

∑
t2i ) + (1− ω)

.(47)

In the refinement step we assume that the neighbors of the central vertex
ṽk are fixed. Therefore, we can find the final coarse mesh by moving the
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Figure 12: (a) A mesh with 1, 536 faces and its second level of decomposition using (b)
Bertram et al.’s Catmull-Clark MR system and (c) smooth reverse Catmull-Clark subdi-
vision.

center of our local neighborhood to all other ṽk except valence-3 vertices.
For valence-3 vertices we observed that it is better to ignore Esubdiv and only
use Eenergy in Eq. (6). After solving the resulted least squares formulation,
the perturbation vector δ for valence-3 vertices is determined as

δ =

(
1

n

∑
i

ẽki

)
− ṽk. (48)

Now that the coarse mesh C is found, we can find the final residuals from
Eq. (7). Decomposition step of smooth reverse Catmull-Clark subdivision
can be summarized in a similar way to algorithm 1.

Fig. 12(a) shows a mesh with 1, 536 faces and its second level of decompo-
sition using Catmull-Clark MR system described by Bertram et al. [20] (see
Fig. 12(b)) and smooth reverse Catmull-Clark subdivision (see Fig. 12(c)).
As shown, Bertram et al.’s approach magnifies the scale of the coarse points
while our approach preserves the overall mesh structure. This benefit is re-
sulted from minimization of the energy of the coarse vertices during different
levels of resolution. Also our approach stores all of the missing characteris-
tics of the fine mesh in the detail vectors while detail vectors in the other
approach contain some extra positional information.

Since Catmull-Clark scheme is based on bi-cubic filters, its boundary
treatment is similar to the Loop scheme and we only need to subdivide the
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boundary vertices using cubic B-spline scheme. Consequently, to handle the
boundaries in smooth reverse Catmull-Clark subdivision, we use the local
cubic B-spline smooth reverse subdivision approach discussed in section 3.2.

The general approach presented in section 3.1 is flexible enough to be
extended to other surface subdivision schemes such as Butterfly subdivision
[37, 39] and Doo subdivision [10]. Butterfly is an interpolating surface sub-
division scheme and has trivial trial filters as presented diagrammatically in
[40]. The trial filters of Doo subdivision are introduced by Samavati et al.
at [9].

5. Results and discussion

In this section we present more results of our MR approach and discuss
its advantages in surface editing and synthesis applications.

Multiresolution representation allows convenient control of surface edit-
ing. We have developed an interactive MR surface editor based on smooth
reverse Loop and Catmull-Clark subdivision. It allows decomposition and
reconstruction of a surface with subdivision connectivity and provides a few
editing tools to manipulate coarse vertices. Fig. 13 shows two decomposition
levels of a sample model of a helmet with 1, 280 faces using two different tech-
niques. First row is resulted from smooth reverse Loop subdivision while the
second row uses reverse Loop subdivision approach introduced by Li et al.
[21]. As shown, the Li et al.’s approach magnifies the sharp vertices during
decomposition (see the second row of Fig. 13). Therefore, the overall struc-
ture of the coarse approximation in this approach does not match with the
overall structure of the original fine mesh. This may give the user an incor-
rect impression of the scale of editing needed on the coarse surface to achieve
a particular scale of feature on the fine surface. However, our smooth reverse
Loop subdivision approach (see the first row of Fig. 13) preserves the overall
structure of the original surface in the coarse mesh which makes it a better
candidate for MR surface editing. For this example we have used ω = 0.5
which usually provides acceptable balance between fitness and smoothness
of the coarse mesh at the early decomposition steps.

Fig. 14 provides an example of using our MR surface editor to add an
eye to the duck model in Fig. 9(a). We use the second decomposition level
of the fine mesh using smooth reverse Loop subdivision (see Fig. 9(c)) with
ω = 0.6. As highlighted in Fig. 14(a) we only need to translate one vertex of
the coarse mesh to make an impression of the eye (see Fig. 14(b)). Fig. 14(c)
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Figure 13: Two levels of decomposition of a mesh using smooth reverse Loop subdivision
(first row) and Li et al.’s reverse Loop subdivision (second row).

Figure 14: (a) Second decomposition level of the duck model in Fig. 9(a) using smooth
reverse Loop subdivision. (b) Editing the highlighted vertex in (a) to add an impression of
the eye. (c) The reconstructed model preserves the overall structure of the edited vertex.
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Figure 15: Multiresolution mesh editing: (a) A mesh with 4, 960 faces. (b) Second decom-
position level of the mesh using smooth reverse Catmull-Clark subdivision. (c) Editing
operations applied to the coarse mesh. (d) The reconstructed model preserves the overall
structure of the edited vertices.

shows the result of reconstructing the fine mesh using the edited vertex and
detail vectors stored during decomposition. As shown, the new fine vertices
preserve the overall structure and scale of the edited coarse vertex. However,
it is hard to edit the fine mesh using the coarse vertices resulted from Li et
al.’s approach (see Fig. 9(b)). It has some confusing artifacts on the coarse
vertices (around the duck’s eye) and most importantly it is hard to determine
the scale of the perturbations necessary for each coarse point.

Fig. 15 demonstrates another example of using our MR surface editor to
edit a mesh with 4, 960 faces. We first decompose the fine mesh in Fig. 15(a)
twice using smooth reverse Catmull-Clark subdivision with ω = 0.5. The
resulted coarse vertices (see Fig. 15(b)) are then interactively edited to the
desired form (see Fig. 15(c)). Fig. 15(d) shows the effect of mesh editing on
the reconstructed mesh. As shown, there is a good correspondence between
the edited coarse vertices and reconstructed fine vertices which makes our
approach suitable for mesh editing applications.

Fig. 16 shows the effect of changing the weighting parameter from 0.0
to 1.0 in decomposition of a mesh with 6, 144 faces. All of the results are
from three levels of decomposition using smooth reverse Loop subdivision.
This figure demonstrates that decreasing the value of ω generates smoother
coarse meshes. On the other hand the overall structure of very smooth
coarse meshes has less correspondence with the original mesh. As shown, for
this example ω = 0.5 or slightly higher provides a good balance between the
smoothness and correspondence. Based on our experiments, the best value of
ω lies between 0.5 and 0.75 for smooth reverse Loop Subdivision and between
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Figure 16: Third level of decomposition of a mesh containing 6, 144 faces using smooth
reverse Loop subdivision with different weights.

0.25 and 0.5 for smooth reverse Catmull-Clark subdivision. This value can be
found in a trial and error approach based on the structure of the fine mesh.
When decomposition magnifies the overall structure of the coarse mesh it
is better to decrease the value of ω and when it shrinks the coarse mesh
the value of ω should be increased. In surface editing applications ω can be
adaptively determined for each level of resolution by starting from ω = 0.5 at
the first level and incrementing (Loop) or decrementing it (Catmull-Clark)
slightly at the next levels. In this way the correspondence between the overall
structure of the coarse and fine meshes are better preserved. It should be
noted that finding an appropriate weight is a qualitative problem which is
highly dependent to the specific application and the complexity of the mesh.

Fig. 17 compares extracting and re-using the detail vectors of a real ter-
rain from USGS [41] with 9, 216 faces (see Fig. 17(a)) using Olsen and Sama-
vati’s reverse Catmull-Clark subdivision masks [23] and our smooth reverse
Catmull-Clark subdivision approach. In this example, we first decompose the
high-resolution mesh in Fig. 17(a) five times and store the detail vectors at
different levels of resolution to reach a mesh with 16 vertices. Then we replace
the resulted coarse mesh with a 4×4 planar mesh containing 9 faces in order
to just visualize the detail vectors. Fig. 17(b) shows the synthesized mesh
using Olsen and Samavati’s reverse Catmull-Clark subdivision. As shown,
a new bump is appeared in the bottom-left side of the mesh which is not
the case for the synthesized mesh using our smooth reverse Catmull-Clark
subdivision approach (see Fig. 17(c)). This difference is due to the smooth-
ness of the coarser meshes in our approach that helps capturing only the
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Figure 17: (a) A mesh with 9, 216 faces. (b) Detail visualization using reverse Catmull-
Clark scheme of Olsen and Samavati. (c) Detail visualization using smooth reverse
Catmull-Clark subdivision.

high-frequency characteristics. The coarser meshes in Olsen and Samavati’s
approach are not smooth; therefore the corresponding details contain extra
information. Having details that only contain characteristics information of
the surfaces improves the quality of mesh synthesizing and detail transfer
applications.

Another benefit of our work is to provide a simple hierarchical structure
for residuals in different levels of details. The common surface fairing tech-
niques [14, 30] repeat the Laplacian operator [38] for all of the vertices on
the surface and use the Laplacian vectors as details. In Fig. 18 we examine
the major deficiency of these approaches by repeating the first order Lapla-
cian operator four times on a sample zigzag curve with 28 points. The left
column shows original curve (in red) and its Laplacian result (in blue). Cor-
responding Laplacian details are shown in the right column (in green). This
example indicates that repeating the Laplacian operator does not necessarily
create a hierarchical representation (or a multiscale representation) for de-
tails. The restriction is that the scale of the details in this technique does not
necessarily become smaller after repeating the operator. In addition, general
Laplacian representation requires more storage space than our approach. We
have the advantage of starting from a trial subdivision scheme with compact
representation such as constrained wavelets [22] and achieve separate detail
vectors and residual vectors. This is compatible with the general setting of
MR while other techniques can only create residual vectors.

Fig. 19 compares the coarsening step of Zorin et al. [15] (the first row)
with smooth reverse Loop subdivision (second row). In each row, column
(a) shows the initial mesh, column (b) shows the edited mesh and column
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Figure 18: Repeating the first order Laplacian operator on a zigzag curve with 28 points.
The left column shows the original curve (in red) and the result of the smoothing (in blue).
The right column shows the Laplacian details (in green).

(c) shows the effect of the edit on the coarser level. Since the coarsening
step of Zorin et al. is not dual of the subdivision (Loop) it produces some
low frequency artifacts. For example a sharp corner can be observed in the
lower left corner of their coarse mesh. While in our approach the coarse mesh
preserves the same overall structure of the fine mesh. In addition, Zorin et
al.’s approach needs significant efforts to achieve good performance because
of their complex data structure while all of the underlying operations in our
construction are linear in terms of the number of the vertices.

The first two operations in algorithm 1 find trial coarse and trial details in
the same order of subdivision operation. Also the least squares formulation
in Eq. (6) can be solved once and then be used to calculate all of the
perturbation vectors with the same scale of subdivision. In addition, both of
the Eq. (7) and Eq. (8) reconstruct the original points linearly. Therefore,
all of the necessary operations for decomposition and reconstruction have
comparable complexity to the subdivision.

Run-time efficiency is the direct advantage of having linear decomposition
and reconstruction operations. Fig. 20 shows a complex model containing
108, 608 faces (see Fig. 20(a)) and its first and second levels of decomposition
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Figure 19: Coarsening step of Zorin et al. (first row) and smooth reverse Loop subdivision
(second row). (a) The initial mesh. (b) The edited mesh. (c) The coarsening result.

Figure 20: Decomposition of a complex surface: (a) A model with 108, 608 faces. (b) The
first and (c) second levels of decomposition using smooth reverse Catmull-Clark subdivi-
sion.
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Table 1: Summary of the running times (in seconds) of sample decomposition and recon-
struction tasks using smooth reverse Loop and Catmull-Clark subdivision.

Decomposition time (s) Reconstruction time (s)
Model M1 M2 M3 M2 M1 M0

Helmet 0.015 0.007 0.004 0.002 0.005 0.043
Dog 0.146 0.057 - - 0.046 0.527
Duck 0.084 0.016 - - 0.051 0.690
Vase 0.093 0.019 0.008 0.005 0.054 0.759
Terrain 0.491 0.074 0.029 0.028 0.365 5.373

using smooth reverse Catmull-Clark subdivision with ω = 0.5. One level of
decomposition (see Fig. 20(b)) generates a mesh with 27, 152 faces in 7.26
seconds. Further decomposition (see Fig. 20(c)) results in a mesh with 6, 788
faces in 1.94 seconds. It shows that our approach can reduce the geometric
complexity of the original mesh by a factor of 16 in less than 10 seconds, yet
the coarse model still preserves the overall structure of the fine model.

Table 1 summarizes decomposition and reconstruction times of a few
sample models (from simple to complex). We denote the original mesh as M0

and the mesh after i levels of decomposition as M i. All timings are taken on a
DELL XPS 420 desktop running Microsoft Windows 7 and equipped with 3.0
GHz CPU and nVIDIA GeForce 8800 GPU. As shown, running time of our
approach is real-time for meshes containing a few thousand faces. Since the
MR editor is based on a naive half-edge data structure developed in a high-
level language (C#), the performance for very complex meshes is less than
optimal. Using advanced data structures for subdivision can improve this
performance. Despite this overhead, the above mentioned benefits combined
with the enhancement of the characteristics of the details make our approach
a better solution for interactive MR surface editing and synthesis of complex
surfaces.

6. Conclusion

We have presented a new multiresolution technique for general topology
surfaces based on reversing the subdivision in a local neighborhood with
two goals of finding a good approximation of the fine points and producing
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coarse points with minimum energy. Our construction starts from a trial
set of multiresolution filters and uses a local least squares formulation to
find the refinement vectors that balance between our two optimization goals.
The flexibility of our construction allows us to start from any biorthogonal
multiresolution setting. We have demonstrated our approach by deriving
local smooth reverse subdivision for cubic B-spline scheme. Then we have
shown details of extending our approach to general topology surfaces by
constructing smooth reverse of the Loop and Catmull-Clark subdivisions.

We have provided different examples to compare the results of our ap-
proach with current reverse subdivision techniques. We have also shown
benefits of using our approach in a few surface editing and synthesis applica-
tions. In future, we plan to extend our approach to support other geometric
constraints on curves and surfaces such as visibility. We also plan to use
our approach in other feature transfer applications such as motion synthesis
by-example. Full exploration of the weight parameter is another interesting
future direction.
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