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Abstract

In this paper we present a new multiresolution framework that takes into consideration reducing the coarse points’ energy during
decomposition. We start from initial biorthogonal filters to include energy minimization in multiresolution. Decomposition and
reconstruction are main operations for any multiresolution representation. We formulate decomposition as smooth reverse subdivi-
sion, based on a least squares problem. Both approximation of overall shape and energy are taken into account in the least squares
formulation through different weights.

Using this method, significant smoothness in decomposition of curves and tensor product surfaces can be achieved; while their
overall shape is preserved. Having smooth coarse points yields details with maximum characteristics. Our method works well with
synthesizing applications in which re-using high energy details is important. We use our method for finding the smooth reverse of
three common subdivision schemes. We also provide examples of our method in curve synthesis and terrain synthesis applications.
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1. Introduction

Multiresolution is a hierarchical representation that allows
decomposition of high resolution data to a lower resolution,
in such a way that the original data can be reconstructed ex-
actly. To do this efficiently, we need a convenient way to
store error information compactly. This error information is
usually accounted by a linear combination of functions known
as wavelets. Multiresolution encapsulates two processes: de-
composition (reverse subdivision plus error representation), and
reconstruction (subdivision plus error correction). These pro-
cesses can be performed using local filters obtained from rows
or columns of banded matrices.

In general, high resolution data points may not represent the
result of a subdivision scheme. The difference between fine
points and subdivided coarse points is a residual vector which
represents the error created when reversing subdivision. This
vector contains high-frequency information or the noise of orig-
inal fine points. Since the key characteristics of models (e.g.
bumpiness of terrains) belong to high frequency parts of them,
which are captured as detail vectors during decomposition, we
can consider details as representatives of these characteristics.

In many applications the high energy characteristics cap-
tured as details are re-used for generating more realistic results.
For example, in terrain synthesis by example <2>, details of a
high-resolution terrain are extracted and then applied to a low-
resolution base terrain. In this way a new terrain (with overall
structure of the base terrain) can be synthesized with the same
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small level characteristics of the example high-resolution ter-
rain. The important role of details in example-based applica-
tions motivated us to examine whether current multiresolution
techniques create details with the best quality. A related ques-
tion is: in general, what conditions should be considered to find
details that better approximate the characteristics of real objects
and can be used properly for synthesizing detailed objects?

Figure 1: (a) Original silhouette curve. (b) Smooth reverse subdivision. (c)
Cubic B-spline reverse subdivision.

As pointed out in <4>, multiresolution approach for synthe-
sizing objects does not work properly when base model (low
resolution) is noisy. The multiresolution approach requires that
all characteristic information reside in the high-frequencies of
the model, and all sweep information in the low-resolution of
the target shape. Therefore, it is necessary to use a multiresolu-
tion scheme that creates a low-resolution model with minimum
energy. To have a better understanding of this issue, consider
decomposition of the fine curve in Figure 1(a) using two dif-
ferent multiresolution filters. The first method creates a smooth
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coarse curve as shown in Figure 1(b), but the second method
ends up to a harsh coarse curve as Figure 1(c).

When the coarse points are not smooth (Figure 1(c)) some
extra information regarding the geometry is also stored in the
details. This is not high-energy information, but is necessary
to compensate extra deviations of coarse points. However, in
Figure 1(b) because of the smoothness of the coarse curve the
details more closely represent the high frequency characteristics
of the object.

Currently, energy minimization for the low-resolution model
has not been enforced in the construction of subdivision-based
multiresolution representations. Possibly this is due to the pres-
ence of the energy term that makes derivation of a full set of
multiresolution filters complicated. This paper contributes a
novel method for multiresolution based on reversing subdivi-
sion with energy minimization of the low-resolution model. We
introduce a new approach to obtain the necessary multiresolu-
tion operations from initial biorthogonal filters such as reverse
subdivision <8> and constrained wavelets <5> filters. We also
demonstrate the effectiveness of our method through example
applications in curve and surface synthesis. In the curve exam-
ple, by extracting the low-level details of hand-drawn strokes,
more realistic synthetic strokes are created. Similarly, by apply-
ing a more natural characteristic resulting from smooth reverse
subdivision to a base smooth terrain, a high-resolution realistic
synthesized terrain is created.

This paper is organized as follows: Section 2 provides neces-
sary background information. Section 3 presents details of the
technique used to derive a new set of reverse subdivision filters.
Section 4 demonstrates our approach with several multiresolu-
tion example schemes. Section 5 demonstrates some example
applications of our method. Section 6 provides some evalua-
tions and discussions. Finally, section 7 concludes the paper
and provides possible future directions.

2. Background and Related Works

In this section, we introduce basic notations and discuss re-
lated works. We adapt the notation of Finkelstein and Salesin
<6> and Olsen et al. <5> for the rest of this paper.

2.1. Multiresolution and Reverse Subdivision

The multiresolution research to date has mostly focused on
wavelets. Let Cn denote a set of discrete fine points defining an
object. Using analysis filter matrices An and Bn we can decom-
pose Cn to a set of coarse points Cn−1

Cn−1 = AnCn (1)

and a high frequency set of details Dn−1

Dn−1 = BnCn. (2)

This process is known as decomposition. Details contain the
information missing in decomposition process which can be
represented as wavelet coefficients. Together Cn−1 and Dn−1 are

used in the reconstruction process to restore Cn using synthesis
filter matrices Pn and Qn

Cn = PnCn−1 + QnDn−1. (3)

Cn can be decomposed recursively to Cl, Cl+1, . . . , Cn−1 and
details Dl, Dl+1, . . . , Dn−1 where l < n. The reconstruction
sequence of Cl, Dl, Dl+1, . . . , Dn−1 is known as a wavelet trans-
form. The minimum condition of a biorthogonal multiresolu-
tion system is:[A

B

]
[P|Q] =

[
I 0
0 I

]
= I (4)

which implies the reconstruction process is the inverse of the
decomposition process1.

Samavati and Bartels <7> pioneered a reverse subdivision
approach for constructing multiresolution representation. For
a given subdivision scheme P and a set of fine data Cn, the
coarse data Cn−1 is determined such that PCn−1 has a minimal
distance from the original fine points Cn. This can be expressed
as following global least squares model:

min
∥∥∥Cn − PCn−1

∥∥∥2
2 . (5)

By solving this model, Cn−1 and a compact representation for
the residual matrices A, B and Q are derived.

Later Bartels and Samavati <8> applied the same idea to de-
rive local reverse subdivision filters using local linear condi-
tions (LLC).

Olsen et al. <5> introduced another framework of construct-
ing multiresolution based on constrained wavelets. This ap-
proach utilizes the relation between odd and even rules of sub-
division filters to construct an efficient data structure for mul-
tiresolution.

Multiresolution representation has been used in various curve
and surface applications. Finkelstein and Salesin <6> describe
a wavelet-based multiresolution method that can capture and
re-use a curve style. They edit the overall sweep of a curve
by editing a low-resolution version of the curve without chang-
ing the original details. Kobbelt and Schröder <25> present
a multiresolution construction setting for variationally optimal,
interpolating subdivision curves. They also build stable wavelet
bases in the uniform setting available to any algorithm that ex-
ploits multiresolution representation. Hahmann et al. <23>
present a multiresolution framework for area preserving defor-
mation of curves in different levels of details. The area is ex-
pressed as a bilinear form of the coarse and detail coefficients.
An optimization process maintains the area constraint through
all levels of resolution. Sauvage et al. <24> extend this ap-
proach to compute the volume enclosed by a multiresolution
mesh using a trilinear form. They preserve the volume con-
straint using a quadratic minimization process when the mesh
is deformed through multiresolution decomposition. Amanti
<11> proposes a wavelet based multi-level analysis approach

1For the sake of simplicity we drop the superscripts of matrices.
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to fair planar cubic B-spline curves. This approach is useful to
find the curve segments that need to be smoothed.

Gleicher <10> adapts Finkelstein and Salesin’s multiresolu-
tion curve fitting concepts to motion paths. A path is a time-
varying curve which defines the position of a character at a
given time. This work factorizes a previously captured mo-
tion to a path and a residual, then replaces the path with a new
path to synthesize a different motion. Foster et al. <12> use
multiresolution to remove and filter artifacts and noises from
silhouette chains. Mündermann et al. <13> use reverse subdi-
vision filters to reduce the number of vertices of a digitized raw
data of a leaf in their work on modeling lobed leaves. They then
use these points as control points of a B-spline curve. Cherlin
et al.<14> use reverse subdivision for finding an appropriate
parametric representation for sketched strokes. These strokes
are the output of a mouse or a digitized pen. Consequently they
have many noisy points.

In some multiresolution applications details play more im-
portant role. Brunn et al. <15> present a mechanism for high-
quality style extraction and re-application using reverse subdi-
vision. They use both Chaikin and cubic B-spline multireso-
lution filters from <7> and <8> and in both cases can achieve
good results without a noticeable difference. Brosz et al. <2>
use similar approach to extract and re-use the high-frequency
characteristics from a target terrain in their terrain synthesis
by-example system. Wecker et al. <16> use multiresolution
to fix the voids commonly found in digital elevation models.
They first fill the void with a smooth patch. Then extract the
low-scale characteristics from the surrounding area of the void
and apply them to this smooth patch. In Wecker et al. <17> a
reverse subdivision-based multiresolution is employed for syn-
thesizing irises. They capture necessary characteristics from
existing irises which are then combined to form new ones.

All of these works benefit from compact and elegant mul-
tiresolution representation. Even some of them have tried to
involve surface and volume constraints in the multiresolution
construction. However, these filters are not constructed such
that guarantee all of the high-energy is contained in the de-
tails and all sweep information is in low resolution. For ex-
ample, Brunn et al. <15> explicitly highlight importance of the
smoothness of the base path to improve re-application of a style
for curve synthesis by example: “If the base path is not smooth,
too much detail is lost when the re-application replaces the base
points, leading to a distorted style and sometimes unintuitive re-
sults”. Therefore, above-mentioned synthesizing applications
have limitations when the target shapes are very different from
the original shapes or when the base shapes are noisy <4>. On
the other hand if we have a multiresolution framework provid-
ing a good approximation of the original data, as well as min-
imizing the coarse points’ energy; the quality of synthesizing
applications will be increased dramatically.

2.2. Curve Energy

In our multiresolution framework we take into considera-
tion minimization of the energy of the coarse points C =

[c0, c1, . . . , cn]T . Therefore, we need to find a simple curve en-

ergy approximation. This is enough for tensor-product surfaces
due to their regular structure.

Discrete differential operators play a central role in curve and
surface applications such as model smoothing. Botsch et al.
<18> define the intrinsic geometry of a curve as length or an-
gles of lines between points on the curve. Since the osculating
circle <19> at point p = x(t) provides a good local approxima-
tion to the curve, the curvature of the curve at x(t), is defined as
the reciprocal of the radius of the circle:

κ(t) =
‖T ′(t)‖
‖x′(t)‖

. (6)

In this notation T (t) is the unit tangent vector T (t) =
x′(t)
‖x′(t)‖ .

Therefore, if the parameter is arc-length we have T (s) = x′(s)
and can conclude:

κ(s) =
∥∥∥T ′(s)

∥∥∥ =
∥∥∥x′′(s)

∥∥∥ . (7)

Since we deal with only discrete point sets, a discrete approx-
imation of κ(t) is preferred. The difference between ci and its
next or former points gives a discrete approximation of the first
derivative at ci. We use the notation of vi for this derivative as:

vi = ci+1 − ci. (8)

Considering vi−1 = ci − ci−1 and vi = ci+1 − ci, we use dis-
crete Laplacian <20> (∆ci) as a simple approximation of the
curvature at ci:

∆ci = vi − vi−1 = ci+1 − 2ci + ci−1. (9)

In this calculation, a neighborhood of three points is used to
approximate the curvature. By considering a larger neighbor-
hood a more accurate approximation can be found. However,
this makes our construction harder. In addition, in multiresolu-
tion construction a small neighborhood of a coarser level corre-
sponds to a larger neighborhood of finer levels. Therefore, we
found it is sufficient to use the neighborhood of three points.

Equation 9 can be represented as a matrix for a periodic
(closed) point set:

M =



−2 1 0 . . . 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 . . . 0 1 −2


. (10)

Each row of the M matrix shows a first-order Laplacian. The
advantage of this approximation is that resulting equations are
linear, helping us to calculate curve energy in terms of lin-
ear equations and banded matrix operations. For non-periodic
curves we should prevent wrapping in the first and the last rows.
We address this issue by using boundary definitions c1 − c0 for
the first points and cn−1 − cn for the last points. These vectors
are one-sided discrete tangents in boundaries that are suitable
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enough for our approximation. Including these boundary con-
ditions a sample 5 × 5 matrix is:

M =


−1 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −1

 . (11)

Now we can use ‖MC‖ for approximating energy of C. We
will next examine how achieving smooth approximation of
coarse data changes the multiresolution process.

3. Reverse Subdivision with Energy Minimization

In this section, details of the steps to construct our multires-
olution framework are discussed. Our goal is to find optimal
coarse points that satisfy Equation 5, as well as having mini-
mal overall energy. As discussed in Section 1, minimization
of coarse energy will improve the level of detail extracted dur-
ing decomposition and will directly benefit by-example appli-
cations.

In our approach we extend the least-squares formulation of
<7> by including an energy term:

E(Cn−1) = ω
∥∥∥PCn−1 −Cn

∥∥∥2
2 + (1 − ω)

∥∥∥MCn−1
∥∥∥2

2 (12)

where 0 ≤ ω ≤ 1 is a weight parameter to control the im-
portance of the energy versus fitness. From this equation Cn−1

can be determined such that the error function E(Cn−1) be min-
imized.

For simplifying the notation, it is convenient to only consider
the current level of resolution denoted by F and one lower level
of resolution denoted by C. Therefore, Equation 12 can be sim-
plified to:

E(C) = ω ‖PC − F‖22 + (1 − ω) ‖MC‖22 . (13)

Notice that we need not only to solve Equation 13 for finding
A, but also to find a compact representation of the resulting Q
and B filters <7>. The solution of 13 is also solution to the
normal equation of the above minimization problem:

(ωPT P + (1 − ω)MT M)C = ωPT F. (14)

Since C = AF, solving normal equation 14 for C provides A
as:

A = (ωPT P + (1 − ω)MT M)−1ωPT . (15)

The matrix A is usually full and for practical implementa-
tion, it is better to solve banded linear system in Equation 14
instead of explicit use of inverse in Equation 15. For appli-
cations and scenarios that only need reverse subdivision, A is
enough. However, for many applications such as by-example
and model synthesizing, it is necessary to have a complete de-
composition and reconstruction that requires determination of
Q and B.

In contrast to the proposed A in <7> (the pseudo inverse
of P), in our construction, A has more complex structure and
consequently it is harder to determine Q and B to maintain
biorthogonality (Equation 4). Because of this reason, it was
not clear for us how to modify the construction of Q and B
in <7> for A in Equation 15. This challenge directed us to
use a technique similar to constrained wavelets <5> to achieve
smooth reverse subdivision. Constrained wavelets provides a
good structure that has the potential of starting from a simple
multiresolution scheme and refining it to achieve a goal that in
our work is minimization of the coarse points’ energy while re-
ducing the reconstruction error.

Figure 2: A fine curve F is decomposed to C, and odd fine points are replaced
with their details. The even details can be computed from odd details.

As shown in Figure 2, starting from fine points denoted by
fi, a trial approximation of the coarse points denoted by ci are
stored at even vertices (in the fine level) and details denoted
by di are stored at the odd vertices. For guaranteeing this struc-
tural property, it is necessary to enforce the following constraint
(wavelet constraint): details at even vertices must be expressed
as a linear combination of the details at neighboring odd ver-
tices. As shown in <5>, based on this constraint, the decompo-
sition and reconstruction matrices are determined. For exam-
ple, the cubic B-spline subdivision matrix and corresponding
banded trial matrices are as follows:

P =



1 0 0 0 0 0 · · ·
1
2

1
2 0 0 0 0 · · ·

0 3
4

1
4 0 0 0 · · ·

0 3
16

11
16

1
8 0 0 · · ·

0 0 1
2

1
2 0 0 · · ·

0 0 1
8

3
4

1
8 0 · · ·

...

· · · 0 0 1
8

11
16

3
16 0

· · · 0 0 0 1
4

3
4 0

· · · 0 0 0 0 1
2

1
2

· · · 0 0 0 0 0 1



(16)
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Ã =



1 0 0 0 0 0 · · ·

−1 2 0 0 0 0 · · ·

0 −1
2 2 −1

2 0 0 · · ·

...
· · · 0 0 0 0 2 −1
· · · 0 0 0 0 0 1


(17)

B̃ =


3
4

−3
2

9
8

−1
2

1
8 0 ...

... 1
4 −1 3

2 −1 1
4 ...

...

... 0 1
8

−1
2

9
8

−3
2

3
4

 (18)

Q̃ =



0 0 0 0 · · ·

0 0 0 0 · · ·

1 0 0 0 · · ·
1
4

1
4 0 0 · · ·

...
0 0 0 0 · · ·

0 0 0 0 · · ·


. (19)

Although enforcing the above constraint provides a good
data structure, the resulting trial matrices Q̃, Ã and B̃ do not
necessarily produce a good approximation. Olsen et al., ex-
plored a local refinement approach to perturb trial coarse points
C̃ = [c̃0, . . . , c̃n]T with a set of partial refinement vectors
∆ = [δ0, . . . , δn]T for improving the approximation. This pro-
cess has an equivalent representation in terms of lifting scheme
<21> which facilitates finding final A and Q matrices. Figure 3
shows how refined coarse points C = C̃ + ∆ and trial details D̃
create a closed-form multiresolution framework.

Figure 3: The constrained wavelets multiresolution framework.

Our main approach is to include refinement of the energy in
this structure. However, if we consider discrete energy of coarse
points in the same local refinement equations, it involves ver-
tices out of the local neighborhood. This repetitively involves
all of the vertices globally for the refinement process. There-
fore, instead of perturbing coarse points one by one, we try to
find the entire vector ∆ globally to maintain interconnections
between these points. To find the perturbation vector ∆ we use
perturbed C = C̃ +∆ in the least squares formulation introduced
in Equation 13:

E(C̃+∆) = ω
∥∥∥F − P(C̃ + ∆)

∥∥∥2

2 +(1−ω)
∥∥∥M(C̃ + ∆)

∥∥∥2

2 .(20)

The normal equation of this general minimization problem
is:

(ωPT P + (1 − ω)MT M)(C̃ + ∆) = ωPT F. (21)

By replacing F with PC̃ + Q̃D̃ in Equation 21 the normal
equation can be written as:

(ωPT P + (1−ω)MT M)∆ = ωPT Q̃D̃− (1−ω)MT MC̃.(22)

We can find ∆ from above linear system in linear time be-
cause PT P, MT M and PT Q̃ matrices have a banded structure.
Then we can use ∆ to find C = C̃ + ∆. Because of the min-
imization, the energy of new coarse points C and the distance
of their subdivision to original fine points are reduced. It is
not necessary to change D̃, B̃ and Q̃ because the trial matrices
are consistent with the framework. We can find the final resid-
ual vector necessary to reconstruct the original fine points using
the trial residual vector F − PC̃ = Q̃D̃ as:

F − PC = F − P(C̃ + ∆) = Q̃D̃ − P∆. (23)

Figure 4: Our global decomposition process. Solid arrows denote the matrix
multiplication while dotted arrows indicate the solution of a banded system.

As shown in Figure 4 the set of C and D̃ finalize decomposi-
tion process of smooth reverse subdivision. Solid arrows denote
a matrix operation (banded) while dotted arrows indicate the so-
lution of linear system to find ∆. Algorithm 1 summarizes the
decomposition process:

Algorithm 1 Smooth Reverse Subdivision

Input: F, M, P, Q̃, Ã, B̃, ω
1: C̃ = ÃF
2: D̃ = B̃F
3: ∆ = Solution of the banded system (22)
4: C = C̃ + ∆

Output: C, D̃

For reconstruction of the original points using C and D̃, we
use Equation 22. By replacing C̃ with C − ∆ we will achieve:

(ωPT P)∆ = ωPT Q̃D̃ − (1 − ω)MT MC. (24)

Again ∆ can be found in linear time operations because of
the bandedness. Finally, we can calculate the residual vector
from Equation 23 and add it to the subdivision of new coarse
points to reconstruct F. Figure 5 and Algorithm 2, represent the
process of reconstructing F from C and D̃. Again solid arrows
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Figure 5: Our global reconstruction process. Solid arrows denote the matrix
multiplication while dotted arrows indicate the solution of a banded system.

Algorithm 2 Reconstruction

Input: C, D̃, M, P, Q̃, ω
1: ∆ = Solution of the banded system (24)
2: Residual = Q̃D̃ − P∆

3: F = PC + Residual
Output: F

denote banded matrix operations and dotted arrows indicate the
solution of a linear system.

Together, our decomposition and reconstruction processes
form a multiresolution framework. Our approach utilizes least
squares data fitting technique and discrete curve energy defini-
tion to find smooth coarse points that approximate the original
fine points. Both decomposition and reconstruction operations
cost linear time because of the bandedness of their matrix oper-
ations.

4. Example Schemes

Our approach is a natural fit for many subdivision schemes
(curves and tensor product surfaces). To demonstrate our ap-
proach we have developed multiresolution settings for cubic B-
spline, Dyn-Levin-Gregory <22> and quadratic B-spline.

4.1. Cubic B-spline
We start our approach from trial multiresolution matrices

(Equations 16-19). We refer to the regular nonzero entries of
these matrices as multiresolution filter. The P and Q̃ matrices
contain regular columns, each shifted downward by two ele-
ments from the previous column. Let p and q represent the
non-zero entries of a regular column in P and Q̃ respectively.
Similarly, Ã and B̃ are characterized by regular entries across
the rows denoted by filters a and b, each shifted forward by two
elements from the previous row. This notation helps us to com-
pactly represent all involving trial filters. These filters for cubic
B-spline multiresolution <5> are:

a =
[
− 1

2 2 − 1
2

]
b =

[
1
4 −1 3

2 −1 1
4

]
p =

[
1
8

1
2

3
4

1
2

1
8

]
q =

[
1
4 1 1

4

]
.

(25)

For closed curves we can use these filters to create cyclic
banded matrices with the same dimensions of the points on the
curve.

Figure 6: Results of recursive decomposition of a closed curve using our cubic
B-spline approach.

There are some cases that the number of these fine points
on the curve doesn’t match exactly with the dimensions of re-
sulting trial multiresolution matrices. For example, assume we
want to decompose a periodic curve with 107 points three times.
In this case we first resample the fine points to the next closest
possible dimension (112 points). To do that we use fine points
as control vertices of a cubic B-spline that creates the desired
number of points. Then we can use the points of the resulting
curve as our fine points. Because the resulting matrices have
rows/columns that wrap around, they loose the structure of pure
banded matrices. However, using the methods described in <7>
we can still have linear time decomposition and reconstruction.

In our approach, a desired weighting should also be chosen to
balance between smoothness of the coarse points and approx-
imation of the fine points. If we have a noisy data, it is better
to involve the energy term more, which means using smaller ω
and if we have a smoother data, we can use larger ω. Notice
that using a large energy term (a small ω) may reduce the effect
of multi-scale property in multiresolution representation (it is
usually expected that the scale of details in higher resolution be
smaller than low resolution ones).

Figure 6 shows a closed curve representing a tree profile with
three levels of smooth reverse subdivision. As shown, the curve
has lost its deviations during different levels of decomposition.

For open curves (with boundaries) we use the same trial ma-
trices of constrained wavelets <5> in Equations 16, 17, 18 and
19. This will help us to compare the performance of our ap-
proach with the constrained wavelets later. In general, our ap-
proach can be easily extended to tensor-product surfaces (e.g.
terrain). These kinds of surfaces can be represented by two
classes of curves usually denoted by u- and v-curves. There-
fore, we can employ curve multiresolution for them. We can
resample an open curve using the same method discussed for
closed curves. Since we have two dimensional grid of eleva-
tions in a terrain, we should re-parameterize it in both dimen-
sions.

Figure 7 shows a real terrain from Kansas, USA <1> with
three levels of decomposition. As illustrated, we have achieved
smooth low-resolution terrains with the overall structure of the
original high-resolution terrain.

4.2. Dyn-Levin-Gregory
Dyn et al. <22> describe an interpolating subdivision

scheme based on a four-point filter for odd points. Since even
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Figure 7: Results of recursive decomposition of a terrain using our cubic B-spline approach (with boundary).

points are not displaced by subdivision (they are interpolated),
the trial filters are trivially defined as:

a =
[

0 1 0
]

b =
[

1
16 0 − 9

16 1 − 9
16 0 1

16

]
p =

[
− 1

16 0 9
16 1 9

16 0 − 1
16

]
q =

[
0 1 0

]
.

(26)

We use these filters to construct trial multiresolution matrices
with the same dimensions of the curve points and resample the
fine points if necessary using the approach discussed in Section
4.1. Then we can construct the normal Equations 22 and 24
with resulting trial matrices for Dyn-Levin-Gregory four-point
subdivision. Finally, we use the result in our proposed Algo-
rithm 1 and 2 to implement smooth reverse subdivision and re-
construction based on a given weight. Figure 8 shows a closed
curve with three levels of smooth reverse subdivision using our
four-point approach.

In Figure 9 we visualize the residual vectors resulting from
smooth reverse subdivision. Figure 9(a) shows profile of a face
with 96 points. This curve is decomposed twice using our four-
point approach to get a smooth coarse approximation. The red
curve in Figure 9(b) shows the result of subdividing the coarse
points two times without considering residual vectors that are
shown with blue lines.

4.3. Quadratic B-spline

Our approach is capable of starting from any initial biorthog-
onal multiresolution. Here we start our construction using the
following trial subdivision filters of quadratic B-spline (com-
monly referred to as Chaikin subdivision) <3>:

a =
[
− 1

4
3
4

3
4 − 1

4

]
b =

[
1
4 − 3

4
3
4 − 1

4

]
p =

[
1
4

3
4

3
4

1
4

]
q =

[
− 1

4 − 3
4

3
4

1
4

]
.

(27)

We use these filters for our trial multiresolution matrices and
if it is necessary use the same resampling technique discussed
in Section 4.1. We can then enhance these initial multireso-
lution matrices to minimize the energy of coarse points while

Figure 8: Results of recursive decomposition of a closed curve using our four-
point interpolating approach.

reducing the reconstruction error using Algorithm 1 and 2. Fig-
ure 10 shows a closed curve with three levels of smooth reverse
subdivision using our quadratic B-spline approach.

5. Results

In this section, we demonstrate examples of using our ap-
proach in synthesizing applications.

5.1. Curve Synthesis by Example
Figure 11 compares two methods for synthesizing a tree pro-

file, Brunn et al.’s curve synthesis by-example <15> (first row)
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Figure 9: (a) A closed curve with 96 points. (b) Two levels of subdividing the
coarse points resulting from two levels of four-point smooth reverse subdivision
(the red curve) with corresponding residual vectors (the blue lines).

which is based on local multiresolution filters of <8> and our
cubic B-spline approach (second row). For each row, column
(a) shows the original data, column (b) shows its separation into
two pieces to extract details as left and right half, column (c)
shows a new smooth path that only contains large-scale vari-
ations and column (d) shows the result of applying silhouette
styles of left and right profiles in (b) to coarse points in (c). As
shown, in both cases a close approximation to the original tree
is achieved. However, our approach shows noticeable improve-
ment. It preserves exactly the same base paths of (c) which
means our details just contain high-energy information without
any extra deviation from overall sweep. This is particularly no-
ticeable in the bottom-left and top-right portions of the tree’s
crown. Also, the bottom-left and top-left portions of the new
crown show better arrangement of details, due to minimizing
energy of the coarse points.

In this example we have used three levels of decomposition
with ω = 0.72 on an original fine curve with 179 points and
the new base curve contains 25 points. When the number of
new base coarse points is significantly less than the number of
target fine points, we recursively subdivide the base points to
achieve a larger number close to the number of target points.
If a discrepancy remains, we use the same resampling tech-
nique described in Section 4.1 to equalize the number of the
points. After achieving an equal number of points for both tar-
get and subdivided base points, we can decompose them up to
any level with our smooth reverse subdivision filters. Then we
can change the sweep of the target points at lower-resolution.
This method of curve synthesis will face a problem when the
orientation of details on the new curve are different from the
target points. To address this issue, we use the same idea of
Forsey and Bartels <9> which considers a local frame at the
curve points as tangent to the curve and normal to the curve.
Then we extract the angles between residual vectors and tan-
gents to the curves at the curve points for each multiresolution
level during the decomposition. We then use these angle vectors
to re-orient the residual vectors on the new base points.

Figure 10: Results of recursive decomposition of a closed curve using our
quadratic B-spline approach.

Figure 11: Extraction and re-application of tree silhouette styles using Brunn
et al. (first row) and our cubic B-spline approach (second row). (a) Original
illustration. (b) Extracted silhouette style in two parts. (c) A new smooth path.
(d) Result of style re-application.
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Figure 12: (a) A user-created 20 × 20 base terrain. (b) A real 103 × 103 target
terrain. Results of extraction and re-application of terrain style using (c) Brosz
et al. and (d) our cubic B-spline approach. (e), (f) and (g) are close-ups of
top-right corners in (b), (c) and (d) respectively.

5.2. Terrain Synthesis by Example
In Figure 12, (a) shows a low-resolution (20×20) hand-made

base terrain and (b) shows a high-resolution (103 × 103) target
terrain from Rocky Mountains in Utah, USA <1>. Figure 12(c)
shows the result of Brosz et al.’s terrain synthesis by-example
<2> and Figure 12(d) shows the result of our cubic B-spline
approach. We have created close-ups from top-right corners of
Figure 12(b),(c) and (d) in Figure 12(e), (f) and (g) respectively.
As shown, our result has a more appealing appearance because
it transfers the characteristics of the target terrain to the base
terrain more thoroughly. It is also noticeable that the lower part
in Figure 12(d) has less jaggedness or deviation than the higher
part, exactly the same as Figure 12(b).

In our example, we decomposed both of the target and subdi-
vided base terrains with ω = 0.72 two times to achieve 28 × 28
terrains. Then reconstructed the final terrain by applying ex-
tracted details of the target terrain to the new base terrain.

6. Evaluation and Discussion

In this section, we evaluate our approach and discuss some of
its aspects. Figure 13 shows results of decomposing Figure 9(a)

up to three levels using cubic B-spline and Dyn-Levin-Gregory
filters. For each row of Figure 13, columns (a), (b) and (c) show
first, second and third levels of decomposition respectively. The
corresponding curve energy for each curve is also calculated.
The first row results from our cubic B-spline filters, the sec-
ond row results from our Dyn-Levin-Gregory filters, the third
row results from constrained wavelets’ cubic B-spline filters
<5> and the last row results from constrained wavelets’ Dyn-
Levin-Gregory filters. It explicitly shows that coarse curves re-
sulted from our filters have significantly less energy than coarse
curves from constrained wavelets’ filters. Also the Dyn-Levin-
Gregory filters show better result than cubic B-spline filters.
In general, four-point subdivision has a reverse with less en-
ergy than reverse of cubic B-spline. The main reason for this
is that cubic B-spline subdivision is smoother scheme and re-
duces variations of the points during the forward subdivision.
The reverse subdivision compensates this by exaggerating the
variations.

All of the decomposition, reconstruction and synthesizing
operations are done in linear time because we only need to solve
banded linear systems of equations. Since all of the matrices are
narrow banded in our example schemes, they can be solved in
real-time.

Our approach also supports semiorthogonal wavelets such as
<6> and <7>. In this kind of multiresolution, P and Q are
banded matrices and explicitly derived while A and B are full
matrices. Therefore, in our construction we start with P and
Q̃ = Q and find C̃ and D̃ using Algorithm 1 and 2. Since Ã and
B̃ are full matrices, we avoid multiplications of full matrices
in steps 1 and 2 of Algorithm 1 by solving following banded
systems:

(PT P)C̃ = PT F
(Q̃T Q̃)D̃ = Q̃T (F − PC̃).
Figure 14 shows the effect of changing weight parameter

from 0.01 to 1 on the same face profile in Figure 9(a). All
of the results are from a single level of decomposition using
our cubic B-spline approach. It demonstrates that by increasing
the weight of the energy term (reducing ω) the coarse becomes
smoother. Finding an appropriate ω depends on the specific ap-
plication and the type of the data and can be found in a trial
and error approach. However, it is possible to estimate a plau-
sible default value for ω as function of the noisiness of the data.
As a preprocessing step we can first drop the energy term from
our construction by setting ω = 1. After finding C from Algo-
rithm 1 (or equivalently finding C from the trial filters) we use
g =

‖MC‖
n as a measure for nosiness of the data (n is the size of

the data). Then ω can be set as a linear function of g.

7. Conclusions and Future Works

This work presents a full multiresolution representation
based on reverse subdivision, which balances the goals of pro-
ducing a good approximation of the original points and produc-
ing smooth coarse points. Our derivation follows a global least
squares model to minimize the energy of the coarse points. Our
construction uses a trial set of multiresolution filters similar to
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Figure 13: Three levels of decomposition of Figure 9(a) using our approach
and constrained wavelets. The corresponding curve energy for each curve is
represented.

Figure 14: First level of decomposition of Figure 9(a) using our cubic B-spline
approach with different weights.

the constrained wavelets framework. We provide a full set of
operations for both decomposition and reconstruction. All op-
erations in our technique are linear time due to the banded struc-
ture of matrices. It also gives freedom to the user to balance be-
tween smoothness and minimum error. To show the suitability
of our method, we present different examples and also compare
our approach with two recent curve synthesis and terrain syn-
thesis applications.

Future work could include expanding our approach to find
local A and B filters (currently, we solve banded linear systems
instead of applying local filters). Using the local filters we can
extend this approach to arbitrary topology surfaces. Our ap-
proach has also potential to generate interesting results in im-
age compression. We also plan to use our filters in the area of
motion synthesis to create animation by example. Finding the
nature of the new lifting scheme underlying our technique is
also an interesting future direction.
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