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Abstract

Partition of Unity Parametrics (PUPs) is a generalization of NURBS that permits the use of arbitrary basis functions to model
parametric curves and surfaces. An interesting problem for PUPs is the identification of subdivision, reverse subdivision, and
multiresolution schemes for this recently developed and flexible class of parametric curves and surfaces.

In this paper, we introduce a systematic approach to derive uniform subdivision schemes for PUPs curves and tensor-product
surfaces. Our approach formulates PUPs subdivision as a least squares problem. This allows us to find exact subdivision filters
for refinable basis functions and optimal approximate schemes for irrefinable ones. Additionally, we derive PUPs multiresolution
masks based on their subdivision filters. We formulate the problem as a constrained least squares optimization, such that the
resulting multiresolution schemes are banded and optimal in terms of minimizing multiresolution reconstruction error.

Finally, to illustrate our methods, we provide sample subdivision and multiresolution schemes with different properties. These
include specific examples targeted towards applications of PUPs multiresolution schemes for compression, feature transfer, and
macroscopic editing.
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1. Introduction

For almost half a century, parametric curves and surfaces,
most notably NURBS, have been an important paradigm in the
computational modeling of freeform curves and surfaces. Al-
though NURBS offer a number of important benefits for geo-
metric modeling, they impose two significant constraints. First,
NURBS can only support restricted control net topologies, which
often forces modelers to use multiple NURBS patches. Sec-
ond, NURBS offer limited control over the properties of the
parametrics they define. For example, the characteristics of the
contribution of each control point to the resulting curve or sur-
face cannot be modified (only the relative contribution of con-
trol points). Furthermore, it is not possible to increase smooth-
ness without changing the local support of control points [1].
These limitations stem from the use of B-Splines as the under-
lying basis functions.

Partition of Unity Parametrics (PUPs) was developed to ad-
dress the limitations of NURBS commented on above. PUPs
generalize NURBS by allowing arbitrary basis functions with-
out enforcing any topological restriction [1]. Here, the weighted
B-Spline functions of NURBS are replaced by arbitrary weight
functions. This permits modelers to control the characteristics
of curves and surfaces by changing the underlying basis func-
tions.

PUPs retain important properties of NURBS such as affine
invariance and local support. In addition, the flexibility in choos-
ing basis functions enables PUPs to support a variety of fea-
tures such as interpolation [1] and C∞ continuity in tandem with
compact support [2]. Furthermore, it has been shown that var-
ious curves can be generated by fixing control points and sim-

ply changing the underlying basis functions [1]. Additional
applications of PUPs, such as font modeling, cursive writing,
texture synthesis and sketch-based deformation, have also been
explored [1, 2, 3].

Given the flexibility of PUPs, an interesting and important
problem is to determine subdivision and multiresolution schemes
for this class of parametrics. This allows us to take advantage of
PUPs flexibility for subdivision and multiresolution whose ap-
plications include but are not limited to hierarchical modeling,
level-of-detail visualization, feature transfer, and compression.

In this paper, we outline the PUPs subdivision method de-
veloped in [4] and propose a method suitable for extending
these schemes to multiresolution systems for PUPs curves and
tensor-product surfaces. First, we outline a systematic approach
to find PUPs subdivision schemes by formulating subdivision
as a least squares problem (as originally proposed in [4]). The
least squares solution allows us to identify refinable weight func-
tions based on its residual, and also to produce refinement coef-
ficients, which can be used in stationary subdivision schemes.
Notably, for irrefinalble functions, our method provides the best
possible approximate subdivision schemes. In this extended
version of [4], we present a method to calculate PUPs multires-
olution schemes from a given subdivision filter. The problem
is formulated as a constrained least squares system, which re-
sults from considering fundamental conditions of multiresolu-
tion, and optimization terms that aim to minimize the multires-
olution reconstruction error.

The remainder of the paper is organized as follows. First,
we briefly discuss the related works and recent advances in
PUPs, subdivision, and multiresolution. Second, we introduce
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PUPs. Next, we define PUPs subdivision based on the refine-
ment of PUPs weight functions. Then, we propose a method
to derive PUPs subdivision schemes by means of least squares.
Afterwards, we introduce the class of functions we have utilized
to present example subdivision and multiresolution schemes.
Finally, we conclude the paper with a discussion of our results
and key directions for future work.

2. Related Work

Our framework is based on PUPs, a generalization of NURBS
[1]. The PUPs framework extends NURBS by supporting arbi-
trary basis functions. Previous works have demonstrated the
applicability of PUPs to several aspects of geometric model-
ing by exploring different types of basis functions. Recently,
a new basis function was developed that provides interpolation
and C∞ continuity with compact support [2]. In addition, PUPs
have been used for texture synthesis [3] and to derive rendering
kernels with arbitrary accuracy order [5]. In contrast, this work
focuses on the derivation of PUPs subdivision and multireso-
lution method, and related work on these two topics which are
described in the following subsections.

2.1. Subdivision
Subdivision has become a common technique for shape mod-

eling. These methods, including B-Spline and NURBS subdi-
vision schemes, have been widely studied (see [6, 7, 8, 9] for
comprehensive reviews). As PUPs are a superset of NURBS,
a group of our related works consists of algorithms that extend
common NURBS subdivision schemes.

The Lane-Riesenfeld algorithm, as a well-known subdivi-
sion algorithm, encapsulates B-Spline subdivision into a refine-
ment and smoothing phase. The method is limited, however,
as it can only model uniform subdivision of B-Splines. At-
tempting to address this issue, Cashman et al. [10, 11, 12] have
proposed new algorithms that support non-uniform refinement
for B-Splines of arbitrary degree. Furthermore, they extend
their algorithm to meshes with extra-ordinary points in [13].
In [14], Cashman et al. extend the Lane-Riesenfeld algorithm
by utilizing the repeated application of local smoothing opera-
tors to create successively smoother curves. These algorithms
improve NURBS subdivision methods, but are still restricted to
weighted B-Spline basis functions. In another attempt to ex-
tending B-Spline subdivision schemes Schaefer et al. [15] re-
place the arithmetic mean typically employed in subdivision
schemes with non-linear average functions (e.g. the geomet-
ric mean). They succeed in deriving subdivision schemes for
Gaussians, spiral and circular arcs. However, because they are
using non-linear average functions, the resulting schemes were
not affine-invariant.

In [4], we use the idea of refining basis functions to derive
subdivision schemes. This idea was pioneered by Micchelli and
Prautzsch, who used refinement of basis functions for the sys-
tematic study of stationary subdivision schemes [16]. Although
pioneering, their analysis is limited to non-negative refinement
coefficients that sum to one (row-wise) in a subdivision matrix.
PUPs refinement coefficients are free of such restrictions.

2.2. Multiresolution
Multiresolution representation of curves and surfaces is con-

ventionally constructed using the theory of wavelets [17]. In
this function-based approach, the scaling functions and their
complementary basis functions are used to hierarchically de-
compose a high resolution model to a low resolution approxi-
mation and the missing details. Samavati and Bartels [18, 19]
investigated an alternative discrete approach for constructing
multiresolution by reversing subdivision rules. In this wavelet
free approach, the required multiresolution filters (subdivision,
reverse subdivision and their complementary operations) are
found directly from some simple matrix computations. Sama-
vati and Bartels showed that the underlying wavelet functions
of their reverse subdivision approach are more compact than the
ones created through function based approaches [18, 19]. For
more general construction, Bartels and Samavati [20] take ad-
vantage of SVD decomposition to find all of the required oper-
ations. Lifting [21, 22] also appears to be useful in the discrete-
based approach. Using lifting, one starts with initial multireso-
lution filters and alters them (using a lifting matrix) in order to
derive higher quality filters.

Constructing PUPs wavelets is not trivial. This becomes
more challenging problem when the PUPs basis functions are
not always refinable. Therefore, our construction is a wavelet
free approach inspired by the method of Samavati and Bartels
[18]. We have a novel extension of their work, which enables
us to construct PUPs multiresolution such that all of the oper-
ations are banded and optimal in terms of minimizing the re-
construction error. In our approach, we consider a constrained
least squares system for achieving both goals. To further reduce
the residual error, we also provide a systematic method for in-
creasing bandwidth of multiresolution filters. Finally, our new
extension allows for the derivation of smooth reverse subdivi-
sion filters, whose applications are explored in [23, 24].

3. Partition of Unity Parametrics

In this section, we introduce our notation and provide the
definition of PUPs curves. Given a set of ordered control points
{P1, . . . ,Pn}with corresponding weight functions {w1(u), . . . ,wn(u)},
a PUPs curve Q(u) is defined as

Q(u) =
n

∑
i=1

wi(u)
n
∑
j=1

w j(u)
Pi for ul < u < ur , (1)

where ul and ur denote the domain bounds. Each weight func-
tion wi(u) is normalized via division by ∑ j w j(u) to ensure
affine-invariance. To guard against indeterminant forms we as-
sume ∑ j w j(u) , 0 for all u.

Although any set of weight functions can be used, PUPs are
often constructed from shifted versions of a given function w(u)
[1, 2, 5]. Thus, given a scalar value d as shift, wi(u) is defined
as w(u− id) making the corresponding uniform PUPs curve

Q(u) =
n

∑
i=1

w(u− id)
n
∑
j=1

w(u− jd)
Pi . (2)
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As noted in [4], for appropriately chosen w(u), Eq. 2 defines a
uniform B-Spline or NURBS curve. Hence, these are special
cases of PUPs curves.
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Figure 1: (A) A curve in Grassmann space before normalization (in blue). After
normalization the blue curve is projected to affine space and the red PUPs curve
is produced. (B) The resulting 2D PUPs curve.

Furthermore, any PUPs curve can be written as a rational
curve. Let p be the vector of control points, 1 be the vector of
ones, and W(u) be the vector of weight functions, then:

Q(u) =
Q̃(u)
G(u)

, (3)

where

[
Q̃(u),G(u)

]
=
[
w1(u) · · · wn(u)

]P1 1
...

...
Pn 1


= W(u) [p,1] .

(4)

In this definition, Q(u) is decomposed to Q̃(u) (a curve in the
Grassmann space) which division by G(u) projects to the affine
plane [25] (Fig. 1). This decomposition allows us to work on
the curve independent from normalization. We employ this def-
inition of PUPs to derive its subdivision in the next section.

4. PUPs Subdivision

In [4], we presented a subdivision scheme for uniform PUPs.
This class of PUPs can reproduce arbitary curves while simpli-
fying the problem such that we can solve it eloquently. More-
over, we focused on binary subdivision (although extension to
n-ary subdivision is straightforward). Here, we outline the for-
mulation of PUPs subdivision presented in [4].

4.1. Deriving PUPs Subdivision
Ideally, given a set of control points, a subdivision scheme

increases the number of control points without changing the
curve defined by these points. In binary subdivision, the num-
ber of control points is doubled through subdivision. Hence, to
subdivide a PUPs curve Q(u), we attempt to find another PUPs
curve Q∗(u) with twice the number of control points, that nev-
ertheless represents the same curve:

Q(u) =Q∗(u) , for all u ∈ [ul , ur] . (5)

Considering the rational form of PUPs, equality of Q̃(u) and
Q̃∗(u) (the counterparts of Q(u) and Q∗(u) in the Grassmann
space, see Fig. 1) suffices for satisfying Eq. 5. Hence, we at-
tempt to subdivide PUPs curves in the Grassmann space. Note
that similar approaches have been used to subdivide NURBS
when the control points have non-uniform weights [26, 27].
Therefore, we need to satisfy

Q̃(u) = Q̃∗(u) , (6)

which by Eq. 4 can be written as

W(u) p = W∗(u) p∗ , (7)

where W(u) and p are the weight functions and control points
of Q(u), and W∗(u) and p∗ are those of Q∗(u).

Assuming Q(u) is a uniform PUPs curve, W(u) consists of
translates of w(u). Furthermore, as we are considering binary
subdivision, we define W∗(u) by uniformly shifting w(2u) (the
dilated version of w(u)). We can then subdivideQ(u), provided
we have a refinement equation for w(u) relating it to its dilates.
Here, we consider only refinement of w(u) (with respect to d)
with the form

w(u) =
r

∑
−l

αi w(2u− id) , (8)

where α−l , . . . ,αr are scalar coefficients, and l and r indicate
the left and right bandwidth respectively. Then, using Eq. 8, we
can rewrite each weight function of W(u) in terms of W∗(u) by
utilizing a refinement matrix R

W(u) = W∗(u) R , (9)

where each column of R contains α−l , . . . ,αr, and successive
columns are identical up to a shift by two rows (note that R is
banded, due to the assumed local support of w(u)). It is not
always possible to solve Eq. 9 exactly. In the next section, we
address this problem and identify optimal masks approximately
solving Eq. 9 when exact refinement is impossible.

By substituting W∗(u) R for W(u) in Eq. 7, we derive

W∗(u) R p = W∗(u) p∗ (10)

and because W∗(u) consists of non-zero functions, we have

p∗ = R p . (11)

Therefore, the new control points result from multiplying the
refinement matrix by the old control points. This process can be
repeated to further refine the PUPs curve, and after i subdivision
steps we obtain:

pi = R pi−1 , (12)

where p0 are the original control points. Additionally, it follows
that

Q̃(u) = W(2iu) pi . (13)

When w(u) is a continuous function in L 2 space with compact
support, the support of w(2iu) tends to zero as i increases [28].
Consequently, the sequence pi converges to Q̃(u).
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Figure 2: Overview of the PUPs subdivision process (A) illustrated by a simple example (B-D). (A) First, multiply the points’ coordinates by their homogeneous
component to lift them into Grassmann space. Second, subdivide the points. Third, project the points to affine space by dividing their coordinates by their
homogeneous component. (B-D) Three iterations of PUPs subdivision. Subdivision is performed in Grassmann space, and projected to the affine plane (shown from
above in insets). Blue points represent pi (which converge to Q̃(u)) and the red points are p̂i (which converge to Q(u)).

Note that pi resides in the Grassmann space and hence, each
point in pi has an associated weight (i.e. homogeneous coordi-
nate). By dividing each point by its weight, we project pi to the
affine plane and yield p̂i. As the sequence of p0, . . . , pi con-
verges to Q̃(u), the sequence of p̂0, . . . , p̂i converges to Q(u)
(see Fig. 2). Moreover, after projecting the points, if we want to
subdivide p̂i again, we first lift p̂i into the Grassmann space and
retrieve pi (as subdivision is performed in Grassmann space).
Then, by subdividing pi, we produce pi+1 and by projecting
pi+1 to affine plane we get p̂i+1.

4.2. Finding Refinement Coefficients

As explained in the previous section, we can subdivide a
uniform PUPs curve if α−l , . . . , αr exist such that Eq. 8 is sat-
isfied. Finding such coefficients is difficult as w(u) can be any
function. Furthermore, not all functions are refinable (i.e. sat-
isfying Eq. 8), hence we need a method for identifying these
functions.

Given a uniform PUPs defined by w(u) and d, its identical
weight functions are uniformly translated by d. After one sub-
division step, the weight functions are dilated by a factor of two
and consequently, the corresponding new weight funtions are
defined by translating w(2u) with d

2 . Based on the value of d,
each old weight function shares its support with one or more
dilated weight function (see Fig. 3 for an example configura-
tion). For convenience, we assume w(u) support is a multiple
of d which is the case for all example schemes in this article.
In case this condition is not satisfied, one possible tactic is to
extend w(u) from both ends with zero intervals such that its
extended support becomes a multiple of d.

The goal of the refinement equation is to represent w(u) in
terms of a linear combination of the dilated functions. As w(u)
is a function with compact support, only a few dilated functions
contribute in the refinement equation. Hence, for any sample
parameter ū in the support w(u), the value of the function satis-
fies

w(ū) =
[
w(2ū+ ld) . . . w(2ū− rd)

]α−l
...

αr

 , (14)

where l and r are defined as the largest integers such that w(2u+
ld) and w(2u− rd) completely reside in the support of w(u).

w(2u) w(2u-d) w(2u-2d) w(2u-3d)w(2u+d)w(2u+2d)w(2u+3d)

Figure 3: An example function arranged with its dilated forms. The red func-
tion represents w(u) and the blue functions are dilated copies of w(u). The
gray functions are uniform translates of w(u). Because of refinement, the red
function results from a linear combination of the blue functions. Both l and r
are 2 in this example since w(2u+2d) and w(2u−2d) completely reside in the
red function’s support. Note that the support of w(u) only partially covers the
support of w(2u+3d) and w(2u−3d).

In general, solving the refinement equation is difficult as
w(u) can be any non-linear function. However, if we evaluate
Eq. 14 at a set of samples, we can form a linear system, which
can be used to determine the relation between the original and
the dilated weight-functions. Let [ū1 . . . ūs] be a dense set of
samples that are distributed in the support of w(u). By means of
this sampling set, we evaluate w(u) and discretize the function
(see. Fig. 4). We assume the sampling set is dense enough that
the discretization error becomes relatively small. By evaluating

u1
- u2

- u3
- u4

- u5
- u6

- u7
- u8

- u10
- u11

- u12
- u13

- u14
- u16

-u15
-

Figure 4: Function Sampling: the red function is discretized by means of 16
samples. Normally, more number of samples are used to minimize the dis-
cretization error.
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Eq. 14 for each sample, we derivew(ū1)
...

w(ūs)

=

w(2ū1 + ld) . . . w(2ū1− rd)
...

. . .
...

w(2ūs + ld) . . . w(2ūs− rd)


α−l

...
αr

 , (15)

which we denote by
w̄ = M c . (16)

Note that each row of M corresponds to an evaluation of Eq. 8
for one sample, and each column corresponds to the discretiza-
tion of one dilated weight function.

Provided that the number of samples is larger than the num-
ber of coefficients, we will obtain an over-determined linear
system. This over-determined system is solved using the pseudo-
inverse of M:

c = M†w̄ . (17)

As Eq. 15 is over-determined, it might not be possible to
solve it exactly. In other words, Eq. 15 is a least squares prob-
lem and the solution provided by the pseudo-inverse, minimizes
norm-2 of the residual vector

‖ε‖2 = ‖w̄−M c‖2 , (18)

which is the least squares error. For a dense enough sample set,
if the error is zero, we have an exact solution for the refinement
equation and thus, w(u) is refinable. Many functions such as all
polynomials, triangular (hat) functions and B-Splines are refin-
able (see [29] for more details) and our approach based on least
squares produces exact subdivision schemes for theses weight
functions. For other functions, the error may not be zero, but
by means of the pseudo-inverse, we find the best possible coef-
ficients (in the least-squares sense). This implies that the result-
ing subdivided curve will deviate from the initial PUPs curve,
but it will be the closest possible curve. For practical applica-
tions, the difference will be negligible if the least squares error
is close to zero.

To ascertain the quality of derived masks we normalize the
residual error ‖ε‖2 by ‖w̄‖2, yeilding:

E =
‖ε‖2
‖w̄‖2

. (19)

This provides an error measure which is statistically indepen-
dent of the number of samples used to discritize w, as well as
the magnitude of w. Note that the value of E is always between
0 and 1, where 0 indicates the best quality and an exact refine-
ment. In addition, since the same number of samples is used
for both ‖w̄‖2 and ‖ε‖2, the value of E is independent from the
number of samples.

4.3. Example PUPs Subdivision Schemes

In [4] we considered several classes of weight function and
derived corresponding PUPs subdivision schemes. These in-
cluded the rederivation of B-Spline subdivision filters, which
served to demonstrate the correctness of our proposed method.
We additionally, considered polynomial basis functions, as well

as CINPACT approximating and interpolating functions [2]. Here,
we summarize the resulting subdivision schemes. These schemes
are then used as the basis for the multiresolution filters we de-
rive in subsequent sections.

Polynomials. We denote a polynomial of degree κ as

p(u) = a0u0 +a1u1 + . . .+aκ uκ , (20)

where a0, . . . , aκ are the polynomial coefficients. All poly-
nomials are refinable, but do not have compact support. Conse-
quently, we assume p(u) is defined in a bounded domain [µl , µr]
for the sake of sampling. We also assume a shift of d = 1.

CINPACT (approximating). Introduced by Runions and
Samavati [2] as the basis for CINPACT splines, these weight-
functions have C∞ continuity with compact support (two im-
portant properties for geometric modeling). The C∞ continuous
function they propose are bump functions of the form

w(u) =

e
−σu2

c2−u2 if − c < u < c

0 otherwise
, (21)

where c adjusts the active support and σ is a parameter. Re-
finement coefficients for several CINPACT weight functions are
provided in supplementary materials.

CINPACT (interpolating). Runions and Samavati [2] also
propose a class of C∞ continuous interpolating functions with
compact-support. This function is defined by multiplying the
bump function wB from Eq. 21 by the normalized-sinc function:

w(u) =
sin(πu)

πu
wB(u) . (22)

This function creates interpolating curves when d = 1, as the
sinc function is 1 at u = 0 and 0 for other integers (hence,
only one weight-function is active at integer parameter values
- forcing interpolation). In this case, to obtain interpolating
subdivision filters hard constraints are introduced into Eq. 16
(see [4] for details). We have provided a list of refinement
schemes for different interpolating CINPACT functions in sup-
plementary materials. As an important example, subdivision
filter (refinement coefficients) of interpolating CINPACT with
c = 5 and σ = 4.79 is [0.0240126,0,−0.129882,0,0.606154,
0.99909,0.606154,0,−0.129882,0,0.0240126]. This subdivi-
sion has been used for creating several examples in Section 6.

5. PUPs Multiresolution

Multiresolution techniques provide a means to change the
resolution of curves and surfaces. In previous sections, we out-
lined the PUPs subdivision method presented in [4]. These sub-
division schemes allow us to increase resolution by introduc-
ing additional control points. Thus, to obtain a multiresolution
framework, we must now define complementary operations that
enable us to decrease resolution, reversing the results of subdi-
vision. This requires a method for deriving a corresponding
reverse subdivision scheme for a given PUPs subdivision filter.

As explained in Section 2, there exist two main approaches
for deriving multiresolution filters. In this paper, we employ
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the discrete approach (reverse subdivision) considering the fol-
lowing reasons. First, it is not clear how to directly deriving
wavelet functions for a general scaling function resulting from
PUPs. These functions sometimes are not even refinable. How-
ever, in the reverse subdivision method we can generalize some
simple matrix computations for constructing multiresolution fil-
ters. Interestingly, as shown in [18, 19], the wavelet functions
that resulted from the reverse subdivision filters are optimal in
a least square sense. Notice that for construction multiresolu-
tion representation, we do not directly need wavelet functions
and multiresolution filters are sufficient. Second, the flexibility
and simplicity of the numerical approach enables us to search
for banded and optimal filters as we explain in the following
sections.

5.1. Definitions

Figure 5: Repetitive decomposition of a curve: the image illustrates the results
of decomposing a curve, where the A and B masks are used successively and di

denotes the details at iteration i. The initial curve was obtained from [30].

In this section we introduce the mathematical preliminaries
and definitions we use to derive PUPs multiresolution schemes
based on the definitions and notations employed in [18].

Let f be a vector of control points. Using reverse subdivi-
sion, we find a vector of control points c (with lower resolution)
via application of a reverse subdivision mask A (see Fig. 5):

c = Af . (23)

For a c obtained from Eq. 23, an important question is whether
or not we can reconstruct f by applying a subdivision mask. In
general, it is not possible to exactly reconstruct f from c [20,
18] (regardless of the specified A) as some information may be
lost when the resolution is decreased. Therefore, subdividing c
typically only generates an approximation of f, here denoted as
f̃:

f̃ = Pc . (24)

Note that in the notation of [18], P is the refinement matrix R
introduced in Eq. 9.

Although f cannot be reconstructed from c alone, if the
missing information is preserved, an exact reconstruction of f
is possible. Letting r denote the difference between f and f̃:

r = f− f̃ , (25)

we call r the reconstruction residual. Given r, we can recon-
struct f as r+Pc.

r has the same dimension as f, but it is possible to represent
r as a coarse data vector or d (which is called the detail vector)
using a subdivision-like matrix Q:

r = Qd . (26)

The structure of Q is similar to that of P in that it increases the
resolution of the details. Note that it has been proven that Q and
d exist such that r can be reconstructed [20].

For binary subdivision, d and c have the same dimension
(half that of f). Thus, we can exactly reconstruct f without ad-
ditional data:

Pc+Qd = f̃+ r = f . (27)

Finally, the details d are calculated from f using the matrix B:

d = Bf . (28)

In summary, given a high resolution data vector f, two masks
A and B may be applied to f in order to obtain coarse points c
and details d, respectively. Then, to reconstruct f, c and d may
be subdivided using P and Q and summed (Fig. 6).

f
cA P

f~

f
d rB Q

Figure 6: f is decomposed to c and d using A and B respectively. Then f is
reconstructed by subdividing c and d using P and Q respectively.

These multiresolution masks have one important property.
The block matrix formed by P and Q is the inverse of that
formed by A and B:

[
P | Q

] A
—
B

= I =

 A
—
B

[P | Q
]

. (29)

Deriving masks for P, Q, A, and B such that they satisfy Eq. 29,
is the main challenge in obtaining a discrete multiresolution
system. The solution is not unique and different criteria can
be used to develop these masks. Minimizing ‖r‖2 is an impor-
tant criteria [18], which we use along with bandedness to derive
PUPs multiresolution.

5.2. Optimal Banded Multiresolution
Given a subdivision filter of length k, we aim to find filters

for A, B, and Q that minimize the residual r while also being
banded. Thus, P and Q have the form

P =



...
...

p1 0
p2 0
p3 p1

. . .
...

... . . .
pk pk−2
0 pk−1
0 pk
...

...


, Q =



...
...

q1 0
q2 0
q3 q1

. . .
...

... . . .
qk qk−2
0 qk−1
0 qk
...

...


, (30)
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constructed by shifting a column filter. Similarly, A and B have
the form

A =


...

. . . a1 a2 a3 . . . ak 0 0 . . .

. . . 0 0 a1 . . . ak−2 ak−1 ak . . .
...

 , (31)

B =


...

. . . b1 b2 b3 . . . bk 0 0 . . .

. . . 0 0 b1 . . . bk−2 bk−1 bk . . .
...

 , (32)

obtained by shifting row filters. To simplify derivations, we
assume k is always even (for odd k an equivalent even length
filter can be generating by appending a zero to the mask).

Our filters must satisfy Eq. 29, thus[
A
B

][
P Q

]
=

[
AP AQ
BP BQ

]
=

[
I 0
0 I

]
, (33)

which provides four conditions that must be satisfied:

AP = I, AQ = 0, BP = 0, BQ = I . (34)

Below we present the general method we use to derive multires-
olution filters. As a simple illustration of the method we calcu-
late the multiresolution filters for the Chaikin subdivision filter
(0.25, 0.75, 0.75, 0.25) in parallel with our derivation. Using
the condition BP = 0 we first aim to derive B. This condition
implies that B forms the null space of PT and is thus satisfied
by defining (a similar construction is used in [18]):

b1
b2
...

bk−1
bk

=


−pk
pk−1
...
−p2
p1

 , (35)

For example, assume PC is a circulant Chaikin subdivision ma-
trix with three columns:

PC =


0.25 0 0.75
0.75 0 0.25
0.75 0.25 0
0.25 0.75 0

0 0.75 0.25
0 0.25 0.75

 . (36)

Then, based on Eq. 35, the corresponding BC is

BC =

−0.25 0.75 −0.75 0.25 0 0
0 0 −0.25 0.75 −0.75 0.25

−0.75 0.25 0 0 −0.25 0.75

 . (37)

Given B, we can then derive Q using the fourth condition
BQ = I. For the Chaikin example, this condition becomes

BC


q1 0 q3
q2 0 q4
q3 q1 0
q4 q2 0
0 q3 q1
0 q4 q2

= I . (38)

Which, due to the regular structure of BC and QC, reduces to:−0.75 0.25 0 0
−0.25 0.75 −0.75 0.25

0 0 −0.25 0.75




q1
q2
q3
q4

=

0
1
0

 , (39)

This equation can be solved to obtain the filter for QC. The
fourth condition BQ = I implies that multiplying B by a column
of Q yields an elementary basis vector. As the columns of Q are
shifted copies, this constraint reduces to the following system

bk−1 bk 0 . . . 0 0 0
...

b3 b4 b5 . . . bk 0 0
b1 b2 b3 . . . bk−2 bk−1 bk
0 0 b1 . . . bk−4 bk−3 bk−2

...
0 0 0 . . . 0 b1 b2




q1
q2
...

qk

= e k
2

, (40)

where e k
2

is the k
2 elementary basis vector (with k−1 elements).

Eq. 40 is under-determined, thus there exists many suitable fil-
ters for Q. Consequently, we choose the filter that minimizes
the residual while satisfying Eq. 40.

As shown in [18], the minimum reconstruction residual is
attained when Q is the orthogonal complement of P (i.e. PT Q=
0). By adding this constraints to Eq. 40 we aim to support or-
thogonality in the resulting filter:

bk−1 bk 0 . . . 0 0 0
...

b3 b4 b5 . . . bk 0 0
b1 b2 b3 . . . bk−2 bk−1 bk
0 0 b1 . . . bk−4 bk−3 bk−2

...
0 0 0 . . . 0 b1 b2

pk−1 pk 0 . . . 0 0 0
...

p3 p4 p5 . . . pk 0 0
p1 p2 p3 . . . pk−2 pk−1 pk
0 0 p1 . . . pk−4 pk−3 pk−2

...
0 0 0 . . . 0 p1 p2




q1
q2
...

qk

=



0
...
0
1
0
...
0
0
...
0



.

(41)
This new linear system is now over-determined with two groups
of constraints. The first ensures that the masks are banded and
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satisfy BQ = I, whereas the second (shown in red) ensures min-
imal residual. As regular banded masks are necessary in our
construction, we treat the first group of constraints as hard con-
straints and the second group as soft constraints. Then, by solv-
ing a constrained least squares system [31] we calculate the best
Q filter.

For the Chaikin example, adding orthogonality constraints
to Eq. 39 yeilds the following constrained least squares system

−0.75 0.25 0 0
−0.25 0.75 −0.75 0.25

0 0 −0.25 0.75
0.75 0.25 0 0
0.25 0.75 0.75 0.25

0 0 0.25 0.75




q1
q2
q3
q4

=


0
1
0
0
0
0

 . (42)

The corresponding solution is
q1
q2
q3
q4

=


0.25
0.75
−0.75
−0.25

 (43)

with a least squares error of 0.53033.
Once the B and Q filters are calculated, we can find the A

filter. We have two conditions for A: AP = I and AQ = 0. The
orthogonality condition AQ = 0 indicates that we can calculate
the A filter by flipping and alternating the signs of the Q filter:

a1
a2
...

ak−1
ak

=


qk
−qk−1

...
q2
−q1

 , (44)

to satisfy this condition. Note that the order of the sign alterna-
tion differs from Eq. 35. This solution must also satisfy AP = I.
We prove this condition holds by showing that AP = BQ (as
BQ = I by construction) when Eq. 44 is used as the A filter.

Let F be a square anti-diagonal matrix with an even number
of rows whose NE-SW diagonal consists of alternating −1 and
1 entries:

F =



...
...

...

...

. . . 0 0 −1 . . .

. . . 0 1 0 . . .

. . . −1 0 0 . . .

... ...
...

...

 . (45)

Note that F−1 =−F , and that multiplying a vector v by F yields

F

v1
...

vk

=


−vk
vk−1
...
−v2
v1

 , (46)

the vector whose entries are the inverted entries of v with alter-
nated signs.

Now starting with the transpose of AP we obtain:

(AP)T = PT IAT =−PT FFAT , (47)

Multiplying PT by −F yields B as the rows of PT are flipped
and its elements sign is altered. In addition, multiplying F by
AT yields Q as columns of AT are flipped and its elements sign
is altered. Therefore, AP = BQ and BQ = I by constructoin,
thus satisfying the condition AP = I.

Based on Eq. 44, for the Chaikin example we have
a1
a2
a3
a4

=


−0.25
0.75
0.75
−0.25

 , (48)

which is the final required reverse subdivision filter. These
Chaikin filters are exactly the same as those derived by Sama-
vati and Bartels [32] and are guaranteed to provide the mini-
mum reconstruction error (in sense of local least squares). This
indicates that our method is consistent with previous multires-
olution techniques if they are banded and optimal.

5.3. Shifting Columns
In the previous subsection, we explained how to find banded

multiresolution masks by solving a constrained least squares
system. In this subsection, we aim to improve our multiresolu-
tion filters by considering other arrangements for these masks.
As a motivating example, let us consider BC from the Chaikin
example (Eq. 37) and shift its columns two times to the right

BC =

 0 0 −0.25 0.75 −0.75 0.25
−0.75 0.25 0 0 −0.25 0.75
−0.25 0.75 −0.75 0.25 0 0

 ,

(49)
or to the left

BC =

−0.75 0.25 0 0 −0.25 0.75
−0.25 0.75 −0.75 0.25 0 0

0 0 −0.25 0.75 −0.75 0.25

 . (50)

Both of these arrangements are also valid banded multiresolu-
tion masks. Here we consider all such shifted arrangements to
find the one minimizing the least squares error in Eq. 41, thus
improving the quality of the resulting multiresolution masks.
To shift the columns of A and B by 2i we multiply these ma-
tricies by the elementary matrix Ei:

ek,l =

{
1 if l− k = 2i
0 o.w , (51)

where i is an integer, i > 0 shifts to the left and i < 0 to the right
(note that E0 = I). Hence, the results of right-side multiplica-
tion by Ei

Ai = AEi

Bi = BEi
, (52)
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are still banded, but differ in the starting entry for the non-zero
band.

First, let us check how shifting impacts the filter values.
Replacing B with Bi, the third condition BP = 0 provides

PT BT
i = 0

PT ET
i BT = 0

. (53)

Thus, multiplying ET
i by BT shifts the rows of BT 2i times.

However, Eq. 35 still provides a valid solution for Bi.
Considering the fourth condition BQ = I, we derive

BiQ = I

BEiQ = I
. (54)

Multiplying Ei by Q shifts the rows of Q 2i times up or down.
As the result of this multiplication, the right hand side of Eq. 40
changes (however, the left hand side is unchanged). Conse-
quently, the filter for Q is obtained by solving Eq. 40 after re-
placing e k

2
with es (where s = k

2 + ith). The filter therefore de-
pends on Ei (i.e. half of the shift value). Thus, the original
equation (Eq. 40) is obtained when we use E0.

We are free to use different elementary vectors on the right
hand side. This new degree of freedom allows us to further
minimize the residual by varying the shift i in Ei. First, note
that we are free to use k−1 possible elementary vectors, which
implies that we can shift A and B columns at most k

2 −1 times
to the right or left. For each of these under-determined linear
systems, we can form a constrained least squares problem sim-
ilar to Eq. 41 and calculate a solution. Each least squares solu-
tion has an associated least squares error in terms of satisfying
the soft constraints. We call this error the orthogonality error.
Using this error as a criterion, we select the solution that is as-
sociated with the minimum least squares error. Such a solution
satisfies the orthogonality condition PT Q = 0 better than the
other solutions and, consequently minimizes the reconstruction
residual.

After calculating the optimal Q filter, we construct the A fil-
ter using Eq. 44 and then shift the columns of A using Ei. Note
that by replacing A with Ai, the necessary conditions AiP = I
and AiQ = 0 are still satisfied similarly to Bi.

Returning to our Chaikin example, we consider the two pos-
sible shifted arrangements, and obtain

q1
q2
q3
q4

=


−1.30932
0.0720339
0.572034
0.190678

 , (55)

for E−1 and 
q1
q2
q3
q4

=


−0.190678
−0.572034
−0.0720339

1.30932

 , (56)

for E1 with 1.02588 and 1.02588 as the respective (and identi-
cal) least squares error. Consequently, E0 supports the optimal
arrangement and Eq. 43 represents the optimal solution for the
Chaikin filter.

5.4. Increasing Bandwidth

The solution we proposed in the previous section assumes
that all filters have the same size k. However, for a given P fil-
ter of size k, we can find longer filters for Q and A. Increasing
the bandwidth of Q and A allows us to further reduce the recon-
struction residual by introducing more degrees of freedom into
our over-determined linear system (Eqs. 41).

Let l be an even positive integer, indicating the number of
extra elements. Then we assume the P filter has k+ l elements
with l zero elements added to the end of the initial P filter:

p1
...

pk
pk+1
...

pk+l


=



p1
...

pk
0
...
0


(57)

Using this new P filter, we can calculate the B filter in the same
way as before (via Eq. 35):

b1
...

bl
bl+1
...

bk+l


=



0
...
0
−pk
...

p1


(58)

To calculate Q, we form Eq. 41 using the new B filter. Because
the new B filter has l zero elements at the beginning, the last l

2
rows of hard constraints are zero and can be removed. More-
over, the first l

2 rows of the soft constraints are zero as well.
After removing the zero rows, the new over-determined linear
system has 2k−2+ l rows and l + k columns, where k−1+ l

2
rows correspond to the hard constraints. Therefore, in compar-
ison to Eq. 41, this new over-determined linear system has l

2
more degrees of freedom, which serves to reduce the orthogo-
nality error when solving Eq. 41 .

To demonstrate this process, let us extend the Chaikin filter
by adding two more elements and recalculating its correspond-
ing multiresolution masks. Based on Eq. 35 we obtain

b1
b2
b3
b4
b5
b6

=


0
0

−0.25
0.75
−0.75
0.25

 , (59)
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which forms the following over-determined linear system

−0.75 0.25 0 0 0 0
−0.25 0.75 −0.75 0.25 0 0

0 0 −0.25 0.75 −0.75 0.25
0 0 0 0 −0.25 0.75

0.75 0.25 0 0 0 0
0.25 0.75 0.75 0.25 0 0

0 0 0.25 0.75 0.75 0.25
0 0 0 0 0.25 0.75




q1
q2
q3
q4
q5
q6

= es ,

(60)
where the optimal solution for Q is

q1
q2
q3
q4
q5
q6

=


−0.0857226
−0.257168

0.03642
0.795041
−0.619237
−0.206412

 (61)

with E0 and 0.34716 as the least squares error. Obviously, the
quality is improved in comparison to Eq. 43.

There exists no limitation on extending the bandwidth and,
depending on the application, one can utilize a custom filter
size. Note that increasing the bandwidth improves reconstruc-
tion error but, on the other hand, reduces the efficiency of using
the multiresolution masks. Because of this trade-off, it is best
to find a Q filter with minimal size such that its correspond-
ing orthogonality error is less than a threshold. To this end,
we start with l = 0 and calculate the optimal multiresolution
masks. Then, if the orthogonality error is less than the given
threshold we stop. Otherwise, we increase l by 2 and repeat the
procedure until the desired level of error is achieved. Alg. 5.1
describes the procedure of finding A, B, and Q filters, provided
an input P filter and a threshold value. The algorithm employs
a main loop, which in each of its iterations the bandwidth is ex-
tended until the threshold is reached. In each iteration, B mask
is calculated first. Then, a least squares system is formed for
calculating Q mask corresponding to Eq. 41. Next, in another
loop, the best shift is found by solving the system for all possi-
ble shift values. At last, A mask is calculated based on the best
Q.

Using Alg. 5.1 we have developed multiresolution filters for
polynomial, CINPACT, and interpolating CINPACT functions.
For example, the resulting Q filter for interpolating CINPACT
with c= 5 and σ = 4.79 is [0.00876249,0,−0.0473956,0,−0.779718,
0.36458,0.221193,0,−0.0473956,0,0.00876249]. This filter
is the result of a shift using E−1. The other filters have been pro-
vided in the supplementary materials. The first set of filters are
calculated without extension and hence, they have the minimum
possible length.The second set provides extended filters for se-
lected polynomial, CINPACT, and interpolating CINPACT sub-
division schemes. As shown in Fig. 7, increasing bandwidth de-
creases the orthogonality error and improves reconstruction. It
is also important to note that multiresolution filters of the same
size may have different orthogonality errors (see Fig. 7). Of
the multiresolution masks we considered, the best masks (i.e.

Algorithm 5.1 This algorithm describes the procedure of cal-
culating optimal banded multiresolution filters provided by a
subdivision filter.
Require: p = [p1, . . . , pk], threshold . P filter

1: . Orthogonality error threshold
2: if k is odd then . Ensuring even number of elements
3: pk+1← 0 . Add a zero element to P filter
4: k← k+1
5: end if
6: Errmin← ∞

7: l← 0
8: shi f t← 0
9: while Errmin > threshold do

10: Let a,b,q be three k×1 zero vector.
11: for i = 1 to k do . Calculating B filter
12: if i is odd then
13: bi←−pk−i+1
14: else
15: bi← pk−i+1
16: end if
17: end for
18: Let C and M be two (k−1)× k zero matrix.
19: for i = 1 to k−1 do
20: for j = max(1,2i− k+1) to min(2i,k) do
21: Ci, j← bk−2i+ j . Hard constraints
22: Mi, j← pk−2i+ j . Soft constraints
23: end for
24: end for
25: C←C[1 : k−1− l

2 , :] . Removing zero rows
26: M←M[1+ l

2 : k−1, :] . Removing zero rows
27: for i = 1 to k−1− l

2 do . For all possible shifts
28: Let t be a (2k+ l−2)×1 zero vector
29: ti← 1
30: qtemp← Solve(C,M, t)
31: Errtemp← LSQError(C,M,qtemp)
32: if Errtemp < Errmin then
33: Errmin← Errtemp
34: q← qtemp

35: shi f t← 2
(
i− k+l

2

)
36: end if
37: end for
38: for i = 1 to k do . Calculating A filter
39: if i is odd then
40: ai← qk−i+1
41: else
42: ai←−qk−i+1
43: end if
44: end for
45: if Errmin > threshold then
46: pk+1← 0
47: pk+2← 0
48: k← k+2
49: l← l +2
50: end if
51: end while
52: Return a,b,q,shi f t
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Figure 7: Plot of the orthogonality error against filter size: the orthogonality
error is decreased by increasing bandwidth. As depicted, the polynomial mul-
tiresolution masks have less orthogonality error compaired to the CINPACT
masks.

Figure 8: An example of subdivision using CINPACT filters (c = 3.684, σ =
17.27).

those with the smallest orthogonality error) correspond to the
polynomial (degree 10) and interpolating CINPACT masks.

6. Results

This section presents example applications of PUPs mul-
tiresolution. We have employed several subdivision and mul-
tiresolution schemes developed using polynomials and CINPACT-
splines to produce different curves and tensor-product exam-
ples. We also compare our schemes with previous subdivision
and multiresolution schemes and show advantages of PUPs sub-
division and multiresolution schemes. All of the employed fil-
ters are provided in supplementary materials. The high reso-
lution contours used to generate the following examples were
obtained from [30].

The curves in Fig. 8 illustrate the result of applying CIN-
PACT subdivision filters, which converges to the initial PUPs
curve. Fig. 9 shows the result of cubic B-Spline subdivision and
two example polynomial PUPs subdivision. While the char-
acteristic of cubic B-Spline subdivision is fixed, we can con-
trol the characteristics of polynomial subdivisions by changing
polynomial coefficients and degree. As illustrated in Fig. 9, the
sixth degree polynomial produces curves with less energy while
both cubic B-Spline and the sixth degree polynomial have the
same number of refinement coefficients. More subdivision re-
sults and an in-depth discussion are provided in [4].

Figure 9: Comparison of cubic B-Spline and polynomial subdivision. (A) The
initial control net obtained from [30]. (B-D) The result of four applications
of cubic B-Spline (B) degree 10 polynomial (C) and degree 6 (D) subdivision.
Wide range of shapes are generated by changing polynomial coefficients and
degree without changing bandwidth.

Fig. 10 shows applications of polynomial reverse subdi-
visions on a sample curve. The number of points (resolution)
is halved in each iteration. Fig. 11 shows the applications of
reverse interpolating CINPACT subdivision. As interpolating
CINPACT subdivisions interpolate the points through subdivi-
sion, we expect their reverse subdivision to inverse the process
and preserve half of the control points. Although this is not
exactly achieved (because of the details), the reverse subdivi-
sion of interpolating CINPACT functions approximately main-
tain half of the control points. Consequently, the filters work
well for creating the cliche of an object, as the results mimic
the initial high resolution point set.

Figure 10: Example application of polynomial reverse subdivision (degree 10).

Fig. 12 shows the difference between minimal and extended
multiresolution masks of the CINPACT function with c= 3,σ =
7.27. As explained, the orthogonality error exponentially de-
creases by increasing bandwidth of the masks, and consequently
the reconstruction error is improved. Row (A) of Fig. 12 shows
the result of minimal multiresolution masks whose orthogonal-
ity error is 7.58657. The curve has high energy and is exag-
gerated after a few steps of reverse subdivision. On the other
hand, row (B) shows the better results obtained by the extended
masks whose orthogonality error is 0.285485. Based on our
experiments, the visual quality of the results is decent if the
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orthogonality error is less than 1.

Figure 11: Example application of interpolating CINPACT reverse subdivision
(c = 5,σ = 4.79).

Figure 12: Example application of CINPACT reverse subdivision (c = 3,σ =
7.27) without extension (A) and with extension (B). As the orthogonality er-
ror decreases by extending multiresolution filters, the quality of the results is
improved. Based on the provided tables the orthogonality error is 7.58657 and
0.285485 for (A) and (B) respectively.

Fig. 13 and Fig. 14 show additional applications of PUPs
multiresolution for macroscopic editing and transferring fea-
tures. In Fig. 13, the high-resolution data of the horse head is
decomposed first. The result represents the overall macroscopic
shape of the horse. Next, the low resolution data is modified by
moving one of its points. At last, the horse is reconstructed us-
ing the details obtained from the decomposition. As illustrated,
a designer can easily modify a curve or surface using this tech-
nique and produce visually pleasing results.

In Fig. 14, we have used multiresolution masks to trans-
fer the horse features to a simple circle curve. To this end, we
decomposed the horse data for several steps and extracted the

Figure 13: Example application of PUPs multiresolution for editing and mod-
ifying curves. (I) The initial high resolution data (obtained from [30]). (II)
The result of 8 decomposition steps using interpolating CINPACT (c = 5 ,
σ = 4.79). (III) The low resolution curve is modified by moving one of the
points. (IV) The result of reconstruction using the modified low resolution
data. The horse head is different after modification.

details. Then, the details were added to the circle through sub-
division. As illustrated, the wavy and coiled back of the horse
is moved to the circle.

Figure 14: Example application of PUPs multiresolution for transferring fea-
tures from a source to a destination curve. (I) The initial high resolution data
(obtained from [30]) that is used for extracting features. (II) The initial points.
(III) The result of subdivision without using features. (IV) The result of subdi-
viding using the horse features.

Application of PUPs multiresolution is extendable to tensor-
product meshes. Fig. 15 shows the initial high resolution terrain
of Mount Shasta. The resolution of the mesh is reduced using
interpolating CINPACT filter (c = 5,σ = 4.79). As illustrated
in Fig. 15, the key features of the terrain (such as Mount Shasta)
are preserved while the resolution is reduced. Such results sup-
port application of PUPs multiresolution in level-of-detail visu-
alization.

We can also use the developed filters to reduce the resolu-
tion of images and volumes. These types of datasets have a reg-
ular structure enabling us to apply our filters to them. In partic-
ular, we apply our filters to images one time row-wise and one
time column-wise in each iteration to reduce horizontal and ver-
tical resolutions. Fig. 16 show applications of PUPs multireso-
lution masks in image compression. We applied extended mul-
tiresolution filters of interpolating CINPACT (c = 5,σ = 4.79)
to the Lena test image [34]. For the sake of comparison, we
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Figure 15: Application of PUPs multiresolution in terrain simplification: (A)
the initial high resolution terrain of Mount Shasta (with 262144 vertices). The
elevation data is obtained from [33]. (B-D) the result of terrain simplification
using interpolating CINPACT filters (c = 5,σ = 4.79) after one, two, and three
decomposition steps respectively. The number of vertices are 56536, 16384,
and 4096 respectively.

have also applied CDF 9/7 1 wavelets that are used for jpeg–
2000 lossy compression[35]. For boundaries, we used half-
sample symmetry [36] and we calculated the PSNR of each im-
age’s luminosity as a quality criterion. Visually comparing the
results shows that interpolating CINPACT masks produce high
quality results better than or almost the same as CDF wavelets.
This is further supported by higher PSNR values of interpolat-
ing CINPACT masks.

7. Conclusion

In this paper, we have presented a framework to system-
atically construct subdivision and multiresolution schemes for
Partition of Unity Parametrics. We customize and build our
schemes based on a given weight function. By choosing appro-
priate weight functions, these schemes guarantee special prop-
erties, such as arbitrary smoothness and interpolation. More-
over, we can control the amount of reconstruction error by ex-
tending the bandwidth of multiresolution masks.

Regarding future works, more challenges are raised in the
context of PUPs subdivision. At present, our current subdivi-
sion schemes are all based on uniform refinement. As a future
work, we are interested in developing non-uniform subdivision
for PUPs as well. By using non-uniform subdivision, we can
precisely control the geometric distribution of points and cre-
ate curves where their spacing is uniform. Additionally, we
are interested in extending our method to non-stationary sub-
division, where subdivision rules may differ during successive
subdivision iterations. Such freedom should enable us to re-
duce the amount of error by regulating refinement coefficients
in each iteration. Moreover, we have not addressed the problem
of boundary conditions, as arises when open curves are consid-
ered. We believe that by adjusting the proposed least squares
method or using phantom points, it is possible to derive special
filters for boundaries as well.

Furthermore, it is important that we analyze the smoothness
of our subdivision schemes in the presence of least squares er-
ror. One approach is to prove that the limit function converges
uniformly, which is a stronger condition than point-wise con-
vergence and depends on the weight functions. Uniform con-
vergence preserves smoothness; and for example, one can show
CINPACT subdivision schemes have C∞ smoothness if their
subdivision converges uniformly. Another approach to smooth-
ness analysis is that of analyzing eigen-values of the local re-
finement matrices [16, 9]. However, existing techniques for an-
alyzing such matrices are not directly applicable to our PUPs
refinement matrices, because rows of these matrices may not
sum to one (due to the passage through Grassman space).

Another key future work is finding subdivision schemes for
PUPs surfaces. Finding such a scheme is difficult as PUPs sur-
faces support control nets with arbitrary connectivity. Nonethe-
less, this would greatly increase the capabilities of PUPs based
subdivision by supporting freeform surface modeling. Currently,
our subdivision schemes support tensor product surfaces. We

1Cohen-Daubechies-Feauveau
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Figure 16: (A) The original Lena image obtained from [34]. (B) and (C) The results of compressing the Lena image using CDF9/7 and extended (l = 32) interpolating
CINPACT filters (c = 5,σ = 4.79) respectively. Three decomposition steps are used. The PSNR value of luminosity is 25.3941 and 25.5484 respectively.

can extend their applications to other classes of meshes if we
provide subdivision rules for extra-ordinary vertices which do
not follow a regular tensor connectivity.

Finally, exploring extensive applications of PUPs multires-
olution is left for future works. For example, we can use PUPs
multiresolution masks for texture synthesis via utilizing the de-
tails. Furthermore, it is also worth exploring other kinds of soft
constraints in place of the orthogonality constraints to produce
multiresolution schemes supporting other properties.
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