Digital earth system featuring integer-based connectivity mapping of aperture-3 hexagonal cells

Abstract

A digital Earth system based upon a hexagonal subdivision of a polyhedron representation of the Earth utilizes a computer-implemented method for assigning identifiers. The method comprises defining a tessellation of hexagonal cells, the tessellation having a first axis and a second axis, the first axis being perpendicular to a first side of the hexagonal cells, the second axis being 120 degrees from the first axis and being perpendicular to a second side of the hexagonal cells; selecting an origin cell for the tessellation and assigning a unique identifier comprising a first value and a second value thereto; and assigning a unique identifier to each cell other than the origin cell, the unique identifier for each of these cells comprising a first vector value and a second value, the first vector value and the second vector value being indicative of the location of the cell to the origin cell along the first and second axis respectively.

Publication
*US patent *
Avatar
Faramarz F. Samavati
Professor

My research interests include Computer Graphics, Geometric Modeling, Visualization, and Digital Earth.